首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Body size is often constrained from evolving. Although artificial selection on body size in insects frequently results in a sizable response, these responses usually bear fitness costs. Further, these experiments tend to select only on size at one landmark age, rather than selecting for patterns of growth over the whole larval life stage. To address whether constraints may be caused by larval growth patterns rather than final size, we implemented a function‐valued (FV) trait method of selection, in which entire larval growth curves from Tribolium were artificially selected. The selection gradient function used was previously predicted to give the maximal response and was implemented using a novel selection index in the FV framework. Results indicated a significant response after one generation of selection, but no response in subsequent generations. Correlated responses included increased mortality, increased critical weight, and decreased development time (DT). The lack of response in size and development time after the first generation was likely caused by increased mortality suffered in selected lines; we demonstrated that the selection criterion caused both increased body size and increased mortality. We conclude that artificial selection on continuous traits using FV methods is very efficient and that the constraint of body size evolution is likely caused by a suite of trade‐offs with other traits.  相似文献   

2.
Species establishing outside their natural range, negatively impacting local ecosystems, are of increasing global concern. They often display life‐history features characteristic for r‐selected populations with fast growth and high reproduction rates to achieve positive population growth rates (r) in invaded habitats. Here, we demonstrate substantially earlier maturation at a 2 orders of magnitude lower body mass at first reproduction in invasive compared to native populations of the comb jelly Mnemiopsis leidyi. Empirical results are corroborated by a theoretical model for competing life‐history traits that predicts maturation at the smallest possible size to optimize r, while individual lifetime reproductive success (R0), optimized in native populations, is near constant over a large range of intermediate maturation sizes. We suggest that high variability in reproductive tactics in native populations is an underappreciated determinant of invasiveness, acting as substrate upon which selection can act during the invasion process.  相似文献   

3.
Trans‐generational immune priming (TGIP) describes the transfer of immune stimulation to the next generation. As stress and immunity are closely connected, we here address the question whether trans‐generational effects on immunity and resistance can also be elicited by a nonpathogen stress treatment of parents. General stressors have been shown to induce immunity to pathogens within individuals. However, to our knowledge, it is as of yet unknown whether stress can also induce trans‐generational effects on immunity and resistance. We exposed a parental generation (mothers, fathers, or both parents) of the red flour beetle Tribolium castaneum, a species where TGIP has been previously been demonstrated, to either a brief heat or cold shock and examined offspring survival after bacterial infection with the entomopathogen Bacillus thuringiensis. We also studied phenoloxidase activity, a key enzyme of the insect innate immune system that has previously been demonstrated to be up‐regulated upon TGIP. We quantified parental fecundity and offspring developmental time to evaluate whether trans‐generational priming might have costs. Offspring resistance was found to be significantly increased when both parents received a cold shock. Offspring phenoloxidase activity was also higher when mothers or both parents were cold‐shocked. By contrast, parental heat shock reduced offspring phenoloxidase activity. Moreover, parental cold or heat shock delayed offspring development. In sum, we conclude that trans‐generational priming for resistance could not only be elicited by pathogens or pathogen‐derived components, but also by more general cues that are indicative of a stressful environment. The interaction between stress responses and the immune system might play an important role also for trans‐generational effects.  相似文献   

4.
Bacillus thuringiensis (Bt) is a commonly used bioagent in insect pest control. Its toxicity is largely due to the crystalline (Cry) proteins that act selectively on insects and/or nematodes. Some insects, such as the stored product pest Tribolium castaneum, are relatively resistant to any natural Cry toxin. In attempt to find a Cry protein sufficiently toxic to this beetle, we prepared 18 recombinant modifications of Cry3A protoxins and tested them on the penultimate instar larvae of T. castaneum. Larvae were transferred to diet containing 0, 14, 28, 56 or 112 ppm of a Cry protein and their body growth and mortality were evaluated after 10 days. Cumulative mortality reached 25%, and the growth was nearly halted with 112 ppm of the natural Cry3Aa. The mortality was lower and the body weight increased by 15% of the control value in larvae receiving the recombinant Cry3Aa. Several structural derivatives of Cry3A also caused significant growth reduction and enhanced mortality. As both the natural and the recombinant Cry3Aa were more active than any of the tested Cry3A derivatives, we conclude that structural modifications of Cry3Aa are unlikely to increase toxicity to T. castaneum.  相似文献   

5.
A genome‐wide association study (GWAS) was performed to identify markers and candidate genes for five semen traits in the Holstein bull population in China. The analyzed dataset consisted of records from 692 bulls from eight bull stations; each bull was genotyped using the Illumina BovineSNP50 BeadChip. Association tests between each trait and the 41 188 informative high‐quality SNPs were achieved with gapit software. In total, 19 suggestive significant SNPs, partly located within the reported QTL regions or within or close to the reported candidate genes, associated with five semen traits were detected. By combining our GWAS results with the biological functions of these genes, eight novel promising candidate genes, including ETNK1, PDE3A, PDGFRB, CSF1R, WT1, DSCAML1, SOD1 and RUNX2, were identified that potentially relate to semen traits. Our findings may provide a basis for further research on the genetic mechanism of semen traits and marker‐assisted selection of such traits in Holstein bulls.  相似文献   

6.
A general understanding of the links between atmospheric CO2 concentration and the functioning of the terrestrial biosphere requires not only an understanding of plant trait responses to the ongoing transition to higher CO2 but also the legacy effects of past low CO2. An interesting question is whether the transition from current to higher CO2 can be thought of as a continuation of the past trajectory of low to current CO2 levels. Determining this trajectory requires quantifying the effect sizes of plant response to low CO2. We performed a meta‐analysis of low CO2 growth experiments on 34 studies with 54 species. We quantified how plant traits vary at reduced CO2 levels and whether C3 versus C4 and woody versus herbaceous plant species respond differently. At low CO2, plant functioning changed drastically: on average across all species, a 50% reduction in current atmospheric CO2 reduced net photosynthesis by 38%; increased stomatal conductance by 60% and decreased intrinsic water use efficiency by 48%. Total plant dry biomass decreased by 47%, while specific leaf area increased by 17%. Plant types responded similarly: the only significant differences being no increase in SLA for C4 species and a 16% smaller decrease in biomass for woody C3 species at glacial CO2. Quantitative comparison of low CO2 effect sizes to those from high CO2 studies showed that the magnitude of response of stomatal conductance, water use efficiency and SLA to increased CO2 can be thought of as continued shifts along the same line. However, net photosynthesis and dry weight responses to low CO2 were greater in magnitude than to high CO2. Understanding the causes for this discrepancy can lead to a general understanding of the links between atmospheric CO2 and plant responses with relevance for both the past and the future.  相似文献   

7.
Interspecific variation in life‐history traits and physiological limits can be linked to the environmental conditions species experience, including climatic conditions. As alpine environments are particularly vulnerable under climate change, we focus on the montane‐alpine fly Drosophila nigrosparsa. Here, we characterized some of its life‐history traits and physiological limits and compared these with those of other drosophilids, namely Drosophila hydei, Drosophila melanogaster, and Drosophila obscura. We assayed oviposition rate, longevity, productivity, development time, larval competitiveness, starvation resistance, and heat and cold tolerance. Compared with the other species assayed, D. nigrosparsa is less fecund, relatively long‐living, starvation susceptible, cold adapted, and surprisingly well heat adapted. These life‐history characteristics provide insights into invertebrate adaptations to alpine conditions which may evolve under ongoing climate change.  相似文献   

8.
9.
A life‐history trade‐off between low mortality in the dark and rapid growth in the light is one of the most widely accepted mechanisms underlying plant ecological strategies in tropical forests. Differences in plant functional traits are thought to underlie these distinct ecological strategies; however, very few studies have shown relationships between functional traits and demographic rates within a functional group. We present 8 years of growth and mortality data from saplings of 15 species of Dipterocarpaceae planted into logged‐over forest in Malaysian Borneo, and the relationships between these demographic rates and four key functional traits: wood density, specific leaf area (SLA), seed mass, and leaf C:N ratio. Species‐specific differences in growth rates were separated from seedling size effects by fitting nonlinear mixed‐effects models, to repeated measurements taken on individuals at multiple time points. Mortality data were analyzed using binary logistic regressions in a mixed‐effects models framework. Growth increased and mortality decreased with increasing light availability. Species differed in both their growth and mortality rates, yet there was little evidence for a statistical interaction between species and light for either response. There was a positive relationship between growth rate and the predicted probability of mortality regardless of light environment, suggesting that this relationship may be driven by a general trade‐off between traits that maximize growth and traits that minimize mortality, rather than through differential species responses to light. Our results indicate that wood density is an important trait that indicates both the ability of species to grow and resistance to mortality, but no other trait was correlated with either growth or mortality. Therefore, the growth mortality trade‐off among species of dipterocarp appears to be general in being independent of species crossovers in performance in different light environments.  相似文献   

10.
Indirect genetic effects (IGEs) are the basis of social interactions among conspecifics, and can affect genetic variation of nonsocial and social traits. We used flour beetles (Tribolium castaneum) of two phenotypically distinguishable populations to estimate genetic (co)variances and the effect of IGEs on three life‐history traits: development time (DT), growth rate (GR), and pupal body mass (BM). We found that GR was strongly affected by social environment with IGEs accounting for 18% of the heritable variation. We also discovered a sex‐specific social effect: male ratio in a group significantly affected both GR and BM; that is, beetles grew larger and faster in male‐biased social environments. Such sex‐specific IGEs have not previously been demonstrated in a nonsocial insect. Our results show that beetles that achieve a higher BM do so via a slower GR in response to social environment. Existing models of evolution in age‐structured or stage‐structured populations do not account for IGEs of social cohorts. It is likely that such IGEs have played a key role in the evolution of developmental plasticity shown by Tenebrionid larvae in response to density. Our results document an important source of genetic variation for GR, often overlooked in life‐history theory.  相似文献   

11.
The amount of resources available during development often affects body size, causing phenotypic variation in life‐history traits and reproductive behaviours. However, past studies have seldom examined the reaction norms of both life‐history and behavioural traits versus body size. We measured the phenotypic plasticity of several life‐history (age‐specific egg load, egg size, longevity) and behavioural (oviposition rate, host marking rate, walking speed) traits of the egg parasitoid Telenomus podisi Ashmead (Hymenoptera: Scelionidae) in response to body size variation. We predicted that life‐history traits would show more evidence of size compensation than behavioural traits, resulting in fewer positively‐sloped size versus trait reaction norms among the former. As predicted by life‐history models, smaller wasps appear to shift resource allocation towards early‐life reproduction, having a similar egg load to large individuals 9 days after emergence. Surprisingly, longevity was unaffected by body size. However, egg size, the number of offspring produced during oviposition bouts, and the rate of subsequent egg synthesis were greater for larger individuals. In addition, as predicted, the reaction norms of behavioural traits versus body size were all positively sloped. Thus, despite possible adaptive compensatory plasticity of life‐history traits by small individuals, behavioural constraints directly related to body size would contribute to maintaining a positive size–fitness relationship.  相似文献   

12.
Invasive plants and urban run‐off constrain efforts to restore sedge meadow wetlands. We asked if native graminoids can self‐restore following the removal of Typha × glauca (hybrid cattail), and if not, what limits their recovery? After we harvested Typha and depleted its rhizome starch reserves, Carex spp. expanded vegetatively (approximately 1 m over 2 years) but not by recruiting seedlings. A seedling emergence experiment showed that seed banks were depleted where Typha had eliminated the sedge meadow over a decade ago (based on aerial photo analysis). Carex seedling emergence was 75–90% lower where Carex was absent than where it remained in the plant community, and at least 17 species that were abundant 30 years ago were absent from the seed bank and extant vegetation. By varying hydroperiod, we showed that prolonged flooding prevented emergence of Carex seedlings and that a fluctuating hydroperiod reduced emergence and ultimately killed all Carex seedlings. In contrast, Typha seedlings emerged and survived regardless of hydroperiod. Thus, slow vegetative expansion by Carex, depauperate seed banks, and altered hydroperiods all constrain self‐restoration. To compensate for multiple constraints on self‐restoration, we recommend a long‐term management approach that capitalizes on flooding and the capacity of Carex spp. to regrow vegetatively. We suggest annually harvesting swaths of Typha at the edges of clones, before or during flood events, to allow gradual, vegetative self‐restoration of Carex spp.  相似文献   

13.
Rapid evolution in response to environmental change will likely be a driving force determining the distribution of species across the biosphere in coming decades. This is especially true of microorganisms, many of which may evolve in step with warming, including phytoplankton, the diverse photosynthetic microbes forming the foundation of most aquatic food webs. Here we tested the capacity of a globally important, model marine diatom Thalassiosira pseudonana, for rapid evolution in response to temperature. Selection at 16 and 31°C for 350 generations led to significant divergence in several temperature response traits, demonstrating local adaptation and the existence of trade‐offs associated with adaptation to different temperatures. In contrast, competitive ability for nitrogen (commonly limiting in marine systems), measured after 450 generations of temperature selection, did not diverge in a systematic way between temperatures. This study shows how rapid thermal adaptation affects key temperature and nutrient traits and, thus, a population's long‐term physiological, ecological, and biogeographic response to climate change.  相似文献   

14.
Abiotic and biotic factors affect life‐history traits and lead populations to exhibit different behavioural strategies. Due to the direct link between their behaviour and fitness, parasitoid females have often been used to test the theories explaining these differences. In male parasitoids, however, such investigations are vastly understudied, although their mating strategy directly determines their fitness. In this study, we compared the pattern of life history traits and the mating strategy of males in two populations of the Drosophila parasitoid Asobara tabida, exposed to different biotic and abiotic conditions, with the major difference being that one of them was recently exposed to strong competition with the dominant competitor Leptopilina boulardi after recent climate change, the other population being settled in a location where L. boulardi has not been recorded. The results showed that individuals of both populations have a different reproductive strategy: in one population, females produced a more female‐biased sex ratio, while males accumulated more lipids during their larval development, invested more energy in reproduction and decreased their locomotor activity, suggesting a higher proportion of matings on their emergence patch, all of these factors being possibly linked to the new competition pressure. In both populations, mating without sperm transfer may persist for several days after males become sperm‐depleted, and may be more frequent than mating with sperm transfer over their whole lifespan. This point is discussed from an evolutionary point of view.  相似文献   

15.
This study aimed to define progesterone 5β‐reductases (P5βR, EC 1.3.99.6, enone 1,4‐reductases) as function‐associated molecular markers at the plant family level. Therefore cDNAs were isolated from 25 Brassicaceae species, including two species, Erysimum crepidifolium and Draba aizoides, known to produce cardiac glycosides. The sequences were used in a molecular phylogeny study. The cladogram created is congruent to the existing molecular analyses. Recombinant His‐tagged forms of the P5βR cDNAs from Aethionema grandiflorum, Draba aizoides, Nasturtium officinale, Raphanus sativus and Sisymbrium officinale were expressed in E. coli. Enone 1,4‐reductase activity was demonstrated in vitro using progesterone and 2‐cyclohexen‐1‐one as substrates. Evidence is provided that functional P5βRs are ubiquitous in the Brassicaceae. The recombinant P5βR enzymes showed different substrate preferences towards progesterone and 2‐cyclohexen‐1‐one. Sequence comparison of the catalytic pocket of the P5βR enzymes and homology modelling using Digitalis lanata P5βR (PDB ID: 2V6G) as template highlighted the importance of the hydrophobicity of the binding pocket for substrate discrimination. It is concluded that P5βR genes or P5βR proteins can be used as valuable function‐associated molecular markers to infer taxonomic relationship and evolutionary diversification from a metabolic/catalytic perspective.  相似文献   

16.
Temperate kelp forests (Laminarians) are threatened by temperature stress due to ocean warming and photoinhibition due to increased light associated with canopy loss. However, the potential for evolutionary adaptation in kelp to rapid climate change is not well known. This study examined family‐level variation in physiological and photosynthetic traits in the early life‐cycle stages of the ecologically important Australasian kelp Ecklonia radiata and the response of E. radiata families to different temperature and light environments using a family × environment design. There was strong family‐level variation in traits relating to morphology (surface area measures, branch length, branch count) and photosynthetic performance (Fv/Fm) in both haploid (gametophyte) and diploid (sporophyte) stages of the life‐cycle. Additionally, the presence of family × environment interactions showed that offspring from different families respond differently to temperature and light in the branch length of male gametophytes and oogonia surface area of female gametophytes. Negative responses to high temperatures were stronger for females vs. males. Our findings suggest E. radiata may be able to respond adaptively to climate change but studies partitioning the narrow vs. broad sense components of heritable variation are needed to establish the evolutionary potential of E. radiata to adapt under climate change.  相似文献   

17.
Integrative studies of plant growth require spatially and temporally resolved information from high‐throughput imaging systems. However, analysis and interpretation of conventional two‐dimensional images is complicated by the three‐dimensional nature of shoot architecture and by changes in leaf position over time, termed hyponasty. To solve this problem, Phytotyping4D uses a light‐field camera that simultaneously provides a focus image and a depth image, which contains distance information about the object surface. Our automated pipeline segments the focus images, integrates depth information to reconstruct the three‐dimensional architecture, and analyses time series to provide information about the relative expansion rate, the timing of leaf appearance, hyponastic movement, and shape for individual leaves and the whole rosette. Phytotyping4D was calibrated and validated using discs of known sizes, and plants tilted at various orientations. Information from this analysis was integrated into the pipeline to allow error assessment during routine operation. To illustrate the utility of Phytotyping4D, we compare diurnal changes in Arabidopsis thaliana wild‐type Col‐0 and the starchless pgm mutant. Compared to Col‐0, pgm showed very low relative expansion rate in the second half of the night, a transiently increased relative expansion rate at the onset of light period, and smaller hyponastic movement including delayed movement after dusk, both at the level of the rosette and individual leaves. Our study introduces light‐field camera systems as a tool to accurately measure morphological and growth‐related features in plants.  相似文献   

18.
Seed dispersal selection pressures may cause morphological differences in cone structure and seed traits of large‐seeded pine trees. We investigated the cone, seed, and scale traits of four species of animal‐dispersed pine trees to explore the adaptations of morphological structures to different dispersers. The four focal pines analyzed in this study were Chinese white pine (Pinus armandi), Korean pine (P. koraiensis), Siberian dwarf pine (P. pumila), and Dabieshan white pine (P. dabeshanensis). There are significant differences in the traits of the cones and seeds of these four animal‐dispersed pines. The scales of Korean pine and Siberian dwarf pine are somewhat opened after cone maturity, the seeds are closely combined with scales, and the seed coat and scales are thick. The cones of Chinese white pine and Dabieshan white pine are open after ripening, the seeds fall easily from the cones, and the seed coat and seed scales are relatively thin. The results showed that the cone structure of Chinese white pine is similar to that of Dabieshan white pine, whereas Korean pine and Siberian dwarf pine are significantly different from the other two pines and vary significantly from each other. This suggests that species with similar seed dispersal strategies exhibit similar morphological adaptions. Accordingly, we predicted three possible seed dispersal paradigms for animal‐dispersed pines: the first, as represented by Chinese white pine and Dabieshan white pine, relies upon small forest rodents for seed dispersal; the second, represented by Korean pine, relies primarily on birds and squirrels to disperse the seeds; and the third, represented by Siberian dwarf pine, relies primarily on birds for seed dispersal. Our study highlights the significance of animal seed dispersal in shaping cone morphology, and our predictions provide a theoretical framework for research investigating the coevolution of large‐seeded pines and their seed dispersers.  相似文献   

19.
A fundamental goal of evolutionary ecology is to identify the sources underlying trait variation on which selection can act. Phenotypic variation will be determined by both genetic and environmental factors, and adaptive phenotypic plasticity is expected when organisms can adjust their phenotypes to match environmental cues. Much recent research interest has focused on the relative importance of environmental and genetic factors on the expression of behavioral traits, in particular, and how they compare with morphological and life‐history traits. Little research to date examines the effect of development on the expression of heritable variation in behavioral traits, such as boldness and activity. We tested for genotype, environment, and genotype‐by‐environment differences in body mass, development time, boldness, and activity, using developmental density treatments combined with a quantitative genetic design in the sand field cricket (Gryllus firmus). Similar to results from previous work, animals reared at high densities were generally smaller and took longer to mature, and body mass and development time were moderately heritable. In contrast, neither boldness nor activity responded to density treatments, and they were not heritable. The only trait that showed significant genotype‐by‐environment differences was development time. It is possible that adaptive behavioral plasticity is not evident in this species because of the highly variable social environments it naturally experiences. Our results illustrate the importance of validating the assumption that behavioral phenotype reflects genetic patterns and suggest questions about the role of environmental instability in trait variation and heritability.  相似文献   

20.
Epidermal growth factor receptor (EGFR), which is overexpressed in psoriatic lesions, has been proven to contribute to the hyperproliferation of keratinocytes in psoriasis. Single nucleotide polymorphisms (SNPs) involved in miRNAs that can regulate the expression of EGFR could potentially influence the development of psoriasis. The present study investigated the association between a functional SNP of rs2910164 in miR‐146a and the risk of psoriasis in the Chinese Han population. A total of 521 Han Chinese patients with psoriasis and 582 healthy controls were recruited in this study. The miR‐146a rs2910164 SNP was genotyped by polymerase chain reaction‐restriction fragment length polymorphism. Overall, a significantly increased risk of psoriasis was associated with the rs2910164 miR‐146a CG and GG genotypes (adjusted OR, 1.38; 95% CI, 1.06–1.80). Furthermore, the rs2910164G allele in miR‐146a attenuated its inhibitory regulation on the expression of EGFR as well as the proliferation of human keratinocytes, and lowered the level of miR‐146a in the psoriatic lesions. These findings indicate that the rs2910164G allele in miR‐146a weakens its suppression on the proliferation of keratinocytes probably through the decreased inhibition of the target gene, EGFR, which may account for the increased risk of psoriasis in this study population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号