首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lactococcus lactis subsp lactis BSA (L. lactis BSA) was isolated from a commercial fermented product (BSA Food Ingredients, Montreal, Canada) containing mixed bacteria that are used as starter for food fermentation. In order to increase the bacteriocin production by L. lactis BSA, different fermentation conditions were conducted. They included different volumetric combinations of two culture media (the Man, Rogosa and Sharpe (MRS) broth and skim milk), agitation level (0 and 100 rpm) and concentration of commercial nisin (0, 0.15, and 0.30 µg/ml) added into culture media as stimulant agent for nisin production. During fermentation, samples were collected and used for antibacterial evaluation against Lactobacillus sakei using agar diffusion assay. Results showed that medium containing 50 % MRS broth and 50 % skim milk gave better antibacterial activity as compared to other medium formulations. Agitation (100 rpm) did not improve nisin production by L. lactis BSA. Adding 0.15 µg/ml of nisin into the medium-containing 50 % MRS broth and 50 % skim milk caused the highest nisin activity of 18,820 AU/ml as compared to other medium formulations. This activity was 4 and ~3 times higher than medium containing 100 % MRS broth without added nisin (~4700 AU/ml) and 100 % MRS broth with 0.15 µg/ml of added nisin (~6650 AU/ml), respectively.  相似文献   

2.
Klebsiella pneumoniae is a 2,3-butanediol producer, and R-acetoin is an intermediate of 2,3-butanediol production. R-acetoin accumulation and dissimilation in K. pneumoniae was studied here. A budC mutant, which has lost 2,3-butanediol dehydrogenase activity, accumulated high levels of R-acetoin in culture broth. However, after glucose was exhausted, the accumulated R-acetoin could be reused by the cells as a carbon source. Acetoin dehydrogenase enzyme system, encoded by acoABCD, was responsible for R-acetoin dissimilation. acoABCD mutants lost the ability to grow on acetoin as the sole carbon source, and the acetoin accumulated could not be dissimilated. However, in the presence of another carbon source, the acetoin accumulated in broth of acoABCD mutants was converted to 2,3-butanediol. Parameters of R-acetoin production by budC mutants were optimized in batch culture. Aerobic culture and mildly acidic conditions (pH 6–6.5) favored R-acetoin accumulation. At the optimized conditions, in fed-batch fermentation, 62.3 g/L R-acetoin was produced by budC and acoABCD double mutant in 57 h culture, with an optical purity of 98.0 %, and a substrate conversion ratio of 28.7 %.  相似文献   

3.
4.
Production of gamma-aminobutyric acid (GABA) from crop biomass such as cassava in high concentration is desirable, but difficult to achieve. A safe biotechnological route was investigated to produce GABA from cassava powder by C. glutamicum G01 and L. plantarum GB01-21. Liquefied cassava powder was first transformed to glutamic acid by simultaneous saccharification and fermentation with C. glutamicum G01, followed by biotransformation of glutamic acid to GABA with resting cells of L. plantarum GB01-21 in the reaction medium. After optimizing the reaction conditions, the maximum concentration of GABA reached 80.5 g/L with a GABA productivity of 2.68 g/L/h. This is the highest yield ever reported of GABA production from cassava-derived glucose. The bioprocess provides the added advantage of employing nonpathogenic microorganisms, C. glutamicum and L. plantarum, in microbial production of GABA from cassava biomass, which can be used in the food and pharmaceutical industries.  相似文献   

5.

Objective

To improve the production of trans-10,cis-12-conjugated linoleic acid (t10,c12-CLA) from linoleic acid in recombinant Yarrowia lipolytica.

Results

Cells of the yeast were permeabilized by freeze/thawing. The optimal conditions for t10,c12-CLA production by the permeabilized cells were at 28 °C, pH 7, 200 rpm with 1.5 g sodium acetate l?1, 100 g wet cells l?1, and 25 g LA l?1. Under these conditions, the permeabilized cells produced 15.6 g t10,c12-CLA l?1 after 40 h, with a conversion yield of 62 %. The permeabilized cells could be used repeatedly for three cycles, with the t10,c12-CLA extracellular production remaining above 10 g l?1.

Conclusion

Synthesis of t10,c12-CLA was achieved using a novel method, and the production reported in this work is the highest value reported to date.
  相似文献   

6.
The seaweed genus Gracilaria is a potential candidate for the production of bioethanol due to its high carbohydrate content. Gracilaria is abundant throughout the world and can be found in both wild and cultivated forms. Differences in the ecological factors such as temperature, salinity, and light intensity affecting wild and cultivated specimens may influence the biochemical content of seaweeds, including the carbohydrate content. This study aimed to investigate the proximate composition and potential bioethanol production of wild and cultivated G. gigas and G. verrucosa. Bioethanol was produced using separate hydrolysis fermentation (SHF), employing a combination of enzymatic and acid hydrolysis, followed by fermentation with Saccharomyces cerevisiae ATCC 200062. The highest carbohydrate content was found in wild G. gigas. The highest galactose and glucose contents (20.21 ± 0.32 and 9.70 ± 0.49 g L?1, respectively), as well as the highest production of bioethanol (3.56 ± 0.02 g L?1), were also found in wild G. gigas. Thus, we conclude that wild G. gigas is the most promising candidate for bioethanol production. Further research is needed to optimize bioethanol production from wild G. gigas. Domestication of wild G. gigas is a promising challenge for aquaculture to avoid overexploitation of this wild seaweed resource.  相似文献   

7.

Objectives

To improve 1,3-propanediol (1,3-PD) production and reduce byproduct concentration during the fermentation of Klebsiella pneumonia.

Results

Klebsiella. pneumonia 2-1ΔldhA, K. pneumonia 2-1ΔaldH and K. pneumonia 2-1ΔldhaldH mutant strains were obtained through deletion of the ldhA gene encoding lactate dehydrogenase required for lactate synthesis and the aldH gene encoding acetaldehyde dehydrogenase involved in the synthesis of ethanol. After fed-batch fermentation, the production of 1,3-PD from glycerol was enhanced and the concentrations of byproducts were reduced compared with the original strain K. pneumonia 2-1. The maximum yields of 1,3-PD were 85.7, 82.5 and 87.5 g/l in the respective mutant strains.

Conclusion

Deletion of either aldH or ldhA promoted 1,3-PD production in K. pneumonia.
  相似文献   

8.
Dihydrolipohyl dehydrogenase (DLD) is a FAD-dependent enzyme that catalyzes the reversible oxidation of dihydrolipoamide. Herein, we report medium optimization for the production of a recombinant DLD with NADH-dependent diaphorase activity from a strain of Bacillus sphaericus PAD-91. The DLD gene that consisted of 1413 bp was expressed in Escherichia coli BL21 (DE3), and its enzymatic properties were studied. The composition of production medium was optimized using one-variable-at-a-time method followed by response surface methodology (RSM). B. sphaericus DLD catalyzed the reduction of lipoamide by NAD+ and exhibited diaphorase activity. The molecular weight of enzyme was about 50 kDa and determined to be a monomeric protein. Recombinant diaphorase showed its optimal activity at temperature of 30 °C and pH 8.5. K m and V max values with NADH were estimated to be 0.025 mM and 275.8 U/mL, respectively. Recombinant enzyme was optimally produced in fermentation medium containing 10 g/L sucrose, 25 g/L yeast extract, 5 g/L NaCl and 0.25 g/L MgSO4. At these concentrations, the actual diaphorase activity was calculated to be 345.0 ± 4.1 U/mL. By scaling up fermentation from flask to bioreactor, enzyme activity was increased to 486.3 ± 5.5 U/mL. Briefly, a DLD with diaphorase activity from a newly isolated B. sphaericus PAD-91 was characterized and the production of recombinant enzyme was optimized using RSM technique.  相似文献   

9.
2,3-Butanediol (2,3-BD) can be produced by fermentation of natural resources like Miscanthus. Bacillus licheniformis mutants, WX-02ΔbudC and WX-02ΔgldA, were elucidated for the potential to use Miscanthus as a cost-effective biomass to produce optically pure 2,3-BD. Both WX-02ΔbudC and WX-02ΔgldA could efficiently use xylose as well as mixed sugars of glucose and xylose to produce optically pure 2,3-BD. Batch fermentation of M. floridulus hydrolysate could produce 21.6 g/L d-2,3-BD and 23.9 g/L meso-2,3-BD in flask, and 13.8 g/L d-2,3-BD and 13.2 g/L meso-2,3-BD in bioreactor for WX-02ΔbudC and WX-02ΔgldA, respectively. Further fed-batch fermentation of hydrolysate in bioreactor showed both of two strains could produce optically pure 2,3-BD, with 32.2 g/L d-2,3-BD for WX-02ΔbudC and 48.5 g/L meso-2,3-BD for WX-02ΔgldA, respectively. Collectively, WX-02ΔbudC and WX-02ΔgldA can efficiently produce optically pure 2,3-BD with M. floridulus hydrolysate, and these two strains are candidates for industrial production of optical purity of 2,3-BD with M. floridulus hydrolysate.  相似文献   

10.
Solvent stress occurs during whole-cell biocatalysis of organic chemicals. Organic substrates and/or products may accumulate in the cellular membranes of whole cells, causing structural destabilization of the membranes, which leads to disturbances in cellular carbon and energy metabolism. Here, we investigate the effect of cyclohexanone on carbon metabolism in Escherichia coli BL21 and Corynebacterium glutamicum ATCC13032. Adding cyclohexanone to the culture medium (i.e., glucose mineral medium) resulted in a decreased specific growth rate and increased cellular maintenance energy in both strains of bacteria. Notably, carbon metabolism, which is mainly involved to increase cellular maintenance energy, was very different between the bacteria. Carbon flux into the acetic acid fermentation pathway was dominantly enhanced in E. coli, whereas the TCA cycle appeared to be activated in C. glutamicum. In fact, carbon flux into the TCA cycle in E. coli appeared to be reduced with increasing amounts of cyclohexanone in the culture medium. Metabolic engineering of E. coli cells to maintain or improve TCA cycle activity and, presumably, that of the electron transport chain, which are involved in regeneration of cofactors (e.g., NAD(P)H and ATP) and formation of toxic metabolites (e.g., acetic acid), may be useful in increasing solvent tolerance and biotransformation of organic chemicals (e.g., cyclohexanone).  相似文献   

11.
Kung-Som is a popular traditional Thai fermented shrimp product. It is rich in glutamic acid, which is the major substrate for the biosynthesis of gamma-aminobutyric acid (GABA) by lactic acid bacteria (LAB). In the present study, LAB from Kung-Som were isolated, screened for GABA formation, and the two isolates that transform glutamic acid most efficiently into GABA were identified. Based on the API-CHL50 fermentation profile and a phylogenetic tree of 16S rDNA sequences, strain CS3 and CS5 were identified as Lactobacillus futsaii, which was for the first time shown to be a promising GABA producer. L. futsaii CS3 was the most efficient microorganism for the conversion of 25 mg/mL monosodium glutamate (MSG) to GABA, with a maximum yield of more than 99% conversion rate within 72 h. The open reading frame (ORF) of the glutamate decarboxylase (gad) gene was identified by PCR. It consists of 1410 bp encoding a polypeptide of 469 amino acids with a predicted molecular weight of 53.64 kDa and an isoelectric point (pI) of 5.56. Moreover, a good quality of the constructed model of L. futsaii CS3 was also estimated. Our results indicate that L. futsaii CS3 could be of interest for the production of GABA-enriched foods by fermentation and for other value-added products.  相似文献   

12.
In this study, the pullulanase gene from Bacillus deramificans was efficiently expressed in Brevibacillus choshinensis. The optimal medium for protein expression was determined through a combination of single-factor experiments and response surface methodology. The initial pH of the medium and the culture temperature were optimized. The pullulanase yield increased 10.8-fold through medium and condition optimization at the shake-flask level. From the results of these experiments, the dissolved oxygen level was optimized in a 3-L fermentor. Under these optimized conditions, the pullulanase activity and the specific pullulanase productivity reached 1005.8 U/mL and 110.5 × 103 U/g dry cell weight, respectively, with negligible intracellular expression. The Brevibacillus choshinensis expression system has proven to be valuable for the extracellular production of pullulanase.  相似文献   

13.
Gundruk is a fermented leafy vegetable and khalpi is a fermented cucumber product, prepared and consumed in the Himalayas. In situ fermentation dynamics during production of gundruk and khalpi was studied. Significant increase in population of lactic acid bacteria (LAB) was found during first few days of gundruk and khlapi fermentation, respectively. Gundruk fermentation was initiated by Lactobacillus brevis, Pediococcus pentosaceus and finally dominated by Lb. plantarum. Similarly in khalpi fermentation, heterofermentative LAB such as Leuconostoc fallax, Lb. brevis and P. pentosaceus initiated the fermentation and finally completed by Lb. plantarum. Attempts were made to produce gundruk and khalpi using mixed starter culture of LAB previously isolated from respective products. Both the products prepared under lab condition had scored higher sensory-rankings comparable to market products.  相似文献   

14.
Bacterial phenazine metabolites belong to a group of nitrogen-containing heterocyclic compounds with antimicrobial activities. In this study, a rhizosphere Pseudomonas aeruginosa strain PA1201 was isolated and identified through 16S rDNA sequence analysis and fatty acid profiling. PA1201 inhibited the growth of various pathogenic microorganisms, including Rhizotonia solani, Magnaporthe grisea, Fusarium graminearum, Xanthomonas oryzae pv. oryzae, Xanthomonas oryzae pv. oryzicola, and Staphylococcus aureus. High Performance Liquid Chromatography showed that PA1201 produced high levels of phenazine-1-carboxylic acid (PCA), a registered green fungicide ‘Shenqinmycin’ with the fermentation titers of 81.7 mg/L in pigment producing medium (PPM) and 926.9 mg/L in SCG medium containing soybean meal, corn steep liquor and glucose. In addition, PA1201 produced another antifungal metabolite, phenazine-1-carboxaminde (PCN), a derivative of PCA, with the fermentation titers of 18.1 and 489.5 mg/L in PPM and SCG medium respectively. To the best of our knowledge, PA1201 is a rhizosphere originating P. aeruginosa strain that congenitally produces the highest levels of PCA and PCN among currently reported P. aeruginosa isolates, which endows it great biotechnological potential to be transformed to a biopesticide-producing engineering strain.  相似文献   

15.
PHB biosynthesis pathway, consisting of three open reading frames (ORFs) that encode for β-ketothiolase (phaA Cma , 1179 bp), acetoacetyl-CoA reductase (phaB Cma , 738 bp), and PHA synthase (phaC Cma , 1694 bp), of Caldimonas manganoxidans was identified. The functions of PhaA, PhaB, and PhaC were demonstrated by successfully reconstructing PHB biosynthesis pathway of C. manganoxidans in Escherichia coli, where PHB production was confirmed by OD600, gas chromatography, Nile blue stain, and transmission electron microscope (TEM). The protein sequence alignment of PHB synthases revealed that phaC Cma shares at least 60% identity with those of class I PHB synthase. The effects of PhaA, PhaB, and PhaC expression levels on PHB production were investigated. While the overexpression of PhaB is found to be important in recombinant E. coli, performances of PHB production can be quantified as follows: PHB concentration of 16.8 ± 0.6 g/L, yield of 0.28 g/g glucose, content of 74%, productivity of 0.28 g/L/h, and Mw of 1.41 MDa.  相似文献   

16.
Bio-based succinic acid production from lignocellulosic biomass is one of the attractive and prominent alternative technologies to overcome issues associated with the utilization of fossil sources. In this context, it is necessary to find new microorganisms that are able to efficiently ferment this recalcitrant feedstock. The ecological approach developed in this study enabled the isolation of Basfia succiniciproducens BPP7 from a complex rumen ecosystem. This new wild-type strain was able to synthesize up to 6.06 ± 0.05 g/L of succinate (corresponding to 0.84 ± 0.017 g of succinate per gram of consumed glucose + xylose and to 0.14 ± 0.001 g of succinate per gram of glucans + xylans present in the biomass before hydrolysis) from Arundo donax hydrolysate in separate hydrolysis and fermentation (SHF) experiments. Higher titers of succinic acid were obtained through the optimization of growth conditions. The optimal medium composition identified on the smaller scale was then used for 2.5-L batch experiments, which used A. donax hydrolysate and yeast extract as the main C and N sources, respectively. A maximal titer of 9.4 ± 0.4 g/L of succinic acid was obtained after 24 h. The overall results clearly demonstrate the potential of B. succiniciproducens BPP7 for succinate production.  相似文献   

17.
The focus of this study was to produce isopropanol and butanol (IB) from dilute sulfuric acid treated cassava bagasse hydrolysate (SACBH), and improve IB production by co-culturing Clostridium beijerinckii (C. beijerinckii) with Clostridium tyrobutyricum (C. tyrobutyricum) in an immobilized-cell fermentation system. Concentrated SACBH could be converted to solvents efficiently by immobilized pure culture of C. beijerinckii. Considerable solvent concentrations of 6.19 g/L isopropanol and 12.32 g/L butanol were obtained from batch fermentation, and the total solvent yield and volumetric productivity were 0.42 g/g and 0.30 g/L/h, respectively. Furthermore, the concentrations of isopropanol and butanol increased to 7.63 and 13.26 g/L, respectively, under the immobilized co-culture conditions when concentrated SACBH was used as the carbon source. The concentrations of isopropanol and butanol from the immobilized co-culture fermentation were, respectively, 42.62 and 25.45 % higher than the production resulting from pure culture fermentation. The total solvent yield and volumetric productivity increased to 0.51 g/g and 0.44 g/L/h when co-culture conditions were utilized. Our results indicated that SACBH could be used as an economically favorable carbon source or substrate for IB production using immobilized fermentation. Additionally, IB production could be significantly improved by co-culture immobilization, which provides extracellular acetic acid to C. beijerinckii from C. tyrobutyricum. This study provided a technically feasible and cost-efficient way for IB production using cassava bagasse, which may be suitable for industrial solvent production.  相似文献   

18.
Inulin is a readily available feedstock for cost-effective production of biochemicals. To date, several studies have explored the production of bioethanol, high-fructose syrup and fructooligosaccharide, but there are no studies regarding the production of d-lactic acid using inulin as a carbon source. In the present study, chicory-derived inulin was used for d-lactic acid biosynthesis by Lactobacillus bulgaricus CGMCC 1.6970. Compared with separate hydrolysis and fermentation processes, simultaneous saccharification and fermentation (SSF) has demonstrated the best performance of d-lactic acid production. Because it prevents fructose inhibition and promotes the complete hydrolysis of inulin, the highest d-lactic acid concentration (123.6 ± 0.9 g/L) with a yield of 97.9 % was obtained from 120 g/L inulin by SSF. Moreover, SSF by L. bulgaricus CGMCC 1.6970 offered another distinct advantage with respect to the higher optical purity of d-lactic acid (>99.9 %) and reduced number of residual sugars. The excellent performance of d-lactic acid production from inulin by SSF represents a high-yield method for d-lactic acid production from non-food grains.  相似文献   

19.
By-products resulting from thermo-chemical pretreatment of lignocellulose can inhibit fermentation of lignocellulosic sugars to lactic acid. Furfural is such a by-product, which is formed during acid pretreatment of lignocellulose. pH-controlled fermentations with 1 L starting volume, containing YP medium and a mixture of lignocellulosic by-products, were inoculated with precultures of Bacillus coagulans DSM2314 to which 1 g/L furfural was added. The addition of furfural to precultures resulted in an increase in l(+)-lactic acid productivity by a factor 2 to 1.39 g/L/h, an increase in lactic acid production from 54 to 71 g and an increase in conversion yields of sugar to lactic acid from 68 to 88 % W/W in subsequent fermentations. The improved performance was not caused by furfural consumption or conversion, indicating that the cells acquired a higher tolerance towards this by-product. The improvement coincided with a significant elongation of B. coagulans cells. Via RNA-Seq analysis, an upregulation of pathways involved in the synthesis of cell wall components such as bacillosamine, peptidoglycan and spermidine was observed in elongated cells. Furthermore, the gene SigB and genes promoted by SigB, such as NhaX and YsnF, were upregulated in the presence of furfural. These genes are involved in stress responses in bacilli.  相似文献   

20.

Objectives

To enhance acid tolerance of Candida glabrata for pyruvate production by engineering AMP metabolism.

Results

The physiological function of AMP deaminase in AMP metabolism from C. glabrata was investigated by deleting or overexpresseing the corresponding gene, CgAMD1. At pH 4, CgAMD1 overexpression resulted in 59 and 51% increases in biomass and cell viability compared to those of wild type strain, respectively. In addition, the intracellular ATP level of strain Cgamd1Δ/CgAMD1 was down-regulated by 22%, which led to a 94% increase in pyruvate production. Further, various strengths of CgAMD1 expression cassettes were designed, thus resulting in a 59% increase in pyruvate production at pH 4. Strain Cgamd1Δ/CgAMD1 (H) was grown in a 30 l batch bioreactor at pH 4, and pyruvate reached 46.1 g/l.

Conclusion

CgAMD1 overexpression plays an active role in improving acid tolerance and pyruvate fermentation performance of C. glabrata at pH 4.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号