首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Feathers are complex integumentary appendages of birds and some other theropod dinosaurs. They are frequently coloured and function in camouflage and display. Previous investigations have concluded that fossil feathers are preserved as carbonized traces composed of feather-degrading bacteria. Here, an investigation of a colour-banded feather from the Lower Cretaceous Crato Formation of Brazil revealed that the dark bands are preserved as elongate, oblate carbonaceous bodies 1-2mum long, whereas the light bands retain only relief traces on the rock matrix. Energy dispersive X-ray analysis showed that the dark bands preserve a substantial amount of carbon, whereas the light bands show no carbon residue. Comparison of these oblate fossil bodies with the structure of black feathers from a living bird indicates that they are the eumelanin-containing melanosomes. We conclude that most fossil feathers are preserved as melanosomes, and that the distribution of these structures in fossil feathers can preserve the colour pattern in the original feather. The discovery of preserved melanosomes opens up the possibility of interpreting the colour of extinct birds and other dinosaurs.  相似文献   

2.
Structural colours, the most intense, reflective and pure colours in nature, are generated when light is scattered by complex nanostructures. Metallic structural colours are widespread among modern insects and can be preserved in their fossil counterparts, but it is unclear whether the colours have been altered during fossilization, and whether the absence of colours is always real. To resolve these issues, we investigated fossil beetles from five Cenozoic biotas. Metallic colours in these specimens are generated by an epicuticular multi-layer reflector; the fidelity of its preservation correlates with that of other key cuticular ultrastructures. Where these other ultrastructures are well preserved in non-metallic fossil specimens, we can infer that the original cuticle lacked a multi-layer reflector; its absence in the fossil is not a preservational artefact. Reconstructions of the original colours of the fossils based on the structure of the multi-layer reflector show that the preserved colours are offset systematically to longer wavelengths; this probably reflects alteration of the refractive index of the epicuticle during fossilization. These findings will allow the former presence, and original hue, of metallic structural colours to be identified in diverse fossil insects, thus providing critical evidence of the evolution of structural colour in this group.  相似文献   

3.
Fossils are a key source of data on the evolution of feather structure and function through deep time, but their ability to resolve macroevolutionary questions is compromised by an incomplete understanding of their taphonomy. Critically, the relative preservation potential of two key feather components, melanosomes and keratinous tissue, is not fully resolved. Recent studies suggesting that melanosomes are preferentially preserved conflict with observations that melanosomes preserve in fossil feathers as external moulds in an organic matrix. To date, there is no model to explain the latter mode of melanosome preservation. We addressed these issues by degrading feathers in systematic taphonomic experiments incorporating decay, maturation and oxidation in isolation and combination. Our results reveal that the production of mouldic melanosomes requires interactions with an oxidant and is most likely to occur prior to substantial maturation. This constrains the taphonomic conditions under which melanosomes are likely to be fossilized. Critically, our experiments also confirm that keratinous feather structures have a higher preservation potential than melanosomes under a range of diagenetic conditions, supporting hitherto controversial hypotheses that fossil feathers can retain degraded keratinous structures.  相似文献   

4.
The absorbance of melanin content from dorsal feathers was compared between wild-type Japanese quail and nine other quail plumage colours determined by single mutations in one of seven genes: extended brown ( MC1R ), yellow ( ASIP ), silver ( MITF ), lavender ( MLPH ), roux ( TYRP1 ), imperfect albinism ( SLC45A2 ) and rusty . As compared with wild-type quail, all mutations but extended brown decreased total melanins. The largest decrease was observed in quail with one of the dilution mutations at TYRP1 , MLPH or SLCA45A2 . No difference in eumelanins was found between the 10 plumage colours. Despite visible colour differences, homozygous and heterozygous mutants at MITF , or the two imperfect albino (white) and cinnamon (pale yellow) alleles at SLC45A2, could not be differentiated on the basis of melanins. In contrast, the two white phenotypes caused by mutations at MITF and SLC45A2, or the two reddish plumage colours caused by the roux and rusty non-allelic mutations had different total melanin contents. The results showed that rusty was not likely to be a dilution mutation.  相似文献   

5.
Despite extensive research on the evolution of avian dichromatism, the anatomical bases for differences between the sexes in species with structurally coloured plumage remain largely unknown. Using full‐spectrum spectrometry and transmission electron microscopy, we compared the colour and morphology of rump feathers of male and female eastern bluebirds (Sialia sialis). The ultraviolet (UV)‐blue feather colour in this species is caused by coherent scattering of light within the medullary ‘spongy layer’ of feather barbs. This spongy layer lies beneath a keratin cortex and on top of a layer of melanin granules that surround a hollow central vacuole. Irregularly shaped electron‐dense regions are present within the cortex. Male and female S. sialis differed substantially in their plumage colour and feather structure. A backwards logistic regression predicted sex with 100% accuracy using the colour variables brightness, UV‐violet (UV‐V) chroma and spectral saturation. A second backwards logistical regression predicted sex with 100% accuracy using relative cortex area and size of air spaces. Thus, S. sialis are dimorphic both in colour and in the structures causing this colour. Multiple regression analyses using data pooled from both sexes indicated that multiple features of feather barb structure contributed to colour variation in complex ways. Brightness was negatively related to the relative surface area of cortex in barb cross‐sections. Hue was positively related and UV‐V chroma was negatively related to the distance between scattering elements (i.e. keratin rods and air spaces) in the spongy layer. In contrast, hue was negatively related and UV‐V chroma was positively related to the thickness of the spongy layer. UV‐V chroma was also negatively related to the relative area of electron‐dense regions in the cortex. Spectral saturation was negatively related to the distance between scatterers and the standard error of the size of air spaces. These results suggest that the dimensions of spongy‐layer elements are critical to colour production, but that UV‐blue coloration can also be modified by the cortex and the thickness of the spongy layer. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 84 , 259–271.  相似文献   

6.
In the last 20 years, much taphonomic experimentation has focused on the interpretation of exceptionally preserved fossils. Decay experiments have been used to interpret the features preserved in soft‐bodied fossils and to determine the sequence of character loss and its impact on phylogenetic position. Experiments on the impact of microbial communities on decay and mineralization have started to illuminate the processes involved in the fossilization of soft tissues, including embryos. The role of decay in promoting authigenic mineralization has been used to investigate the formation of Ediacaran macrofossils and concretions. Maturation experiments have shown how the constituents of animals and plants are transformed over time to a macromolecular material that converges on a similar stable composition. Other maturation experiments have explained how structural colours in fossils are altered from the original. A major area requiring investigation is the role of specific types of microbes in decay and their impact on sediment and pore water chemistry, as well as the environmental controls that determine their presence and level of activity. Microbial activity has received less attention than other factors in attempts to explain why the occurrence and nature of exceptional preservation varies in time and space through the fossil record.  相似文献   

7.
8.
Fossil melanin granules (melanosomes) are an important resource for inferring the evolutionary history of colour and its functions in animals. The taphonomy of melanin and melanosomes, however, is incompletely understood. In particular, the chemical processes responsible for melanosome preservation have not been investigated. As a result, the origins of sulfur‐bearing compounds in fossil melanosomes are difficult to resolve. This has implications for interpretations of original colour in fossils based on potential sulfur‐rich phaeomelanosomes. Here we use pyrolysis gas chromatography mass spectrometry (Py‐GCMS), fourier transform infrared spectroscopy (FTIR) and time of flight secondary ion mass spectrometry (ToF‐SIMS) to assess the mode of preservation of fossil microstructures, confirmed as melanosomes based on the presence of melanin, preserved in frogs from the Late Miocene Libros biota (NE Spain). Our results reveal a high abundance of organosulfur compounds and non‐sulfurized fatty acid methyl esters in both the fossil tissues and host sediment; chemical signatures in the fossil tissues are inconsistent with preservation of phaeomelanin. Our results reflect preservation via the diagenetic incorporation of sulfur, i.e. sulfurization (natural vulcanization), and other polymerization processes. Organosulfur compounds and/or elevated concentrations of sulfur have been reported from melanosomes preserved in various invertebrate and vertebrate fossils and depositional settings, suggesting that preservation through sulfurization is likely to be widespread. Future studies of sulfur‐rich fossil melanosomes require that the geochemistry of the host sediment is tested for evidence of sulfurization in order to constrain interpretations of potential phaeomelanosomes and thus of original integumentary colour in fossils.  相似文献   

9.
A panel of geochemical techniques is used here to investigate the taphonomy of fossil feathers preserved in association with the skeleton of the Jurassic theropod Anchiornis huxleyi. Extant feathers were analysed in parallel to test whether the soft tissues morphologically preserved in the fossil also exhibit a high degree of chemical preservation. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) indicate that clays and iron oxide pseudomorphs occur in the surrounding sediment and also reveal the preservation of melanosome-like microbodies in the fossil. Carbon gradient along a depth profile and co-occurrence of carbon and sulphur are shown in the fossil by elastic backscattering (EBS) and particle-induced x-ray emission (PIXE), which are promising techniques for the elemental analysis of fossil soft tissues. The molecular composition of modern and fossil soft tissues was assessed from micro-attenuated total reflectance fourier transform infrared spectroscopy (micro-ATR FTIR), solid-state 13C nuclear magnetic resonance (CP-MAS 13C NMR) and pyrolysis gas chromatography mass spectrometry in the presence of TMAH (TMAH-Py-GC-MS). Results indicate that the proteinaceous material that comprises the modern feathers is not present in the fossil feathers. The fossil feathers and the embedding sediment exhibit a highly aliphatic character. However, substantial differences exist between these samples, revealing that the organic matter of the fossil feathers is, at least partially, derived from original constituents of the feathers. Our results suggest that, despite the morphological preservation of Anchiornis feathers, original proteins, that is keratin, were probably not preserved in the 160-myr-old feathers.  相似文献   

10.
Molluscan shell colour   总被引:2,自引:0,他引:2       下载免费PDF全文
The phylum Mollusca is highly speciose, and is the largest phylum in the marine realm. The great majority of molluscs are shelled, including nearly all bivalves, most gastropods and some cephalopods. The fabulous and diverse colours and patterns of molluscan shells are widely recognised and have been appreciated for hundreds of years by collectors and scientists alike. They serve taxonomists as characters that can be used to recognise and distinguish species, however their function for the animal is sometimes less clear and has been the focus of many ecological and evolutionary studies. Despite these studies, almost nothing is known about the evolution of colour in molluscan shells. This review summarises for the first time major findings of disparate studies relevant to the evolution of shell colour in Mollusca and discusses the importance of colour, including the effects of visual and non‐visual selection, diet and abiotic factors. I also summarise the evidence for the heritability of shell colour in some taxa and recent efforts to understand the molecular mechanisms underpinning synthesis of shell colours. I describe some of the main shell pigments found in Mollusca (carotenoids, melanin and tetrapyrroles, including porphyrins and bile pigments), and their durability in the fossil record. Finally I suggest that pigments appear to be distributed in a phylogenetically relevant manner and that the synthesis of colour is likely to be energetically costly.  相似文献   

11.

Background

Colour is a consequence of the optical properties of an object and the visual system of the animal perceiving it. Colour is produced through chemical and structural means, but structural colour has been relatively poorly studied in plants.

Scope

This Botanical Briefing describes the mechanisms by which structures can produce colour. In plants, as in animals, the most common mechanisms are multilayers and diffraction gratings. The functions of structural colour are then discussed. In animals, these colours act primarily as signals between members of the same species, although they can also play roles in camouflaging animals from their predators. In plants, multilayers are found predominantly in shade-plant leaves, suggesting a role either in photoprotection or in optimizing capture of photosynthetically active light. Diffraction gratings may be a surprisingly common feature of petals, and recent work has shown that they can be used by bees as cues to identify rewarding flowers.

Conclusions

Structural colour may be surprisingly frequent in the plant kingdom, playing important roles alongside pigment colour. Much remains to be discovered about its distribution, development and function.  相似文献   

12.
Stranded cetaceans have long intrigued naturalists because their causation has escaped singular explanations. Regardless of cause, strandings also represent a sample of the living community, although their fidelity has rarely been quantified. Using commensurate stranding and sighting records compiled from archived datasets representing nearly every major ocean basin, I demonstrated that the cetacean stranding record faithfully reflects patterns of richness and relative abundance in living communities, especially for coastlines greater than 2000 km and latitudinal gradients greater than 4°. Live-dead fidelity metrics from seven different countries indicated that strandings were almost always richer than live surveys; richness also increased with coastline length. Most death assemblages recorded the same ranked relative abundance as living communities, although this correlation decreased in strength and significance at coastline lengths greater than 15,000 km, highlighting the importance of sampling diversity at regional scales. Rarefaction analyses indicated that sampling greater than 10 years generally enhanced the completeness of death assemblages, although protracted temporal sampling did not substitute for sampling over longer coastlines or broader latitudes. Overall, this global live-dead comparison demonstrated that strandings almost always provided better diversity information about extant cetacean communities than live surveys; such archives are therefore relevant for macroecological and palaeobiological studies of cetacean community change through time.  相似文献   

13.
蛾蛉类昆虫是脉翅目中化石记录最完整的的类群之一,现生类群蛾蛉、美蛉和山蛉统称为蛾蛉科,但是现生类群与化石类群分类标准的不一致性,为蛾蛉类昆虫化石研究带来较大的困难。本文统计了世界已发现的蛾蛉类昆虫化石属种名录,介绍了蛾蛉类昆虫化石研究历史、地质年代及地理分布、系统发育研究进程,并提出了现今有待解决的问题以及对未来研究的展望。  相似文献   

14.
15.
Shells of modern Nautilus pompilius from the Philippines were experimentally fragmented designed to mimic: (1) transport with sediment; (2) sediment loading; and (3) collision during floating. The breaking patterns by other mechanisms (predation and implosion by hydrostatic pressure) documented in the literature were also considered. The breaking patterns produced by various mechanisms are distinct and can therefore be differentiated. The results allow identification of the distinct mechanisms responsible for specific fragmentation not only in modern Nautilus but also in fossil cephalopods. This is a new approach for the more complete recognition of post-mortem transport of fossil cephalopods and their early taphonomic history, and contributes to our understanding of their palaeobiogeography and palaeoecology.  相似文献   

16.
Global biodiversity patterns in deep time can only be understood fully when the relative preservation potential of each clade is known. The relative preservation potential of marine arthropod clades, a diverse and ecologically important component of modern and past ecosystems, is poorly known. We tackled this issue by carrying out a 205‐day long comprehensive, comparative, taphonomic experiment in a laboratory by scoring up to ten taphonomic characters for multiple specimens of seven crustacean and one chelicerate species (two true crabs, one shrimp, one lobster, one hermit crab, one stomatopod, one barnacle and one horseshoe crab). Although the results are preliminary because we used a single experimental setup and algal growth partially hampered observations, some parts of hermit crabs, stomatopods, swimming crabs and barnacles decayed slowly relative to other parts, implying differential preservation potentials within species, largely consistent with the fossil record of these groups. An inferred parasitic isopod, manifested by a bopyriform swelling within a hermit crab carapace, decayed relatively fast. We found limited variation in the decay rate between conspecifics, and we did not observe size‐related trends in decay rate. Conversely, substantial differences in the decay rate between species were seen after c. 50 days, with shrimps and stomatopods decaying fastest, suggesting a relatively low preservation potential, whereas the lobster, calico crabs, horseshoe crabs and barnacles showed relatively slow decay rates, suggesting a higher preservation potential. These results are supported by two modern and fossil record‐based preservation potential metrics that are significantly correlated to decay rate ranks. Furthermore, we speculate that stemward slippage may not be ubiquitous in marine arthropods. Our results imply that diversity studies of true crabs, lobsters, horseshoe crabs and barnacles are more likely to yield patterns that are closer to their true biodiversity patterns than those for stomatopods, shrimps and hermit crabs.  相似文献   

17.
18.
Abstract: Markuelia is a vermiform, annulated introvertan animal known as embryonic fossils from the Lower Cambrian to Lower Ordovician. Analysis of an expanded and revised dataset for Introverta shows that the precise position of Markuelia within this clade is dependent on the taxa included. As a result, Markuelia is assigned to the scalidophoran total group to reflect uncertainty as to whether it is a stem‐scalidophoran or a stem‐priapulid. The taxonomy of the genus is revised to provide an improved taxonomic framework for material assigned to Markuelia. Five species are recognized: M. secunda Val’kov, M. hunanensis Dong and Donoghue, M. lauriei Haug et al., M. spinulifera sp. nov. and M. waloszeki sp. nov. Finally, the preservation of Markuelia is evaluated in the light of both the taphonomy of the fossil embryos themselves and the experimental taphonomy of the priapulid Priapulus caudatus, which has been proposed as both a close relative and an anatomical analogue of Markuelia.  相似文献   

19.
Terrestrial solar ultraviolet radiation (UVR) exerts both beneficial and adverse effects on human skin. Epidemiological studies show a lower incidence of skin cancer in people with pigmented skins compared to fair skins. This is attributed to photoprotection by epidermal melanin, as is the poorer vitamin D status of those with darker skins. We summarize a wide range of photobiological responses across different skin colours including DNA damage and immunosuppression. Some studies show the generally modest photoprotective properties of melanin, but others show little or no effect. DNA photodamage initiates non‐melanoma skin cancer and is reduced by a factor of about 3 in pigmented skin compared with white skin. This suggests that if such a modest reduction in DNA damage can result in the significantly lower skin cancer incidence in black skin, the use of sunscreen protection might be extremely beneficial for susceptible population. Many contradictory results may be explained by protocol differences, including differences in UVR spectra and exposure protocols. We recommend that skin type comparisons be done with solar‐simulated radiation and standard erythema doses or physical doses (J/m2) rather than those based solely on clinical endpoints such as minimal erythema dose (MED).  相似文献   

20.
Investigation of feathers from the famous Middle Eocene Messel Oil Shale near Darmstadt, Germany shows that they are preserved as arrays of fossilized melanosomes, the surrounding beta-keratin having degraded. The majority of feathers are preserved as aligned rod-shaped eumelanosomes. In some, however, the barbules of the open pennaceous, distal portion of the feather vane are preserved as a continuous external layer of closely packed melanosomes enclosing loosely aligned melanosomes. This arrangement is similar to the single thin-film nanostructure that generates an iridescent, structurally coloured sheen on the surface of black feathers in many lineages of living birds. This is, to our knowledge, the first evidence of preservation of a colour-producing nanostructure in a fossil feather and confirms the potential for determining colour differences in ancient birds and other dinosaurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号