首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Optimization of medium composition and pH for chitinase production by the Alcaligenes xylosoxydans mutant EMS33 was carried out in the present study and the optimized medium composition and conditions were evaluated in a fermenter. The medium components screened initially using Plackett–Burman design were (NH4)2SO4, MgSO4 7H2O, KH2PO4, yeast extract, Tween 20 and chitin in shake flask experiments. The significant medium components identified by the Plackett–Burman method were MgSO4 7H2O, Tween 20 and chitin. Central composite response surface methodology was applied to further optimize chitinase production. The optimized values of MgSO4 7H2O, Tween 20, chitin and pH were found to be 0.6 g/l, 0.05 g/l, 11.5 g/l and 8.0, respectively. Chitinase and biomass production of Alcaligenes xylosoxydans EMS33, was studied in a 2-l fermenter containing (g/l): chitin, 11.5; yeast extract, 0.5; (NH4)2SO4, 1; MgSO4 7H2O, 0.6; KH2PO4, 1.36 and Tween 20, 0.05. The highest chitinase production was 54 units/ml at 60 h and pH 8.0 when the dissolved O2 concentration was 60%, whereas the highest biomass production was achieved at 36 h and pH 7.5 without any dissolved O2 control.  相似文献   

2.
Aflatoxins are one of the most important secondary metabolites. These extrolites are produced by a number of Aspergillus fungi. In this study, we demonstrate the effect of media components and enhanced aflatoxin yield shown by A. flavus using response surface methodology in response to different nutrients. Different components of a chemically defined media that influence the aflatoxin production were monitored using Plackett–Burman experimental design and further optimized by Box–Behnken factorial design of response surface methodology in liquid culture. Interactions were studied with five variables, namely sorbitol, fructose, ammonium sulfate, KH2PO4, and MgSO4.7H2O. Maximum aflatoxin production was envisaged in medium containing 4.94 g/l sorbitol, 5.56 g/l fructose, 0.62 g/l ammonium sulfate, 1.33 g/l KH2PO4, and 0.65 g/l MgSO4·7H2O using response surface plots and the point prediction tool of the DESIGN EXPERT 8.1.0 (Stat-Ease, USA) software. However, a production of 5.25 μg/ml aflatoxin production was obtained, which was in agreement with the prediction observed in verification experiment. The other component (MgSO4.7H2O) was found to be an insignificant variable.  相似文献   

3.
In order to obtain a high ethanol yield from the Jerusalem artichoke raw extract and reduce the fermentation cost, we have engineered a new recombinant Saccharomyces cerevisiae strain that could produce ex-inulinase. The response surface methodology based on Plackett–Burman and Box–Behnken design was used to optimize the medium for the ethanol production from the Jerusalem artichoke raw extracts by the recombinant strain. In the first optimization step, Plackett–Burman design was employed to select significant factors, including concentrations of yeast extract, inoculum, and MgSO4·7H2O. In the second step, the steepest ascent experiment was carried out to determine the center point with the three significant factors; the selected combinations were further optimized using the Box–Behnken design. The maximum ethanol production rate was predicted at 91.1 g/l, which was based on a medium consisting of yeast extract 9.24 g/l, inoculum 39.8 ml/l, and MgSO4·7H2O 0.45 g/l. In the validating experiment, the ethanol fermentation rate reached 102.1 g/l, closely matching the predicted rate.  相似文献   

4.
Halophilic cellulases from the newly isolated fungus, Aspergillus terreus UniMAP AA-6 were found to be useful for in situ saccharification of ionic liquids treated lignocelluloses. Efforts have been taken to improve the enzyme production through statistical optimization approach namely Plackett–Burman design and the Face Centered Central Composite Design (FCCCD). Plackett–Burman experimental design was used to screen the medium components and process conditions. It was found that carboxymethylcellulose (CMC), FeSO4·7H2O, NaCl, MgSO4·7H2O, peptone, agitation speed and inoculum size significantly influence the production of halophilic cellulase. On the other hand, KH2PO4, KOH, yeast extract and temperature had a negative effect on enzyme production. Further optimization through FCCCD revealed that the optimization approach improved halophilic cellulase production from 0.029 U/ml to 0.0625 U/ml, which was approximately 2.2-times greater than before optimization.  相似文献   

5.
Verticillium lecanii is an entomopathogen with high potential in biological control of pests. We developed a solid-state fermentation with sugarcane bagasse as carrier absorbing liquid medium to propagate V. lecanii spores. Using statistical experimental design, we optimized the medium composition for spore production. We first used one-factor-at-a-time design to identify corn flour and yeast extract as the best carbon and nitrogen sources for the spore production of V. lecanii. Then, we used two-level fractional factorial design to confirm corn flour, yeast extract, and KH2PO4 as important factors significantly affecting V. lecanii spore production. Finally, we optimized these selected variables using a central composite design and response surface method. The optimal medium composition was (grams per liter): corn flour 35.79, yeast 8.69, KH2PO4 1.63, K2HPO4 0.325, and MgSO4 0.325. Under optimal conditions, spore production reached 1.1 × 1010 spores/g dried carrier, much higher than that on wheat bran (1.7 × 109 spores/g initial dry matter).  相似文献   

6.
A novel exopolysaccharide (EPS), namely, B4-EPS, is produced by Arthrobacter sp. B4. Response surface methodology (RSM) was employed to optimize the fermentation medium for increasing B4-EPS production. Based on Plackett–Burman design (PBD), glucose, yeast extract, and KH2PO4 were selected as significant variables, which were further optimized by a central composite design (CCD). According to response surface and canonical analysis, the optimal medium was composed of 16.94 g/L glucose, 2.33 g/L yeast extract, and 5.32 g/L KH2PO4. Under this condition, the maximum yield of B4-EPS reached about 8.54 g/L after 72 hr of batch fermentation, which was pretty close to the predicted value (8.52 g/L). Furthermore, B4-EPS was refined by column chromatography. The main homogeneous fraction (B4-EPS1) was collected and applied to assay of antibiofilm activity. B4-EPS1 exhibited a dose-dependent inhibitory effect on biofilm formation of Pseudomonas aeruginosa PAO1 without antibacterial activity. About 86.1% of biofilm formation of P. aeruginosa PAO1 was inhibited in the presence of 50 µg/mL B4-EPS1, which was more effective than the peer published data. Moreover, B4-EPS1 could prevent biofilm formation of other strains. These data suggest B4-EPS may represent a promising strategy to combat bacterial biofilms in the future.  相似文献   

7.
When a fermentation medium consisting of the high concentration of K2HPO4 and KH2PO4 and glucose as a sole carbon source is autoclaved in the alkaline side, an unknown sugar is formed. This sugar is identified as psicose by paper chromatography and high-voltage paper electrophoresis. The notion that weak alkali causes the isomerization of reducing sugar could account for the formation of psicose in the medium. It is thus concluded that psicose is chemically formed from glucose in the alkaline side and in the high concentration of K2HPO4 and KH2PO4 during autoclaving.  相似文献   

8.
Xylanase produced from the newly isolated Penicillium crustosum FP 11 and its potential in the prebleaching of kraft pulp were evaluated using a statistical approach. A Plackett–Burman design (PBD) was carried out to select the significant variables of the medium, these being NaNO3, KH2PO4, MgSO4, KCl, Fe2(SO4)3, yeast extract, corn stover, and initial pH, in a liquid culture under static conditions for 6 d at 28?°C. Statistical analysis with a central composite design and response surface methodology showed that 0.15% (w/v) KH2PO4, 2% (w/v) corn stover, and an initial pH of 6.0 provided the best conditions for xylanase production. Furthermore, xylanase from P. crustosum FP 11 was effective in the bleaching of Eucalyptus kraft pulp, with a significant kappa efficiency of 35.04%. Therefore, the newly isolated P. crustosum FP 11 from the Atlantic Forest biome in Brazil showed two advantages: xylanase production with agricultural residue (corn stover) as a carbon source and an improvement in the bleaching of kraft pulp. Environmental pollution could thus be minimized because of a reduction in the use of chlorine as a bleaching agent.  相似文献   

9.
This work deals with the optimization of the culture conditions of Bacillus invictae AH1 in order to increase the production level of the proteolytic activity. Response-surface methodology (RSM) was applied for the most significant fermentation parameters (concentration of wheat bran and K2HPO4/KH2PO4) that were earlier identified by Plackett–Burman Design from seven possible factors. A central composite design was used and the quadratic regression model of producing active protease was built. A maximum protease activity was reached and validated experimentally, using a maximum wheat bran concentration (50 g/L) with increased K2HPO4/KH2PO4 concentration (2.275 g/L). Protease production obtained experimentally coincident with the predicted value and the model was proven to be adequate. Interestingly, the use of RSM increased the protease production by four times (7,000 U/mL) using a low-cost substrate and a culture time of 40 hr, as compared to the standard culture conditions. In the second part of this study, a H2O2-tolerant alkaline protease produced from B. invictae AH1 with a molecular mass of about 41 kDa, noted P3, was purified by successive steps of ultrafiltration, gel filtration and ion exchange chromatography. The K m and Vmax values of the purified protease using casein, as substrate, were about 4 mg/mL and 27 μM/min, respectively. The highest enzyme activity was found at pH 9.0 and a temperature of 60°C. In addition, the enzyme showed a quasi-total stability against H2O2 (5% for 1 hr) and against most of the tested solid and liquid detergents, suggesting its eventual use in bio-detergent formulations.  相似文献   

10.
Pedobacter cryoconitis BG5 are psychrophiles isolated from the cold environment and capable of proliferating and growing well at low temperature regime. Their cellular products have found a broad spectrum of applications, including in food, medicine, and bioremediation. Therefore, it is imperative to develop a high-cell density cultivation strategy coupled with optimized growth medium for P. cryoconitis BG5. To date, there has been no published report on the design and optimization of growth medium for P. cryoconitis, hence the objective of this research project. A preliminary screening of four commercially available media, namely tryptic soy broth, R2A, Luria Bertani broth, and nutrient broth, was conducted to formulate the basal medium. Based on the preliminary screening, tryptone, glucose, NaCl, and K2HPO4 along with three additional nutrients (yeast extract, MgSO4, and NH4Cl) were identified to form the basal medium which was further analyzed by Plackett–Burman experimental design. Central composite experimental design using response surface methodology was adopted to optimize tryptone, yeast extract, and NH4Cl concentrations in the formulated growth medium. Statistical data analysis showed a high regression factor of 0.84 with a predicted optimum optical (600?nm) cell density of 7.5 using 23.7?g/L of tryptone, 8.8?g/L of yeast extract, and 0.7?g/L of NH4Cl. The optimized medium for P. cryoconitis BG5 was tested, and the observed optical density was 7.8. The cost-effectiveness of the optimized medium was determined as 6.25 unit prices per gram of cell produced in a 250-ml Erlenmeyer flask.  相似文献   

11.
Statistical optimization is an effective technique for the investigation of complex processes with minimal number of experimental runs. In this study, statistical approach was used to study the optimization of media components for lipase production from Yarrowia lipolytica MTCC 35. Mahua cake, glucose, MnCl2 and KH2PO4 were screened to be the most significant variables among the nine medium variables that were tested to determine influence on lipase production by Plackett–Burman design. Central Composite Design was used for further optimization of these screened variables for enhanced lipase production. The determination coefficient (R2) value of 0.922 showed that the regression models adequately explain the data variation and represent the actual relationships between the variables and response. The optimum values of investigated variables for the maximum lipase production were 6.0% Mahua cake, 2.0% glucose, 0.2% MnCl2 and 0.2% KH2PO4. The maximum lipase production (9.40 U mL?1) was obtained under optimal condition.  相似文献   

12.
Gene cloning, optimized production and property of marine lipase from Bacillus pumilus B106 associated with South China Sea sponge Halichondria rugosa were investigated in this paper. A lipase gene with whole ORF encoding 215 amino acids was obtained by PCR, protein domain prediction suggested that the deduced lipase belongs to α/β hydrolases family. Based on single factor Seriatim-Factorial test and Plackett–Burman experimental design, the optimal medium consisted of (per l) 12.5 ml maize oil, 5.0 g beef extract, 2.0 g PO4 3− (0.6 g KH2PO4, 1.4 g K2HPO4), 17.15 g Mg2+, 5.0 g yeast extract, 2.282 g CaCl2 and 5.0 ml Tween80 with artificial sea water. Using this optimum medium, lipase activity and cell concentration were increased by 3.54- and 1.31-fold over that of the basal medium, respectively. This lipase showed tolerance to high salinity, pH and temperature. About 10–20% methanol exhibited a stimulatory effect on the lipase activity, while activity was inhibited by 30–40% methanol, 2-propanol, DMSO, and ethanol. This study provides a valuable resource for marine lipase production and extends our understanding of the possible role of sponge-associated bacteria in the biotransformation of chemical compounds for the sponge host.  相似文献   

13.
Plant secondary metabolites have emerged as potential raw materials, which are used in the pharmaceutical, food, chemical, and cosmetic industries. Bacoside-A, a secondary metabolite produced by Bacopa monnieri, is known for its memory-facilitating properties. In recent years, various strategies have been developed to enhance biomass accumulation and synthesis of secondary compounds in cultures. In the present investigation, various factors affecting the production of biomass and bacoside-A in the cell suspension cultures of B. monnieri were optimized using the statistical experimental design approach. Preliminary screening by Plackett–Burman’s design revealed that among the tested factors, glucose, KNO3, KH2PO4, and inoculum density significantly influenced cell growth and bacoside-A production. Furthermore, using response surface methodology (RSM), glucose, KNO3, and KH2PO4 at a concentration of 5.67, 0.313, and 0.29%, respectively, and an inoculum density of 0.66% in basal MS medium were found to be optimal for cell growth and bacoside-A production. After optimization, the biomass yield increased about twofold (from 5.52 to 12.58 g L?1 fresh cell weight) and bacoside-A production about 1.7-fold (5.56 to 9.84 mg g?1 dry weight). The present study results show the successful application of RSM to enhance the production of biomass and accumulation of bacoside-A content in cell suspension cultures of B. monnieri.  相似文献   

14.
A newly isolated anti-Streptococcus suis bacteriocin-producing strain LPL1-5 was obtained from healthy unweaned piglets' fecal matter, and was designated as Lactobacillus pentosus LPL1-5 based on morphology, biochemical properties, and 16S rDNA sequencing analysis. The medium composition for enhanced bacteriocin production by L. pentosus LPL1-5 was optimized by statistical methodology. Yeast extract, K2HPO4 · 3H2O, and MnSO4 · H2O were identified as significant components influencing pentocin LPL1-5 production using the Plackett–Burman method. Response surface methodology was applied for further optimization. The concentrations of medium components for enhanced pentocin LPL1-5 production were as follows (g/L): lactose 20.00, tryptone 10.00, beef extract 10.00, yeast extract 14.00, MnSO4 · H2O 0.84, K2HPO4 · 3H2O 4.92, triammonium citrate 2.00, Na-acetate 5.00, MgSO4 · 7H2O 0.58, Tween 80 1.00. Under the optimized condition, a value of 3154.65 ± 27.93 IU/mL bacteriocin activity was achieved, which was 4.2-fold that of the original medium.  相似文献   

15.
Culture medium for keratinase production from hair substrate by a new Bacillus subtilis strain, KD-N2, was optimized. Effects of culture conditions on keratinase production were tested, and optimal results were obtained with 10% inocula (v/v), 16 g/L hair substrate, an initial pH value of 6.5 and a culture volume of 20 mL. Several carbon sources (sucrose, cornflour) and nitrogen sources (yeast extract, tryptone and peptone) had positive effects on keratinase production, with sucrose giving optimal results. To improve keratinase yield, statistically based experimental designs were applied to optimize the culture medium. Fractional factorial design (FFD) experiments showed that MgSO4 and K2HPO4 were the most significant factors affecting keratinase production. Further central composite design (CCD) experiments indicated that the optimal MgSO4 and K2HPO4 concentrations were 0.91 and 2.38 g/L, respectively. Using an optimized fermentation medium (g/L: NaCl 1.0, CaCl2 0.05, KH2PO4 0.7, sucrose 3, MgSO4 0.91, K2HPO4 2.38), keratinase activity increased to 125 U/mL, an approximate 1.7-fold increase over the previous activity (75 U/mL). Human hair was degraded during the submerged cultivation.  相似文献   

16.
《Process Biochemistry》2007,42(4):518-526
An alkaline lipase from Burkholderia multivorans was produced within 15 h of growth in a 14 L bioreactor. An overall 12-fold enhanced production (58 U mL−1 and 36 U mg−1 protein) was achieved after medium optimization following the “one-variable-at-a-time” and the statistical approaches. The optimal composition of the lipase production medium was determined to be (% w/v or v/v): KH2PO4 0.1; K2HPO4 0.3; NH4Cl 0.5; MgSO4·7H2O 0.01; yeast extract 0.36; glucose 0.1; olive oil 3.0; CaCl2 0.4 mM; pH 7.0; inoculum density 3% (v/v) and incubation time 36 h in shake flasks. Lipase production was maximally influenced by olive oil/oleic acid as the inducer and yeast extract as the additive nitrogen. Plackett–Burman screening suggested catabolite repression by glucose. Amongst the divalent cations, Ca2+ was a positive signal while Mg2+ was a negative signal for lipase production. RSM predicted that incubation time, inoculum density and oil were required at their higher levels (36 h, 3% (v/v) and 3% (v/v), respectively) while glucose and yeast extract were required at their minimal levels for maximum lipase production in shake flasks. The production conditions were validated in a 14 L bioreactor where the incubation time was reduced to 15 h.  相似文献   

17.
Lovastatin, an inhibitor of HMG-CoA reductase, was produced by submerged fermentation using Monascus purpureus MTCC 369. Five nutritional parameters screened using Plackett–Burman experimental design were optimized by Box–Behnken factorial design of response surface methodology for lovastatin production in shake flask cultures. Maximum lovastatin production of 351 mg/l were predicted in medium containing 29.59 g/l dextrose, 3.86 g/l NH4Cl, 1.73 g/l KH2PO4, 0.86 g/l MgSO4·7H2O, and 0.19 g/l MnSO4·H2O using response surface plots and point prediction tool of DESIGN EXPERT 7.0 (Statease, USA) software.  相似文献   

18.
Summary The solubility of phosphorus was found to approximate that of dicalcium phosphate dihydrate and/or dimagnesium phosphate trihydrate when KH2-PO4, H3PO4 and K2HPO4 were added to four Manitoba soils. Eighty to one hundred, seventy to ninety and sixty to eighty per cent of the phosphorus added remained in solution when H3PO4, KH2PO4 and K2HPO4 were added, respectively. The solubility of the added phosphorus was high in all samples and relatively soluble compounds, dicalcium phosphate dihydrate and dimagnesium phosphate trihydrate, were most likely formed in the samples indicating that phosphorus added to these soils would be readily available to plants. Associate Professor and Professor respectively.  相似文献   

19.
Liu C  Liu Y  Liao W  Wen Z  Chen S 《Biotechnology letters》2003,25(11):877-882
Statistically-based experimental designs were applied for the optimization of nisin production by Lactococcus lactis in a whey-based medium. Yeast extract, KH2PO4, and MgSO4 were identified to have significant effects on nisin biosynthesis by a Plackett–Burman design. These three significant factors were subsequently optimized using central composite design, and the optimal conditions were determined to be 12.067 g l–1 for yeast extract, 0.569 g l–1 for KH2PO4, and 0.572 g l–1 for MgSO4. The validity of the optimal conditions was verified by a separate experiment.  相似文献   

20.
The bioactive compound, bacoside A, has immense importance for the treatment of memory disorders and Alzheimer’s disease. Due to the growing commercial interest in the herb, Bacopa monnieri, it has been listed as highly endangered species. The present study was aimed at enhancing the production of bacoside A using an alternative technology of plant cell suspension culture. Initial experiments of docking simulations using bacoside A showed good inhibition of acetyl cholinesterase (binding energy value of ??20 kcal/mol), when comparison was made with other phytocompounds and the synthetic drug for Alzheimer’s disease. In vitro experiments established that B. monnieri cell suspension culture can be developed in Murashige and Skoog medium containing containing 0.1 mg/L benzylaminopurine and 0.5 mg/L naphthalene acetic acid. Plackett–Burman studies predicted that the most effective factors for maximum biomass production were inoculum size (t-value of 4.87), sucrose concentration (t-value of 0.25) and KH2PO4 concentration (t-value of 0.007). The nitrate to ammonium ratio (t-value of ? 0.42) did not have significant effect on the cell suspension biomass. The optimum concentration of the crucial variables obtained from a central composite design were—inoculum size of 2 g/L, sucrose concentration of 30 g/L and KH2PO4 concentration of 1.24 mM in one-sixth strength MS medium. The best model for optimum production of biomass and bacoside A was experimentally verified and the correlation between the predicted and actual values was found to be 99% for biomass and 94% for bacoside A production. The experimental results have been discussed in the present work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号