首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The fine structure of the indirect flight muscles was studied by electron microscopy in the following Notch locus mutants of Drosophila melanogaster reared at 18° C or 29° C for 6 days after eclosion: Ax 16172/Ax16172, Ax28/ Ax28, l(1)Nts1/l(1)Nts1,l(1)Nts1/Y and in wild-type controls. The flies were raised up to eclosion at 25° C or 18° C. It was observed that the l(1)Nts1 flies gradually became flightless within a few days if reared at 29° C as adults, and gross changes in the fine structure of the flight muscles were also observed in flies of this genotype. Peripheral myofilaments of myofibrils were disarranged and the mitochondria diminutive. At 18° C the flight muscles remained normal. In all of the Abruptex (Ax) combinations the flight muscles remained similar to the wild-type controls at both 18° C and 29° C, i.e. they were normal. The results suggest that the Notch gene is active in adult flies in addition to its activity during embryonic, larval and pupal stages, and is directly or indirectly involved in the adult development of the muscle tissue.  相似文献   

2.
The molecular characterization of muscular dystrophies and myopathies in humans has revealed the complexity of muscle disease and genetic analysis of muscle specification, formation and function in model systems has provided valuable insight into muscle physiology. Therefore, identifying and characterizing molecular mechanisms that underlie muscle damage is critical. The structure of adult Drosophila multi-fiber muscles resemble vertebrate striated muscles 1 and the genetic tractability of Drosophila has made it a great system to analyze dystrophic muscle morphology and characterize the processes affecting muscular function in ageing adult flies 2. Here we present the histological technique for preparing paraffin-embedded and frozen sections of Drosophila thoracic muscles. These preparations allow for the tissue to be stained with classical histological stains and labeled with protein detecting dyes, and specifically cryosections are ideal for immunohistochemical detection of proteins in intact muscles. This allows for analysis of muscle tissue structure, identification of morphological defects, and detection of the expression pattern for muscle/neuron-specific proteins in Drosophila adult muscles. These techniques can also be slightly modified for sectioning of other body parts.  相似文献   

3.
The distribution of third-stage D. roemeri in its tabanid intermediate host was observed in histological sections of naturally infected Dasybasis oculata and Tabanus parvicallosus. Larvae invade the brain, eye, nerve cord, muscles of the mouthparts, horizontal and indirect flight muscles, fat body, hind gut and gonad of flies. Third-stage D. roemeri migrate from the abdomen via the haemocoelic spaces of the thorax to the head of the fly. Evidence suggests that larvae escape from the intermediate host by rupturing the tip of the labrum or the labro-epipharyngeal membranes. Injury was observed in the eye, nerve cord and musculature. There was no evidence that the parasite had a detrimental effect on the host and tabanids showed no response to the presence of filarioids. Species of Dasybasis and Tabanus acting as intermediate host of D. roemeri in nature epitomize the concept of a ‘good’ host.  相似文献   

4.
The modian dorsal longitudinal indirect flight muscles from the mesothorax and metathorax of Homorocoryphus nitidulus vicinus have been studied to determine whether structural differences might offer an explanation for reports that the mesothoracic musculature effects a wing-beat rate of 140 beats/sec during stridulation, whereas during flight, it, like that of the metathorax, effects wing-beat frequencies of 14 to 20 beats/sec. No differences were observed and it is concluded that the high wing-beat rate, reported during stridulation, is not reflected in any specific modification of mesothoracic muscle fine structure.  相似文献   

5.
The anatomy of the muscular system of Barentsia discreta (Kamptozoa) was studied by confocal laser scanning and transmission electron microscopy. The calyx musculature, muscles associated with the digestive tract, atrial ring muscles, and tentacle muscles are described. The structure of the muscular bulbus located in the upper part of the stalk and the muscle base of the stalk were examined. The middle part of the stalk and the stolon lack musculature. The structure of the star-cell complex lying at the boundary of the stalk and calyx was examined in detail. Emschermann’s (1969) opinion was confirmed that the star-cell complex performs the function of a heart, providing the transport of substances from the calyx to the stalk and stolon. The general plan of the muscle arrangement is similar in all Kamptozoa; it consists of central muscles of the calyx, atrial ring muscles, tentacle muscles, and muscles associated with the digestive tract. Oral, lateral, and aboral muscles extending from the stalk into the calyx, which were described for solitary forms, are lacking in the calyx of colonial B. discreta. The calyx of B. discreta is separated from the stalk by a septum, through which muscles do not penetrate from the stalk.  相似文献   

6.
Walker-Warburg syndrome, a progressive muscular dystrophy, is a severe disease with various kinds of symptoms such as muscle weakness and occasional seizures. The genes of protein O-mannosyltransferases 1 and 2 (POMT1 and POMT2), fukutin, and fukutin-related protein are responsible for this syndrome. In our previous study, we cloned Drosophila orthologs of human POMT1 and POMT2 and identified their activity. However, the mechanism of onset of this syndrome is not well understood. Furthermore, little is known about the behavioral properties of the Drosophila POMT1 and POMT2 mutants, which are called rotated abdomen (rt) and twisted (tw), respectively. First, we performed various kinds of behavioral tests and described in detail the muscle structures by using these mutants. The mutant flies exhibited abnormalities in heavy exercises such as climbing or flight but not in light movements such as locomotion. Defective motor function in mutants appeared immediately after eclosion and was exaggerated with aging. Along with motor function, muscle ultrastructure in the tw mutant was altered, as seen in human patients. We demonstrated that expression of RNA interference (RNAi) for the rt gene and the tw mutant was almost completely lethal and semi-lethal, respectively. Flies expressing RNAi had reduced lifespans. These findings clearly demonstrate that Drosophila POMT mutants are models for human muscular dystrophy. We then observed a high density of myoblasts with an enhanced degree of apoptosis in the tw mutant, which completely lost enzymatic activity. In this paper, we propose a novel mechanism for the development of muscular dystrophy: POMT mutation causes high myoblast density and position derangement, which result in apoptosis, muscle disorganization, and muscle cell defects.  相似文献   

7.
Human and animal models using electromyography (EMG) based methods have hypothesized that viscoelastic tissue properties becomes compromised by prolonged repetitive cyclic trunk flexion–extension which in turn influences muscular activation including the flexion–relaxation phenomenon. Empirical evidence to support this hypothesis, especially the development of viscoelastic tension–relaxation and its associated muscular response in passive cyclic activity in humans, is incomplete. The objective of this study was to examine the response of lumbar muscles to tension–relaxation development of the viscoelastic tissue during prolonged passive cyclic trunk flexion–extension. Activity of the lumbar muscles remained low and steady during the passive exercise session. Tension supplied by the posterior viscoelastic tissues decreased over time without corresponding changes in muscular activity. Active flexion, following the passive flexion session, elicited significant increase in paraspinal muscles EMG together with increase in the median frequency. It was concluded that reduction of tension in the lumbar viscoelastic tissues of humans occurs during cyclic flexion–extension and is compensated by increased activity of the musculature in order to maintain stability. It was also concluded that the ligamento-muscular reflex is inhibited during passive activities but becomes hyperactive following active cyclic flexion, indicating that moment requirements are the controlling variable. It is conceived that prolonged routine exposure to cyclic flexion minimizes the function of the viscoelastic tissues and places increasing demands on the neuromuscular system which over time may lead to a disorder and possible exposure to injury.  相似文献   

8.
Due to their unique flight mechanism including a direct flight musculature, Odonata show impressive flight skills. Several publications addressed the details of this flight apparatus like: sclerites, wings, musculature, and flight aerodynamics. However, 3D-analysis of the thorax musculature of adult dragonflies was not studied before and this paper allows for a detailed insight. We, therefore, focused on the thorax musculature of adult Anisoptera using micro-computed tomography. Herewith, we present a comparative morphological approach to identify differences within Anisoptera: Aeshnidae, Corduliidae, Gomphidae, and Libellulidae. In total, 54 muscles were identified: 16 prothoracic, 19 mesothoracic, and 19 metathoracic. Recorded differences were for example, the reduction of muscle Idlm4 and an additional muscle IIIdlm1 in Aeshna cyanea, previously described as rudimentary or missing. Muscle Iscm1, which was previously reported missing in all Odonata, was found in all investigated species. The attachment of muscle IIpcm2 in Pantala flavescens is interpreted as a probable adaption to its long-distance migration behaviour. Furthermore, we present a review of functions of the odonatan flight muscles, considering previous publications. The data herein set a basis for functional and biomechanical studies of the flight apparatus and will therefore lay the foundation for a better understanding of the odonatan flight.  相似文献   

9.
Extended periods of waking result in physiological impairments in humans, rats, and flies. Sleep homeostasis, the increase in sleep observed following sleep loss, is believed to counter the negative effects of prolonged waking by restoring vital biological processes that are degraded during sleep deprivation. Sleep homeostasis, as with other behaviors, is influenced by both genes and environment. We report here that during periods of starvation, flies remain spontaneously awake but, in contrast to sleep deprivation, do not accrue any of the negative consequences of prolonged waking. Specifically, the homeostatic response and learning impairments that are a characteristic of sleep loss are not observed following prolonged waking induced by starvation. Recently, two genes, brummer (bmm) and Lipid storage droplet 2 (Lsd2), have been shown to modulate the response to starvation. bmm mutants have excess fat and are resistant to starvation, whereas Lsd2 mutants are lean and sensitive to starvation. Thus, we hypothesized that bmm and Lsd2 may play a role in sleep regulation. Indeed, bmm mutant flies display a large homeostatic response following sleep deprivation. In contrast, Lsd2 mutant flies, which phenocopy aspects of starvation as measured by low triglyceride stores, do not exhibit a homeostatic response following sleep loss. Importantly, Lsd2 mutant flies are not learning impaired after sleep deprivation. These results provide the first genetic evidence, to our knowledge, that lipid metabolism plays an important role in regulating the homeostatic response and can protect against neuronal impairments induced by prolonged waking.  相似文献   

10.
11.
The somatic muscular systems of two species of Seisonacea (Rotifera), Seison nebaliae and Paraseison annulatus, are described using fluorescently labelled phalloidin in combination with confocal laser scanning microscopy. Their overall muscular arrangement is similar and consists of segmentally organised longitudinal fibres that extend the length of the body and are surrounded by semi-circular (= incomplete) bands. However, differences in the musculature between the two species are present and possibly reflect specific adaptations in feeding strategy and locomotion related to the occupation of individual niches on their host, the leptostracan crustacean N. bipes. For example, S. nebaliae has semi-circular muscles in the head region only, while P. annulatus possesses incomplete circular muscles also in the trunk region; furthermore, there are also differences in the arrangements and number of longitudinal muscles. The muscular systems of all rotifer species examined so far are compared in order to establish the ground pattern of the last putative ancestor as well as to seek for traits of systematic importance. Results from both species corroborate earlier hypotheses on the arrangement of muscles in the putative common ancestor of Rotifera, which suggested an orthogonal arrangement consisting of a series of probably continuous (not segmental) inner longitudinal muscles, surrounded by semi-circular fibres, ventrally opened. However, significant morphological and ecological variations among taxa investigated so far show that a consistent correlation between muscular traits and specific ecological features and/or phylogeny is still far from being clear. Hence, musculature of additional taxa, representing the systematic width and occupying a diverse range of habitats, should be investigated.  相似文献   

12.
Dromaeosauridae is the sister taxon of the Avialae; thus, an investigation of dromaeosaur shoulder girdle musculature and forelimb function provides substantial information regarding changes in the size and performance of the theropod shoulder girdle musculature leading to avian powered flight. Twenty-two shoulder girdle muscles were reconstructed for the dromaeosaurid shoulder apparatus, based on phylogenetic inference, which involves the comparison of lepidosaurian, crocodilian and avian musculature, and extrapolatory inference, which involves a secondary comparison with functional analogues of theropods. In addition to these comparative methodologies, osteological correlates of shoulder musculature preserved in eumaniraptorans are identified, and comparisons with those of extant archosaurs allow these muscles to be definitively inferred in dromaeosaurids. This muscle reconstruction provides a foundation for subsequent investigation of differences in muscular attachment and function, based on scapulocoracoid morphology, across the theropod lineage leading to birds.  © 2006 The Linnean Society of London, Zoological Journal of the Linnean Society , 2006, 146 , 301–344.  相似文献   

13.
Summary Paralysis of flight in the temperature-sensitiveDrosophila mutantpara ts was found to be dependent on the rate of heating (Fig. 2). The gradual nature of the onset of paralysis during the temperature elevation was revealed by recording the electrical responses of the thoracic flight muscle fibers, evoked by cervical stimulation (Figs. 3,4). A neural focus of the mutation was indicated by intracellular current injections into identified flight muscle fibers during paralysis (Fig. 5) and by electrical activity recorded from gynandromorph flies, mosaic forpara ts (Table 1). Recording from picrotoxin-treated flies excluded a previous explanation of paralysis by a temperature-induced augmentation of GABAergic inhibition (Fig. 6). Under the same treatment, evidence was presented for a heterogeneous increase of excitation threshold for spike generation in certain neurons.Abbreviations DLM dorsolongitudinal muscle - DVM dorsoventral muscle - ts temperature sensitive - GABA Gamma aminobutyric acid We wish to thank Dr. E. Lifschytz for providing the facilities for culturing flies in his laboratory. This research was supported by Grant No. 625 from the U.S.-Israel Binational Science Foundation to D.D.  相似文献   

14.
While holding on youth may be a universal wish, aging is a natural process associated with physical and physiological impairment in living organisms. Drosophila provides useful insights into aging-related events. Hence, this study was conducted to investigate the age-related changes in muscle function and architecture in relation to the biogenic amine titers. To achieve this aim, visceral and skeletal muscles performance was tested in newly-eclosed, sexually mature and old adult flies using climbing and gut motility assays. In addition, age-related ultrastructural alterations of muscular tissue were observed using transmission electron microscopy (TEM). The titer of selected biogenic amines was measured using high-performance liquid chromatography (HPLC). The results demonstrated that old flies were dramatically slower in upward movement than either newly-eclosed or sexually mature flies. Similarly, gut contraction rate was significantly lower in old flies than the sexually mature, although it was markedly higher than that in the newly-eclosed flies. In TEM examination, there were several ultrastructural changes in the midgut epithelium, legs and thorax muscles of old flies. Regarding biogenic amine titers, the old flies had significantly lower concentrations of octopamine, dopamine and serotonin than the sexually mature. We concluded that aging has adverse effects on muscular system function and ultrastructure, synchronized with biogenic amine titers changes. Our results highlighted the need for more researches on therapeutics that may balance the levels of age-related alterations in biogenic amines.  相似文献   

15.
The gene hclB encodes a histamine-gated chloride channel subunit in Drosophila melanogaster. Mutations in hclB lead to defects in the visual system and altered sensitivity to the action of ivermectin. To investigate whether this member of the Cys-loop receptors is common across the Insecta, we analysed the genomes of seven other insect species (Diptera, Hymenoptera, Coleoptera) and revealed orthologues of hclB in all of them. Sequence comparisons showed high identity levels between the orthologues, indicating similar constraints and conserved function between the species. Two D. melanogaster mutants, hclBT1 (P293S) and hclBT2 (W111*, a null mutation) were tested for the lapse into, and recovery from, paralysis induced by high temperature or the anaesthetic action of halothane. At 41 °C, the hclBT2 flies lapsed into coma faster than wild-type or the hclBT1 flies, while both mutants recovered more slowly. A substantially impaired recovery rate was also observed in hclBT1 after anaesthesia with halothane. Enhanced synaptic signalling at low-intensity light stimuli was registered on electroretinograms recorded from the two mutant strains. Our results suggest that HCLB may play an essential and conserved role in insect neurophysiology.  相似文献   

16.
Summary The presence and distribution pattern of paramyosin have been examined in different invertebrate muscle cell types by means of Western blot analysis and electron microscopy immunogold labelling. the muscles studied were: transversely striated muscle with continuous Z lines (flight muscle fromDrosophila melanogaster), transversely striated muscle with discontinuous Z lines (heart muscle from the snailHelix aspersa), obliquely striated body wall muscle from the earthwormEisenia foetida, and smooth muscles (retractor muscle from the snail and pseudoheart outer muscular layer from the earthworm). Paramyosin-like immunoreactivity was localized in thick filaments of all muscles studied. Immunogold particle density was similar along the whole thick filament length in insect flight muscle but it predominated in filament tips of fusiform thick filaments in both snail heart and earthworm body wall musculature when these filaments were observed in longitudinal sections. In obliquely sectioned thick filaments, immunolabelling was more abundant at the sites where filaments disappeared from the section. These results agree with the notion that paramyosin extended along the whole filament length, but that it can only be immunolabelled when it is not covered by myosin. In all muscles examined, immunolabelling density was lower in cross-sectioned myofilaments than in longitudinally sectioned myofilaments. This suggests that paramyosin does not form a continuous filament. The results of a semiquantitative analysis of paramyosin-like immunoreactivity indicated that it was more abundant in striated than in smooth muscles, and that, within striated muscles, transversely striated muscles contain more paramyosin than obliquely striated muscles.  相似文献   

17.
The structure of the polychaete muscular system is reviewed. The muscular system comprises the muscles of the body wall, the musculature of the parapodial complex and the muscle system of the dissepiments and mesenteries. Various types of organisation of the longitudinal and circular components of the muscular body wall are distinguished. In Opheliidae, Polygordiidae, Protodrilidae, Spionidae, Oweniidae, Aphroditidae, Acoetidae (=Polyodontidae), Polynoidae, Sigalonidae, Phyllodocidae, Nephtyidae, Pisionidae, and Nerillidae circular muscles are lacking. It is hypothesised that the absence of circular muscles represents the plesiomorphic state in Annelida. This view contradicts the widely accepted idea of an earthworm-like musculature of the body wall comprising an outer layer of circular and an inner layer of longitudinal fibres. A classification of the various types of parapodial muscle construction has been developed. Massive and less manoeuvrable parapodia composed of many components like those of Aphrodita are regarded to represent the plesiomorphic state in recent polychaetes. An analysis of the diversity of the muscular structure supports the hypothesis that the primary mode of life in polychaetes was epibenthic and the parapodial chaetae had a protective function.  相似文献   

18.
Abnormal sarcoendoplasmic reticulum Calcium ATPase (SERCA) function has been associated with poor cardiac function in humans. While modifiers of SERCA function have been identified and studied using animal models, further investigation has been limited by the absence of a model system that is amenable to large-scale genetic screens. Drosophila melanogaster is an ideal model system for the investigation of SERCA function due to the significant homology to human SERCA and the availability of versatile genetic screening tools. To further the use of Drosophila as a model for examining the role of SERCA in cardiac function, we examined cardiac function in adult flies. Using optical coherence tomography (OCT) imaging in awake, adult Drosophila, we have been able to characterize cardiac chamber dimensions in flies with disrupted in Drosophila SERCA (CaP60A). We found that the best studied CaP60A mutant, the conditional paralytic mutant CaP60Akum170, develops marked bradycardia and chamber enlargement that is closely linked to the onset of paralysis and dependent on extra cardiac CaP60A. In contrast to prior work, we show that disruption of CaP60A in a cardiac specific manner results in cardiac dilation and dysfunction rather than alteration in heart rate. In addition, the co-expression of a calcium release channel mutation with CaP60A kum170 is sufficient to rescue the cardiac phenotype but not paralysis. Finally, we show that CaP60A overexpression is able to rescue cardiac function in a model of Drosophila cardiac dysfunction similar to what is observed in mammals. Thus, we present a cardiac phenotype associated with Drosophila SERCA dysfunction that would serve as additional phenotyping for further large-scale genetic screens for novel modifiers of SERCA function.  相似文献   

19.
The muscular architecture of Halobiotus crispae (Eutardigrada: Hypsibiidae) was examined by means of fluorescent‐coupled phalloidin in combination with confocal laser scanning microscopy and computer‐aided three‐dimensional reconstruction, in addition to light microscopy (Nomarski), scanning electron microscopy, and transmission electron microscopy (TEM). The somatic musculature of H. crispae is composed of structurally independent muscle fibers, which can be divided into a dorsal, ventral, dorsoventral, and a lateral musculature. Moreover, a distinct leg musculature is found. The number and arrangement of muscles differ in each leg. Noticeably, the fourth leg contains much fewer muscles when compared with the other legs. Buccopharyngeal musculature (myoepithelial muscles), intestinal musculature, and cloacal musculature comprise the animal's visceral musculature. TEM of stylet and leg musculature revealed ultrastructural similarities between these two muscle groups. Furthermore, microtubules are found in the epidermal cells of both leg and stylet muscle attachments. This would indicate that the stylet and stylet glands are homologues to the claw and claw glands, respectively. When comparing with previously published data on both heterotardigrade and eutardigrade species, it becomes obvious that eutardigrades possess very similar numbers and arrangement of muscles, yet differ in a number of significant details of their myoanatomy. This study establishes a morphological framework for the use of muscular architecture in elucidating tardigrade phylogeny. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
太空飞行后秀丽隐杆线虫肌相关基因和蛋白质变化   总被引:2,自引:2,他引:0  
太空飞行所致的肌萎缩和重力感知的分子机制至今尚不清楚.研究太空飞行对秀丽隐杆线虫(C.elegans)体壁肌细胞结构和功能的影响.经过近15天太空飞行后对其生存率和运动能力进行了观察,并检测了5个重要的肌相关基因的表达和3种蛋白质含量.太空研究是在动物的整体水平进行的,而不是就单个细胞的研究.经历太空飞行后线虫生存率没有明显变化,但运动频率变慢,爬行轨迹也发生了改变,提示线虫运动功能出现障碍,这些数据揭示:微重力下秀丽线虫肌肉发育发生了变化.肌球蛋白A(myosin A)免疫荧光染色观察发现,太空飞行组肌纤维面积缩小,肌细胞致密体(dense-body)荧光亮度下降.这些形态学观察直接提示太空组线虫出现了肌萎缩.但是,肌动蛋白(F-actin)荧光染色显示两组并无明显差别.基因表达水平的分析结果显示,在太空飞行组动物中dys-1表达明显上调,同时hlh-1,myo-3,unc-54和egl—19基因表达下调.抗肌萎缩蛋白(dystrophin,由dys—1编码)是抗肌萎缩蛋白-糖蛋白复合物(DGC)的主要组成成分,而该复合物在微重力下增多,提示肌细胞是为了接受更多的力学刺激以维持细胞内外的力学平衡,所以该复合物在肌细胞的重力感知中起关键作用.基因hlh-1,myo-3,unc-54和egl-19表达下调,说明它们分别从结构和功能两个途径促进了微重力性肌萎缩的发生.最后,Western blot结果提示,太空组线虫体壁肌内肌球蛋白A减少,进一步确证了太空飞行中线虫有肌萎缩发生.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号