首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The presence of juvenile hormone in the haemolymph of larvae of Locusta has been detected by a modified Galleria bioassay and these results are compared with indirect methods of estimating corpus allatum activity. Juvenile hormone is present in the haemolymph during the fourth larval instar except on the last day of the instar, and is absent from the haemolymph of the fifth and final larval instar except on the last day of the instar. Changes in the volumes of the corpora allata simply reflect changes in the growth of the whole insect and are of no value in predicting endocrine activity. Changes in the size of the cells of the corpora allata can be correlated with the presence of juvenile hormone in the haemolymph in the fourth larval instar, but similar changes in cell size occur in the fifth larval instar when no juvenile hormone is present in the haemolymph. The effects of the implantation of corpora allata are unreliable as estimates of corpus allatum activity as isolated corpora allata from fifth instar larvae release juvenile hormone. Indirect methods of measuring corpus allatum activity are thus shown to be unreliable. The Rf value of Locusta juvenile hormone as determined by thin-layer chromatography differs from that of Roeller's juvenile hormone, suggesting that the two hormones might be chemically distinct.  相似文献   

2.
Melanization in first-instar larvae of Schistocerca is controlled by a hormone released from neurosecretory axon terminals of the fine nerves posterior to the metathoracic ganglion. The hormone is not detectable in the haemolymph before the embryonic ecdysis but is present within seconds after the ecdysis has started. It is suggested that horizontal displacement of the embryonic cuticle is the trigger for the release of the hormone and that the prothoracic ganglion forms part of the neural pathway between the sensory input caused by ecdysis and the release of the hormone.  相似文献   

3.
Juvenile hormone esterase titres were monitored in gate I and gate II last instar larvae of Trichoplusia ni using JH III as substrate. Two peaks of activity were observed for both gate I and gate II larvae, although the first and second juvenile hormone esterase peaks for the gate II larvae are extended and delayed one day, respectively. Head or thoracic ligations before the prepupal stage lower or block the appearance of both esterase peaks. Juvenile hormone I and II, as well as homo and dihomo juvenoids can induce the second juvenile hormone esterase peak in both normal and ligated larvae, and increase the esterase titre during the first peak in nonligated larvae. Induction of the juvenile hormone esterases is possible in non-ligated larvae as soon as the moult to the last instar has occurred and in ligated larvae as soon as the first esterase peak has started to decline. Distinct mechanisms of regulation are present for the first and second juvenile hormone esterase peaks. Juvenile hormone does not appear to be involved in regulating its own metabolism by directly inducing the first esterase peak; however, evidence is consistent with a brief burst of juvenile hormone which occurs prior to pupation inducing the production of the second peak of juvenile hormone esterase activity.  相似文献   

4.
In late third instar larvae and prepupae of Drosophila melanogaster there is a complex change in puffing patterns in the salivary gland chromosomes. There are two peaks of activity in this period. The first, in larvae, is known to be under the control of the moulting hormone ecdysone. The second, in prepupae, is now shown by the in vitro culture of prepupal glands to be under the specific control of β-ecdysone in a manner similar to the first. A new class of puffs, active between these two peaks, whose induction is inhibited by ecdysone in vitro, is described. The behaviour of these puffs, exemplified by 75CD and 63E, suggests a period of very low ecdysone titre in vivo. The developmental significance of the role of ecdysone during prepupal development is discussed.  相似文献   

5.
In vitro analysis of juvenile hormone esterase activity of haemolymph of T. molitor was performed during the end of post-embryonic development. Weak activity was found in penultimate stage larvae as in the major part (except the last day) of last-larval instar, while very high activity was monitored in the early pupae (female or male).This pupal peak was the only one detected during development in the insect, coinciding with the pupal juvenile hormone sensitive period. The first juvenile hormone sensitive period, during the lastlarval instar, does not seem to be protected by any juvenile hormone esterase activity in contrast to other species. These results suggest a central control for the drop in juvenile hormone level ceasing synthesis by the corpora allata after integration of external stimuli. This hypothesis could explain the natural occurrence of prothetelic larvae, the absence of pupal adult intermediates and the variable number of instars in Tenebrio.  相似文献   

6.
The hormonal control of the facultative diapause of the codling moth has been investigated. The diapause can be divided into 4 phases or periods: (1) diapause induction by short-day conditions (SD) in young larvae, (2) initiation of the diapause in the early last larval instar by a high titre of juvenile hormone, (3) onset and maintenance of diapause with inactivity of the neuroendocrine system, as evidenced by the results of neck-ligation experiments, (4)termination of diapause by the production of ecdysteroid.Diapause-induced larvae pupated after spinning the cocoon, if the state of induction was changed by injection with the anti-juvenile hormone precocene II at the beginning of the last larval instar and subsequent results of neck-ligation experiments, (4) termination of diapause by the production of ecdysteroid. treated with juvenile hormone during the first 1.5 days after the last larval moult and subsequently reared under SD. Under LD, continuous application of juvenile hormone during the last larval instar and after spinning did not prevent the insects from moulting to either a supernumerary larva, a pupa or a larval-pupal intermediate. Termination of diapause, i.e. pupation, was achieved by injecting diapausing larvae with 20-hydroxyecdysone. Although juvenile hormone was found to have a prothoractropic effect in diapausing larvae, no pupal moult could be induced by the application of the hormone. Contrary to the hormonal situation before pupation of nondiapausing larvae, no juvenile hormone could be detected before or during the pupation of larvae after diapause.  相似文献   

7.
The influence of precocene II, an antijuvenile agent, on the development of adult antennae in the large fruit-tree tortrix A. podana Scop. was demonstrated. Treatment of the fifth instar larvae and prepupae with different doses of precocene proved to cause different sensitivity of the specimens to the juvenile hormone deficit. Treatment with 450 and 600 ??g precocene per specimen during the first days after ecdysis to the fifth instar caused the death of larvae. Treatment with 300, 450, and 600 ??g per specimen on the third day of the fifth instar larvae and prepupae caused a delay in the development of adult antennae. The results are discussed with respect to the role of the juvenile hormone in the development of imaginal structures during metamorphosis.  相似文献   

8.
The proteins of the fat body of non-diapausing, pre-diapausing, and newly-diapaused larvae of the southwestern corn borer, Diatraea grandiosella, were examined. Since a low titre of juvenile hormone (JH) is present in the haemolymph throughout the final instar of non-diapausing larvae, the hormone does not appear to stimulate the pre-metamorphic synthesis of proteins. In contrast, the high titre of JH in the haemolymph during the final instar of pre-diapausing larvae appears to stimulate the synthesis of selected proteins. For example, pre-diapausing larvae store in their fat body a low molecular weight protein which has been named the ‘diapause-associated protein’. When non-diapausing larvae were treated topically with C17-JH or a JH mimic, from 50 to 70% entered a diapause-like state as fully grown larvae. These hormone-treated larvae accumulated the diapause-associated protein and a high molecular weight protein in their fat bodies. Both of these proteins were shown to be released from the fat body of newly-diapaused larvae in vitro, and may function in the haemolymph during diapause. The high molecular weight protein, isolated from the haemolymph, was shown to contain neutral and polar lipids, including biochromes. Its storage in the fat body and release into the haemolymph may be essential for the transport of lipids during diapause. The fat body proteins of newly-diapaused larvae of the southern cornstalk borer, Diatraea crambidiodes, were also examined electrophoretically. They were found to contain a similar protein pattern to that of D. grandiosella, including the presence of a diapause-associated protein.  相似文献   

9.
The time course of secretion of ecdysone in vitro by the prothoracic glands of Bombyx mori was studied through the penultimate and last-larval instars. Ecdysone was produced by the glands in high amounts by the penultimate instar at 72 and 84 h while the glands in the last instar exhibited a high activity over 4 days around the time of gut purge and thereafter. The glands in the penultimate instar produced ecdysone at a low level throughout the instar before the sharp peak of activity, when they became inactive and remained so for the first 3 days of the last instar after when they regained secretory activity. Sensitivity of the glands to prothoracicotropic hormone varied in accord with the changes in their secretory activity. Inactive glands were not stimulated by 22K-prothoracicotropic hormone. In addition, glands with maximal activity in the penultimate instar were insensitive to 22K-prothoracicotropic hormone. These results suggest that the prothoracic glands in the penultimate and last-instar larvae are physiologically different.  相似文献   

10.
  • 1.1. The development of Gallena mellonella is strongly affected by a low temperature of 18°C (the last instar persists for more than one year, instead of about 9 days at 30°C). At 18°C the last instar Galleria mellonella larvae respond to juvenilizing treatment—chilling stress or juvenile hormone analogue—with a very low percentage or no supernumerary moults, respectively.
  • 2.3. Experiments in which larvae subjected to such treatments were transferred from 18°C to 30°C and vice versa showed that for the realization of the larval programme after chilling stress application the higher (30°C) temperature is needed.
  • 3.4. In last instar larvae reared at 18°C there coexist very high juvenile hormone titre and high juvenile hormone esterase activity.
  • 4.5. This phenomenon which is found in both, chilled and unchilled larvae, is discussed.
  相似文献   

11.
Phase characters of the common cutworm, Spodoptera litura, were influenced by different rearing densities from the 4th-larval instar. Primarily the final feeding period of isolated larvae was 1 day longer than that of crowded larvae causing an increase in pupal weight. Applications of juvenile hormone I, II, or methoprene to crowded larvae caused an increased feeding period similar to that of isolated larvae when the juvenile hormones were applied within 1 day after the last-larval ecdysis. Allatectomy of isolated Spodoptera during the moult to the final-larval instar decreased the duration of the final feeding period to that of intact crowded larvae. These results suggested that one of the characters of phase variation, pupal weight, is influenced by the differences in the regulation and activity of the corpora allata during the last-larval instar. Other characteristics of phase variation such as behaviour (feigned death) and colour were not affected by alteration in juvenile hormone levels after the last larva ecdysis.  相似文献   

12.
Weight and time of moult during the last instar of the cabbage looper (Trichoplusia ni) were examined and used to select last instar larvae that had similar rates of development. Haemolymph protein content and titres of haemolymph esterases hydrolyzing juvenile hormone I, juvenile hormone III, and α-naphthyl acetate were monitored during the last instar using these closely timed larvae. Juvenile hormone I and juvenile hormone III esterase profiles were very similar and differed markedly from the α-naphthyl acetate esterase and protein content profiles. Two major peaks of juvenile hormone esterase activity were observed, one before ecdysone release and the other just prior to pupal ecdysis. Juvenile hormone I was hydrolyzed 15 times faster than juvenile hormone III when assayed at 5 × 10?6 M.  相似文献   

13.
Development of first instar larvae of Gonia cinerascens, which rest in the muscles of host caterpillars, is triggered by the release of the host's ecdysteroids when the juvenile hormone is absent. Ecdysteroids act on the parasitoid directly and at the same time induce physiological and biochemical changes in the host, which are indispensable for the parasitoid's development. These changes do not occur when metamorphosis of the host is suppressed with the juvenile hormone. Normally the parasitoids initiate development at the larval-pupal transformation of the host, but under experimental conditions, they do so whenever a high ecdysteroid titre is coupled with the proper internal environment in the host, that is in decapitated caterpillars, isolated host abdomens, and when implanted into host pupae. Activated parasitoids moult into the second instar and migrate to the exuvial space of the host; this migratory behaviour is also triggered by ecdysteroids and may be induced experimentally in the first instar parasitoids. Unknown clues direct the migrating parasitoids under the wings and appendages of the host pharate pupal stage. The second instar parasitoids, which anchor to the integument of the host pupae, apparently develop independently of the host's hormones: they can produce third instar larvae, pupae, and adult flies when cultured in vitro.  相似文献   

14.
Incorporation of cortisol, or various derivatives and analogues of cortisol, into the diet had no effect on the rate of growth of Tenebrio molitor. Injections of cortisol, or its derivatives, into fourth instar larvae of Schistocerca americana gregaria, had no effect on their rate of growth. The moult to fifth instar was normal. Administration in the diet, or injections of cortisol had no effect on the rate of growth of fourth and fifth instar larvae of Manduca sexta, or on the insect's uptake and utilization of food. The development of larvae to pupae and adults was unaffected. It is concluded, contrary to the findings of two previously published reports, that the vertebrate hormone cortisol does not affect the growth and development of insects.  相似文献   

15.
Numerous behavioural and morphological markers were found during the last instar of Trichoplusia ni which permit selection of highly synchronous groups of larvae for physiological or biochemical experiments. Growth parameters were also examined and it was found that the occurrence of a 6th instar was associated with a head-capsule width below the critical threshold of 1.66 mm. Starvation experiments indicated that the critical body weight triggering the first release of prothoracicotropic hormone (PTTH) was not the same for all larvae and was associated closely with a critical ratio of body size: head-capsule size and/or body size: initial body size at the beginning of the instar. The time of prothoracicotropic hormone-ecdysone release in preultimate instars was also associated with a similarly calculated ratio. The ratio was very similar from instar to instar. Neck or thoracic-abdominal ligation of larvae attaining various markers provided indications of times of release of critical amounts of prothoracicotropic hormone, ecdysone and juvenile hormone. The time of peak juvenile-hormone-esterase (JHE) activity in the haemolymph during the prepupal stage was determined with these markers.  相似文献   

16.
Treatment of tobacco hornworm larvae with the benzyl-1,3-benzodioxole derivative J-2710 immediately after ecdysis to the fourth instar disrupted development either during the moult to the fifth instar or shortly thereafter. Larvae given topical applications of 100 μg J-2710 in 1 μl acetone suffered 100% mortality, often after secreting moulting fluid in large pockets between the epidermis and the cuticle later in the fourth instar. Larvae that successfully ecdysed had abnormalities of the mouthparts and cervix that interfered with normal feeding, inhibiting growth in the fifth instar. Larvae of the gregarious endoparasitic wasp Cotesia congregata (=Apanteles congregatus) frequently failed to emerge from host Manduca sexta larvae treated with high doses of J-2710, particularly when the host failed to feed normally. Less potent disruptive effects on Manduca and Cotesia were seen after treatment of larvae with the derivatives J-3370 and J-2581.No anti-juvenile hormone action of J-2710 was observed. J-2710-treated M. sexta larvae showed no precocious metamorphosis and the developmental effects of J-2710 were not prevented by co-application of the juvenile hormone analogue methoprene in doses ranging from 1 to 100 μg/larva. Moreover, J-2710 had no effect on the action of methoprene in the black larval assay for juvenile hormone-like activity, unlike results reported to occur using the Galleria wax wound assay.  相似文献   

17.
Virulence and development of the insect-parasitic nematode, Steinernema carpocapsae (Weiser) (Mexican strain), were evaluated for the immature stages of the western corn rootworm, Diabrotica virgifera virgifera LeConte. Third instar rootworm larvae were five times more susceptible to nematode infection than second instar larvae and 75 times more susceptible than first instar larvae and pupae, based on laboratory bioassays. Rootworm eggs were not susceptible. Nematode development was observed in all susceptible rootworm stages, but a complete life cycle was observed only in second and third instar larvae and pupae. Nematode size was affected by rootworm stage; the smallest infective-stage nematodes were recovered from second instar rootworm larvae. Results of this study suggest that S. carpocapsae should be applied when second and third instar rootworm larvae are predominant in the field.  相似文献   

18.
It has been shown that only third instar larvae of Macrotermes michaelseni have the competence to differentiate into presoldiers under the influence of juvenile hormone analogue (JHA). The timing of events leading to presoldier formation was independent of JHA dose above the threshold. Further studies with homogeneous groups of third instar larvae of different ages showed that only larvae of a certain age (0–6 days) could respond to topically applied JHA to produce presoldiers and intercastes (intermediate forms). Older larvae did not respond, hence, 0–6 days interval is the competence period for presoldier differentiation in this species. It seems also that the corpora allata of those individuals which differentiate into presoldiers become activated during the competence period, possibly by the parents or other means.  相似文献   

19.
The nutritional condition of fourth instar larvae of the yellow fever mosquito, Aedes aegypti, governs female longevity and egg production, both are key determinants of pathogen transmission. As well, nutrition provisions larval growth and development and attains its greatest pace in the last larval instar in preparation for metamorphosis to an adult. These developmental processes are regulated by a complex endocrine interplay of juvenile hormone, neuropeptides, and ecdysteroids that is nutrition sensitive. We previously determined that feeding for only 24 h post-ecdysis was sufficient for fourth instar Ae. aegypti larvae to reach critical weight and accumulate sufficient nutritional stores to commit to metamorphosis. To understand the genetic basis of metamorphic commitment in Ae. aegypti, we profiled the expression of 16 genes known to be involved in the endocrine and nutritional regulation of insect metamorphosis in two ways. The first set is a developmental profile from the beginning of the fourth instar to early pupae, and the second set is for fourth instars starved or fed for up to 36 h. By comparing the two sets, we found that seven of the genes (AaegCYP302, AaegJHE43357, AaegBrCZ4, AaegCPF1-2, AaegCPR-7, AaegPpl, and AaegSlif) were expressed during metamorphic commitment in fourth instars and in fed but not starved larvae. Based on these results, the seven genes alone or in combination may serve as molecular indicators of nutritional and metamorphic status of fourth instar Ae. aegypti larvae and possibly other mosquito species in field and laboratory studies to gauge sub-lethal effects of novel and traditional cultural or chemical controls.  相似文献   

20.
Two juvenile hormone analogues (JHA), 6,7-Epoxy-3-methyl-7-ethyl-1-(3,4-(methyl-enedioxy)phenoxy)-2-cis/trans-octene (Hoffman-LaRoche RO 20-3600) and 6,7-Epoxy-3,7-dimethyl-1-(p-ethyphenoxy)-2-cis/trans-octene (Stauffer R-20458), produced embryonic and some first larval instar lethality when topically applied to freshly laid Drosophila eggs at concentrations above 0·1μg RO-20-3600/μl acetone or 1·0 μg R-20458/μl acetone. With progressively later JHA treatments during embryonic development, lethality decreased while the proportion of larvae dying at the time of hatching increased. No delayed postembryonic lethality was observed after the first larval instar. JHA applications to freshly laid eggs produced abnormal head and tracheal formation in some embryos treated with RO-20-3600 and caused developmental arrest during the beginning of posterior gut formation in most eggs treated with R-20458. Treatment with either JHA after the beginning of blastoderm formation resulted in normal looking first instar larvae which failed to hatch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号