首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 12‐week feeding trial was conducted to determine the optimum dietary protein requirement of brook trout, Salvelinus fontinalis, at 15 and 19°C. Twelve iso‐energetic (22 MJ · kg?1) and iso‐lipidic (23%) diets (36–58% protein at 2% increments) were prepared. Fish (29.45 ± 3.25 g · fish?1) were fed 2% of body weight per day, divided into two equal rations. The specific growth rate (SGR, % · day?1), feed efficiency ratio (FER), productive protein value (PPV), productive lipid value (PLV) and productive energy value (PEV), apparent digestibility of diet (ADDM) and protein (ADCP) were significantly higher at optimum temperature (15°C). Increasing PPV with increasing dietary carbohydrate and with decreasing dietary protein content was due to the protein‐sparing effect of carbohydrates. A piecewise regression (broken line) model between the SGR and digestible dietary protein level revealed that the digestible dietary protein requirement of brook trout was 44 and 40% at 15 and 19°C, respectively. When PPV (digestible protein retention basis) was modelled with a broken line, the digestible protein requirement of brook trout was 39 and 35% at 15 and 19°C, respectively. A reduction in dietary protein content balanced by increased gelatinised carbohydrate might be useful for improving the protein utilization efficiency for growth at 15 and 19°C; however, the growth and feed efficiency was lower at the elevated temperature.  相似文献   

2.
We compared δ13C and δ15N values of muscle with fin from juvenile Chinese sturgeon (Acipenser sinensis), to evaluate the feasibility of using nonlethal (fin) as an alternative to lethal (muscle) sampling. Size and lipid effect on the relationship between fin and muscle were also investigated. Dorsal muscle (DM) and fin clip (FC) were collected from A. sinensis with different body length (120–373 mm) in the Yangtze Estuary for isotope analysis. The result showed that (1) muscle isotope values could estimated by the values of fin, from either use the regression model (δ13CDM = 0.939 × FC ? 2.577; δ15NDM = 0.737 × FC + 4.638) or constants factors (δ13CDM = δ13CFC ? 1.27; δ15NDM = δ15NFC + 0.59); (2) no size‐based relationships with δ13C and δ15N from either fin or muscle; (3) lipid extraction significantly improving the fin and muscle regression model fit for both δ13C and δ15N values. Therefore, this study support the use of nonlethal fin tissues for isotope analysis of juvenile A. sinensis, and will allow trophic studies to avoid the effect of lipid accumulation from muscle.  相似文献   

3.
Abstract: The carotid injection technique, used previously to quantitate the kinetics of blood-brain barrier transport of metabolic substrates, may be modified to analyze the rate of cerebral glucose utilization. A 0.2-ml solution of [14C]glucose (GF) and [3H]methylglucose (M), an internal reference, is rapidly injected into the carotid artery, followed by microwave fixation of brain at various times up to 4 min after injection. The brain radioactivity is separated into a fraction containing neutral hexoses (GF and M) and a fraction containing metabolites of glucose. The GF/M ratio is related to the rate constant (k3) of brain glucose utilization by the simple, linear equation: In(GF/M) = In(GF°/M°) –k3t, where GF°/M°= the brain uptake index of glucose, relative to methylglucose, at 5-15 s after injection, and t= the time after carotid injection, e.g., 1–4 min. It is assumed that (a) the rate of influx due to recirculation of label is minimal during the 4-min circulation period; and (b) the rate constants of glucose efflux (k2) and methylglucose efflux (k2*) are identical. Independent estimates of k2 and k2* showed these parameters to be identical: k2= 0.14 + 0.08 min-I; k2*= 0.14 ± 0.02 min-I. A logarithmic plot of GF/M ratios versus time was linear (r = 0.99), and was described by the slope k2= 0.21 ± 0.02 min?1. Assuming glucose is uniformly distributed in brain, then the glycolytic rate = k3× brain glucose = (0.21 min?1) (2.6 μmol g?1) = 0.55 μmol min?1 g?1 for the cortex of the barbiturate-anesthetized rat. These studies provide the basis for a simple method of measurement of regional brain glycolysis that does not require either the use of correction factors, e.g., the lumped constant, or the use of differentially labeled glucose.  相似文献   

4.
Routine metabolic rate (RMR, mgO2 g?1 h?1) and critical oxygen concentration (Pc, a hypoxia tolerance indicator, mgO2 L?1) were determined in larvae and juveniles of round crucian carp, Carassius auratus grandoculis Temminck & Schlegel 1846, by measuring oxygen consumption at 15°C, 20°C, and 30°C. In addition, the dependence of RMR and Pc on fish body weight (W, g) and temperature (T, °C) was examined to construct minimal mathematical models. RMR depended on W and showed smaller values in larger individuals. RMR was different among the three temperature conditions and showed higher values at higher temperatures. Pc was significantly related to W and was low in larger individuals; that is, larger individuals had a higher hypoxia tolerance. In contrast, Pc was independent of temperature, implying that seasonal temperature fluctuations do not cause seasonal disequilibrium of hypoxia tolerance in round crucian carp. The RMR and Pc models were RMR = 0.0674W?0.193e0.0562T and Pc = 1.35W?0.107, respectively. The metabolic information clarified in this study is essential for habitat quality assessments and aquaculture management of this species.  相似文献   

5.
The red seaweed Gracilariopsis is an important crop extensively cultivated in China for high‐quality raw agar. In the cultivation site at Nanao Island, Shantou, China, G. lemaneiformis experiences high variability in environmental conditions like seawater temperature. In this study, G. lemaneiformis was cultured at 12, 19, or 26°C for 3 weeks, to examine its photosynthetic acclimation to changing temperature. Growth rates were highest in G. lemaneiformis thalli grown at 19°C, and were reduced with either decreased or increased temperature. The irradiance‐saturated rate of photosynthesis (Pmax) decreased with decreasing temperature, but increased significantly with prolonged cultivation at lower temperatures, indicating the potential for photosynthesis acclimation to lower temperature. Moreover, Pmax increased with increasing temperature (~30 μmol O2 · g?1FW · h?1 at 12°C to 70 μmol O2 · g?1FW · h?1 at 26°C). The irradiance compensation point for photosynthesis (Ic) decreased significantly with increasing temperature (28 μmol photons · m?2 · s?1 at high temperature vs. 38 μmol photons · m?2 · s?1 at low temperature). Both the photosynthetic light‐ and carbon‐use efficiencies increased with increasing growth or temperatures (from 12°C to 26°C). The results suggested that the thermal acclimation of photosynthetic performance of G. lemaneiformis would have important ecophysiological implications in sea cultivation for improving photosynthesis at low temperature and maintaining high standing biomass during summer. Ongoing climate change (increasing atmospheric CO2 and global warming) may enhance biomass production in G. lemaneiformis mariculture through the improved photosynthetic performances in response to increasing temperature.  相似文献   

6.
Under the hypothesis of no-strand-bias conditions, the Watson and Crick base-pairing rule decreases the complexity of models of DNA evolution by reducing to six the maximum number of substitution rates. It was shown that intrastrand equimolarity between A and T (A * T *) and between G and C (G * C *) is a general asymptotic property of this class of models. This statistical prediction was observed on 60 long genomic fragments (>50 kbp) from various kingdoms, even when the effect of the two opposite orientations for coding sequences is removed. The practical consequence of the model for estimating the expected number of substitutions per site between two homologous DNA sequences is discussed.Abbreviations BPR Watson and Crick base pairing rule (A:T, G:C) - PRI Intrastrand type-1 parity rule (i j, m(i,j)m( )) - PRII Intra strand type-2 parity rule (A * T *, G * C *)  相似文献   

7.
Growth responses of Pithophora oedogonia (Mont.) Wittr. and Spirogyra sp. to nine combinations of temperature (15°, 25°, and 35°C) and photon flux rate (50, 100, and 500 μmol·m?2·s?1) were determined using a three-factorial design. Maximum growth rates were measured at 35°C and 500 pmol·m?2·s?1 for P. oedogonia (0.247 d?1) and 25°C and 500 μmol·m?2·s?1 for Spirogyra sp. (0.224 d?1). Growth rates of P. oedogonia were strongly inhibited at 15°C (average decrease= 89%of maximum rate), indicating that this species is warm stenothermal. Growth rates of Spirogyra sp. were only moderately inhibited at 15° and 35°C (average decrease = 36 and 30%, respectively), suggesting that this species is eurythermal over the temperature range employed. Photon flux rate had a greater influence on growth of Spirogyra sp. (31% reduction at 50 pmol·m?2·s?1 and 25°C) than it did on growth of P. oedogonia (16% reduction at 50 μmol·m?2·s?1 and 35°C). Spirogyra sp. also exhibited much greater adjustments to its content of chlorophyll a (0.22–3.34 μg·mg fwt?1) than did P. oedogonia (1.35–3.08 μg·mg fwt?1). The chlorophyll a content of Spirogyra sp. increased in response to both reductions in photon flux rate and high temperatures (35°C). Observed species differences are discussed with respect to in situ patterns of seasonal abundance in Surrey Lake, Indiana, the effect of algal mat anatomy on the internal light environment, and the process of acclimation to changes in temperature and irradiance conditions.  相似文献   

8.
9.
The inland silverside, Menidia beryllina (Cope), is an annual zooplanktivore that occurs in estuarine and freshwater habitats along the Atlantic and Gulf of Mexico coasts and drainages of the United States. Experiments were conducted at 25 ± 1°C to quantify the relationship between mean dry weight (WD) and rates of energy gain from food consumption (C), and energy losses as a result of respiration (R) and ammonia excretion (E) during routine activity and feeding by groups of fish. The absorption efficiency of ingested food energy (A) was also quantified. Rates of C, E, and R increased with WD by factors (b in the equation y = aWDb) equal to 0.462, 0.667, and 0.784, respectively. Mean (±SE) rates of energy loss during feeding were 1.6 ± 0.1 (R) and 3.4 ± 0.6 (E) times greater than those for unfed fish. Absorption efficiency was independent of WD and estimated to be 89% of C. From these measurements, the surplus energy available for growth and activity (G) and growth efficiency (K1) were estimated. Over the range in sizes of juveniles and adults (5–500 mg WD), predicted G and K1 values decreased from 7.42 to 0.20 J mg fish?1 day?1 and 63 to 21%, respectively. Measured and predicted bioenergetic parameters are discussed within an ecological context for a northern population of this species.  相似文献   

10.
The respiration rate of the thermogenic inflorescences of Japanese skunk cabbage Symplocarpus renifolius can reach 300 nmol s?1 g?1, which is sufficient to raise spadix temperature (Ts) up to 15 ° C above ambient air temperature (Ta). Respiration rate is inversely related to Ta, such that the Ts achieves a degree of independence from Ta, an effect known as temperature regulation. Here, we measure oxygen consumption rate (?o 2) in air (21% O2 in mainly N2) and in heliox (21% O2 in He) to investigate the diffusive conductance of the network of gas‐filled spaces and the thermoregulatory response. When Ts was clamped at 15 ° C, the temperature that produces maximal ?o 2 in this species, exposure to high diffusivity heliox increased mean ?o 2 significantly from 137 ± 17 to 202 ± 43 nmol s?1 g?1 FW, indicating that respiration in air is normally limited by diffusion in the gas phase and some mitochondria are unsaturated. When Ta was clamped at 15 ° C and Ts was allowed to vary, exposure to heliox reduced Ts 1 ° C and increased ?o 2 significantly from 116 ± 10 to 137 ± 19 nmol s?1 g?1, indicating that enhanced heat loss by conduction and convection can elicit the thermoregulatory response.  相似文献   

11.
Drought is a great challenge to agricultural production, and cultivation of drought‐tolerant or water use‐efficient cultivars is important to ensure high biomass yields for bio‐refining and bioenergy. Here, we evaluated drought tolerance of four C3 species, Dactylis glomerata cvs. Sevenop and Amba, Festuca arundinacea cvs. Jordane and Kora, Phalaris arundinacea cvs. Bamse and Chieftain and Festulolium pabulare cv. Hykor, and two C4 species Miscanthus × giganteus and M. lutarioriparius. Control (irrigated) and drought‐treated plants were grown on coarse and loamy sand in 1 m2 lysimeter plots where rain was excluded. Drought periods started after harvest and lasted until 80% of available soil water had been used. Drought caused a decrease in dry matter yield (DM; P < 0.001) for all species and cultivars during the drought period. Cultivars Sevenop, Kora and Jordane produced DM at equal levels and higher than the other C3 cultivars in control and drought‐treated plots both during and after the drought period. Negative correlations were observed between stomatal conductance (gs) and leaf water potential (P < 0.01) and positive correlations between gs and DM (P < 0.05) indicating that gs might be suitable for assessment of drought stress. There were indications of positive associations between plants carbon isotope composition and water use efficiency (WUE) as well as DM under well‐watered conditions. Compared to control, drought‐treated plots showed increased growth in the period after drought stress. Thus, the drought events did not affect total biomass production (DMtotal) of the whole growing season. During drought stress and the whole growing season, WUE was higher in drought‐treated compared to control plots, so it seems possible to save water without loss of biomass. Across soil types, M. lutarioriparius had the highest DMtotal (15.0 t ha?1), WUEtotal (3.6 g L?1) and radiation use efficiency (2.3 g MJ?1) of the evaluated grasses.  相似文献   

12.
This study tested the suitability of several staining methods to determine the age of common stingray (Dasyatis pastinaca) from Iskenderun Bay, Turkey. A total of 384 specimens (16.6 cm–69.3 cm disc width) were obtained by trawling between September 2010 and December 2011. Sex ratio of the samples was 53% males and 47% females. Appropriate age determination was firstly demonstrated using Safranin‐O staining. Age readings were made by two independent readers and the index of average percent error (IAPE) determined as 6.3% for Safranin‐O, 6.8% for Crystal Violet, 7.9% for Alcian Blue, and 9.3% for Silver Nitrate. Safranin‐O and Crystal Violet staining methods provided the best results. Verification of temporal growth ring formation was by marginal increment analysis. Disc width–weight relationships were determined by W = 0.0272*DW3.06 for females and W = 0.0247*DW3.08 for males. Estimates of the von Bertalanffy growth parameters indicated a larger asymptotic disc width (DW = 127.06 cm) for females than for males (DW∞ = 114.54 cm); growth parameters were = 0.058 year?1, to = ?1.508 and = 0.041 year?1, to = ?3.632 for females and males, respectively.  相似文献   

13.
SUMMARY. The interval between moults is an extension of egg development time, increasing from birth to sexual maturity which is probably reached at instar 6 or 7. The duration of each instar increased with the animal's age. Incubation time for eggs and the intermoult interval have the same curvilinear inverse relationship with water temperature in the range 3.5–25°C. Results are expressed as degree-days above predicted threshold temperatures of 3.8°C for eggs and 3.2°C for instar 1 after birth, but inverse power-law relationships were a better fit to the results, with exponents of - 1.355 for eggs, - 1.263 for instar 1 and - 1.37 to - 1.92 for instars 2–4. Temperature — dependence apparently altered in instars 5 and 6 at 15–25°C. From a multiple regression of geometric mean moult interval (Mi, days) against mean age (A) and temperature (T, °C), Mi= 56.4 T?0.7 e0.016A, with mean ages of 106 days at 15°C and 85 days at 25°C after six moults. The mean number of primary flagellar segments on the antennules increased from 4.0 in instar 1 to 6.0 in instar 2 and 8.0 in instar 3. Thereafter, segments were added less regularly to give a mean of 13.2 in instar 7. In a natural population, when the sexes became distinctive they had 11–13 flagellar segments. From birth at c. 0.05 mg wet wt, individual growth rates were highly variable; mean growth rates (Gs, % wet wt day?1) were similar in animals fed on dried, leached elm leaves and living, green leaves of Callitriche; there was a power-law relationship with temperature in the range 3.5–25°C, (Gs= 0.27 T0.59). Faster growth rates were obtained on living leaves of Elodea. Sexual maturity is reached at c. 0.4–0.5 mg wet wt. A brief comparison is made with Gammarus pulex; C. pseudogracilis may be better adapted to warm-water habitats.  相似文献   

14.
Abstract

A single-point substitution of the O4′ oxygen by a CH2 group at the sugar residue of A 6 (i.e. 2′-deoxyaristeromycin moiety) in a self-complementary DNA duplex, 5′- d(C1G2C3G4A5A6T7T8C9G10C11G12)2 ?3, has been shown to steer the fully Watson-Crick basepaired DNA duplex (1A), akin to the native counterpart, to a doubly A 6:T7 Hoogsteen basepaired (1B) B-type DNA duplex, resulting in a dynamic equilibrium of (1A)→←(1B): Keq = k1/k-1 = 0.56±0.08. The dynamic conversion of the fully Watson-Crick basepaired (1A) to the partly Hoogsteen basepaired (1B) structure is marginally kinetically and thermodynamically disfavoured [k1 (298K) = 3.9± 0.8 sec?1; δH°? = 164±14 kJ/mol;-TδS°? (298K) = ?92 kJ/mol giving a δG298°? of 72 kJ/mol. Ea (k1) = 167±14 kJ/mol] compared to the reverse conversion of the Hoogsteen (1B) to the Watson-Crick (1A) structure [k-1 (298K) = 7.0±0.6 sec-1, δH°? = 153±13 kJ/mol;-TδS°? (298K) = ?82 kJ/mol giving a δG298°? of 71 kJ/mol. Ea (k-1) = 155±13 kJ/mol]. A comparison of δG298°? of the forward (k1) and backward (k-1) conversions, (1A)→←(1B), shows that there is ca 1 kJ/mol preference for the Watson-Crick (1A) over the double Hoogsteen basepaired (1B) DNA duplex, thus giving an equilibrium ratio of almost 2:1 in favour of the fully Watson-Crick basepaired duplex. The chemical environments of the two interconverting DNA duplexes are very different as evident from their widely separated sets of chemical shifts connected by temperature-dependent exchange peaks in the NOESY and ROESY spectra. The fully Watson-Crick basepaired structure (1A) is based on a total of 127 intra, 97 inter and 17 cross-strand distance constraints per strand, whereas the double A 6:T7 Hoogsteen basepaired (1B) structure is based on 114 intra, 92 inter and 15 cross-strand distance constraints, giving an average of 22 and 20 NOE distance constraints per residue and strand, respectively. In addition, 55 NMR-derived backbone dihedral constraints per strand were used for both structures. The main effect of the Hoogsteen basepairs in (1B) on the overall structure is a narrowing of the minor groove and a corresponding widening of the major groove. The Hoogsteen basepairing at the central A 6:T7 basepairs in (1B) has enforced a syn conformation on the glycosyl torsion of the 2′- deoxyaristeromycin moiety, A 6, as a result of substitution of the endocyclic 4′-oxygen in the natural sugar with a methylene group in A 6. A comparison of the Watson-Crick basepaired duplex (1A) to the Hoogsteen basepaired duplex (1B) shows that only a few changes, mainly in α, σ and γ torsions, in the sugar-phosphate backbone seem to be necessary to accommodate the Hoogsteen basepair.  相似文献   

15.
Dissolved inorganic phosphorus (DIP ) is an essential macronutrient for maintaining metabolism and growth in autotrophs. Little is known about DIP uptake kinetics and internal P‐storage capacity in seaweeds, such as Ulva lactuca (Chlorophyta). Ulva lactuca is a promising candidate for biofiltration purposes and mass commercial cultivation. We exposed U. lactuca to a wide range of DIP concentrations (1–50 μmol · L?1) and a nonlimiting concentration of dissolved inorganic nitrogen (DIN ; 5,000 μmol · L?1) under fully controlled laboratory conditions in a “pulse‐and‐chase” assay over 10 d. Uptake kinetics were standardized per surface area of U. lactuca fronds. Two phases of responses to DIP ‐pulses were measured: (i) a surge uptake (VS ) of 0.67 ± 0.10 μmol · cm?2 · d?1 and (ii) a steady state uptake (VM ) of 0.07 ± 0.03 μmol · cm?2 · d?1. Mean internal storage capacity (ISCP ) of 0.73 ± 0.13 μmol · cm?2 was calculated for DIP . DIP uptake did not affect DIN uptake. Parameters of DIN uptake were also calculated: VS  = 12.54 ± 1.90 μmol · cm?2 · d?1, VM  = 2.26 ± 0.86 μmol · cm?2 · d?1, and ISCN  = 22.90 ± 6.99 μmol · cm?2. Combining ISC and VM values of P and N, nutrient storage capacity of U. lactuca was estimated to be sufficient for ~10 d. Both P and N storage capacities were filled within 2 d when exposed to saturating nutrient concentrations, and uptake rates declined thereafter at 90% for DIP and at 80% for DIN . Our results contribute to understanding the ecological aspects of nutrient uptake kinetics in U. lactuca and quantitatively evaluating its potential for bioremediation and/or biomass production for food, feed, and energy.  相似文献   

16.
Light effect on cultures of microalgae has been studied mainly on single species cultures. Cyanobacteria have photosynthetic pigments that can capture photons of wavelengths not available to chlorophylls. A native Louisiana microalgae (Chlorella vulgaris ) and cyanobacteria (Leptolyngbya sp.) co‐culture was used to study the effects of light quality (blue–467 nm, green–522 nm, red–640 nm and white–narrow peak at 450 nm and a broad range with a peak at 550 nm) at two irradiance levels (80 and 400 μmol m?2 s?1) on the growth, species composition, biomass productivity, lipid content and chlorophyll‐a production. The co‐culture shifted from a microalgae dominant culture to a cyanobacteria culture at 80 μmol m?2 s?1. The highest growth for the cyanobacteria was observed at 80 μmol μmol m?2 s?1 and for the microalgae at 400 μmol m?2 s?1. Red light at 400 μmol m?2 s?1 had the highest growth rate (0.41 d?1), biomass (913 mg L?1) and biomass productivity (95 mg L?1 d?1). Lipid content was similar between all light colors. Green light had the highest chlorophyll‐a content (1649 μg/L). These results can be used to control the species composition of mixed cultures while maintaining their productivity.  相似文献   

17.
The aim of this study was to determine the optimal physical process conditions for the cultivation of locally isolated strains of Nannochloropsis sp. and Tetraselmis striata to achieve maximum growth rate. It was essential to evaluate biomass production at different agitation rates, light intensities, and temperature levels. Central composite design and response surface methodology were applied to design the experiments and optimize the cultivation process for Nannochloropsis sp. and T. striata. The specific growth rate of 0.250 d?1 was obtained for Nannochloropsis sp. cells under the light intensity of 54 μmol photons · m?2 · s?1, at the agitation rate of 151 rpm in 24.5°C. The optimal physical process conditions for T. striata were obtained under the light intensity of 56 μmol photons · m?2 · s?1 in 25.5°C at the agitation rate of 151 rpm in 25.5°C, resulting in a specific growth rate of 0.226 d?1. The predicted values were justified by the verification tests. Good agreement between the predicted values and the experimental values confirmed the validity of the models for the cultivation of microalgal strains. In this article, the noteworthy result was that temperature was a dominant factor in obtaining high chl‐a content for Nannochloropsis sp., whereas the growth of T. striata strongly depended on light exposure.  相似文献   

18.
Hemp (Cannabis sativa L.) may be a suitable crop for the bio‐economy as it requires low inputs while producing a high and valuable biomass yield. With the aim of understanding the physiological basis of hemp's high resource‐use efficiency and yield potential, photosynthesis was analysed on leaves exposed to a range of nitrogen and temperature levels. Light‐saturated net photosynthesis rate (Amax) increased with an increase in leaf nitrogen up to 31.2 ± 1.9 μmol m?2 s?1 at 25 °C. The Amax initially increased with an increase in leaf temperature (TL), levelled off at 25–35 °C and decreased when TL became higher than 35 °C. Based on a C3 leaf photosynthesis model, we estimated mesophyll conductance (gm), efficiency of converting incident irradiance into linear electron transport under limiting light (κ2LL), linear electron transport capacity (Jmax), Rubisco carboxylation capacity (Vcmax), triose phosphate utilization capacity (Tp) and day respiration (Rd), using data obtained from gas exchange and chlorophyll fluorescence measurements at different leaf positions and various levels of incident irradiance, CO2 and O2. The effects of leaf nitrogen and temperature on photosynthesis parameters were consistent at different leaf positions and among different growth environments except for κ2LL, which was higher for plants grown in the glasshouse than for those grown outdoors. Model analysis showed that compared with cotton and kenaf, hemp has higher photosynthetic capacity when leaf nitrogen is <2.0 g N m?2. The high photosynthetic capacity measured in this study, especially at low nitrogen level, provides additional evidence that hemp can be grown as a sustainable bioenergy crop over a wide range of climatic and agronomic conditions.  相似文献   

19.
Ecological stoichiometry suggests that herbivore growth is limited by phosphorus when this element in the diet is < 8.6 μg P mg C?1 (C : P atomic ratio > 300). However, in nature, it is not necessarily related to the relative phosphorus content in diets. This may be the result of complex feeding and assimilation responses to diets. We examined these possibilities using herbivorous plankton fed mono‐specific and mixed algae varying in phosphorus content of 1.6 to 8.1 μg P mg C?1. The herbivores showed a 10‐fold growth rate difference among the diets. Growth rates related poorly with phosphorus content in the diets (r2 = 0.07), better with P ingestion rate (r2 = 0.41) and best with phosphorus assimilation rate (r2 = 0.69). Inclusion of assimilation rates for carbon and fatty acids increased 7% of the explained growth variance. These results indicate that the feeding and assimilation flexibilities play pivotal roles in acquiring a deficient element and in regulating growth rate.  相似文献   

20.
Early life history traits of young‐of‐the‐year (YOY) round herring Etrumeus teres, caught in Tosa Bay (south‐western Japan), were studied using otolith microstructure analysis for the 2000–2003 year classes. Hatch dates ranged from October to March, and were restricted to either autumn or winter within each year class. YOY ranged from 50 to 123 mm total length (LT) and from 57 to 192 days in age. The relationship of LT to otolith radius was linear. Individual growth rates (GI) were backcalculated between the 70th and 150th days (the size range of most YOY caught) using the biological intercept method. GI ranged from 0·3 to 1·4 mm day?1 and decreased in most cases as season progressed irrespective of year class, although GI in winter cohorts were significantly higher than in autumn cohorts. Otolith growth rates (GO) ranged from 2·13 to 12·25 μm day?1 for autumn spawned YOY and from 3·12 to 12·41 μm day?1 for YOY spawned in winter. The GO trajectories followed three consistent patterns: (1) an increase in increment widths after first feeding through the second week of larval life, then (2) a plateau in increment spacing before increment widths increased again until reaching the maximum growth rate, followed by (3) a gradual decrease in increment widths until the end of the fifth month. The three stages occurred irrespective of spawning season, although YOY spawned in October and December had higher GO during stages (1) and (2) than YOY spawned in February and March, whereas higher GO was observed for late‐winter cohorts in stage (3). Otolith growth from YOY spawned in December and January showed an intermediate pattern between YOY hatched in the early autumn (October to December) and late winter (February to March). The GO trajectories were cross‐matched to the calendar date to estimate time series of otolith growth rates (GOTS) for each year. A parabolic trend was found with maximum GOTS in autumn and spring and minimum values in winter. This trend was significantly correlated to daily sea surface temperature variations. The differences in otolith growth trajectories suggest that the otolith microstructure of E. teres may be used as a natural tag for identifying autumn and winter spawned cohorts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号