首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Radial glia serve as the resident neural stem cells in the embryonic vertebrate nervous system, and their proliferation must be tightly regulated to generate the correct number of neuronal and glial cell progeny in the neural tube. During a forward genetic screen, we recently identified a zebrafish mutant in the kif11 loci that displayed a significant increase in radial glial cell bodies at the ventricular zone of the spinal cord. Kif11, also known as Eg5, is a kinesin-related, plus-end directed motor protein responsible for stabilizing and separating the bipolar mitotic spindle. We show here that Gfap+ radial glial cells express kif11 in the ventricular zone and floor plate. Loss of Kif11 by mutation or pharmacological inhibition with S-trityl-l-cysteine (STLC) results in monoastral spindle formation in radial glial cells, which is characteristic of mitotic arrest. We show that M-phase radial glia accumulate over time at the ventricular zone in kif11 mutants and STLC treated embryos. Mathematical modeling of the radial glial accumulation in kif11 mutants not only confirmed an ~226× delay in mitotic exit (likely a mitotic arrest), but also predicted two modes of increased cell death. These modeling predictions were supported by an increase in the apoptosis marker, anti-activated Caspase-3, which was also found to be inversely proportional to a decrease in cell proliferation. In addition, treatment with STLC at different stages of neural development uncovered two critical periods that most significantly require Kif11 function for stem cell progression through mitosis. We also show that loss of Kif11 function causes specific reductions in oligodendroglia and secondary interneurons and motorneurons, suggesting these later born populations require proper radial glia division. Despite these alterations to cell cycle dynamics, survival, and neurogenesis, we document unchanged cell densities within the neural tube in kif11 mutants, suggesting that a mechanism of compensatory regulation may exist to maintain overall proportions in the neural tube. We propose a model in which Kif11 normally functions during mitotic spindle formation to facilitate the progression of radial glia through mitosis, which leads to the maturation of progeny into specific secondary neuronal and glial lineages in the developing neural tube.  相似文献   

3.
Lamin B is a component of the membranous spindle matrix isolated from Xenopus egg extracts, and it is required for proper spindle morphogenesis. Besides lamin B, the spindle matrix contains spindle assembly factors (SAFs) such as Eg5 and dynein which are known to regulate microtubule organization and SAFs known to promote microtubule assembly such as Maskin and XMAP215. Because lamin B does not bind directly to microtubules, it must affect spindle morphogenesis indirectly by influencing the function of spindle matrix-associated SAFs. Using different assays in Xenopus egg extracts, we found that depleting lamin B caused formation of elongated and multipolar spindles, which could be reversed by partially inhibiting the kinesin Eg5, revealing an antagonistic relationship between Eg5 and lamin B. However, lamin B only very weakly antagonizes Eg5 in mediating poleward microtubule-flux based on fluorescence speckle microscopy. Depleting lamin B led to a very small but statistically significant increase in flux. Furthermore, flux reduction caused by partial Eg5 inhibition is only slightly reversed by removing lamin B. Because lamin B does not bind to Eg5, our studies suggest two nonexclusive mechanisms by which lamin B can indirectly antagonize Eg5. It could function in a network that restricts Eg5-driven microtubule sliding only when microtubules come into transient contact with the network. Lamin B could also function to sequester microtubule polymerization activities within the spindle. Without lamin B, increased microtubule assembly caused by the released SAFs would lead to excessive microtubule sliding that results in formation of elongated and multipolar spindles.  相似文献   

4.
The devastating appearance of numerous drug-unresponsive strains of Leishmania donovani and severe toxic side effects of conventional antileishmanial therapy necessitates the search for novel leads, to treat visceral leishmaniasis efficiently. The current study deals with the synthesis and biological evaluation of a unique C-5 functionalized oxindole based polyphenol to ascertain its activities against L. donovani infection, in vitro. The polyhydroxylated oxindole derivative (1) was generated by coupling styrene derivatives with 5-bromo bis-arylidene oxindole using Heck coupling reaction. The synthesized molecule 1 was tested for its antileishmanial activity using both promastigote and amastigote stages of L. donovani. Molecule 1 showed promising anti-promastigote and anti-amastigote activities with IC50 values 15?µM and 1?µM, respectively, with no cytotoxicity towards host splenocytes. The results revealed that this compound induced parasite death by promoting oxidative stress, thereby triggering apoptosis.  相似文献   

5.
This report describes the application of direct chemical ionization mass spectrometry (DCIMS) to the identification and quantification of 5- and 15-HPETEs. A unique feature of the method is use of a polyimide-coated fused silica fiber that allows vaporization of the hydroperoxides, with very low excess energy, into the plume of the chemical ionization reagent gas plasma. Mass spectra are obtained that allow identification of the nonreduced and nonderivatized free acid forms of 5- and 15-HPETE as well as their quantification from 1 microgram to 100 picograms.  相似文献   

6.
The Anaphase Promoting Complex/Cyclosome (APC/C) in complex with its co‐activator Cdc20 is responsible for targeting proteins for ubiquitin‐mediated degradation during mitosis. The activity of APC/C–Cdc20 is inhibited during prometaphase by the Spindle Assembly Checkpoint (SAC) yet certain substrates escape this inhibition. Nek2A degradation during prometaphase depends on direct binding of Nek2A to the APC/C via a C‐terminal MR dipeptide but whether this motif alone is sufficient is not clear. Here, we identify Kif18A as a novel APC/C–Cdc20 substrate and show that Kif18A degradation depends on a C‐terminal LR motif. However in contrast to Nek2A, Kif18A is not degraded until anaphase showing that additional mechanisms contribute to Nek2A degradation. We find that dimerization via the leucine zipper, in combination with the MR motif, is required for stable Nek2A binding to and ubiquitination by the APC/C. Nek2A and the mitotic checkpoint complex (MCC) have an overlap in APC/C subunit requirements for binding and we propose that Nek2A binds with high affinity to apo‐APC/C and is degraded by the pool of Cdc20 that avoids inhibition by the SAC.  相似文献   

7.
Mitotic cell division is the most fundamental task of all living cells. Cells have intricate and tightly regulated machinery to ensure that mitosis occurs with appropriate frequency and high fidelity. A core element of this machinery is the kinesin‐5 motor protein, which plays essential roles in spindle formation and maintenance. In this review, we discuss how the structural and mechanical properties of kinesin‐5 motors uniquely suit them to their mitotic role. We describe some of the small molecule inhibitors and regulatory proteins that act on kinesin‐5, and discuss how these regulators may influence the process of cell division. Finally, we touch on some more recently described functions of kinesin‐5 motors in non‐dividing cells. Throughout, we highlight a number of open questions that impede our understanding of both this motor's function and the potential utility of kinesin‐5 inhibitors.  相似文献   

8.
Nucleophosmin/B23, an abundant nucleolar protein, plays multiple roles in cell growth and proliferation, and yet, little has been studied about its function in regulating dynamics of microtubules. Here, we report that B23 directly interacts with Eg5, a member of the kinesin family, in the cytosol. The DNA/RNA binding domain of B23 and the motor domain of Eg5 were found to be involved in their interaction. Both in vivo and in vitro evidences showed that B23 acts as an upstream regulator of Eg5 in promoting microtubule polymerization. Moreover, we further demonstrated that B23 regulates microtubule dynamics by directly inhibiting Eg5 ATPase activity.  相似文献   

9.
Kinesin-5 is required for forming the bipolar spindle during mitosis. Its motor domain, which contains nucleotide and microtubule binding sites and mechanical elements to generate force, has evolved distinct properties for its spindle-based functions. In this study, we report subnanometer resolution cryoelectron microscopy reconstructions of microtubule-bound human kinesin-5 before and after nucleotide binding and combine this information with studies of the kinetics of nucleotide-induced neck linker and cover strand movement. These studies reveal coupled, nucleotide-dependent conformational changes that explain many of this motor''s properties. We find that ATP binding induces a ratchet-like docking of the neck linker and simultaneous, parallel docking of the N-terminal cover strand. Loop L5, the binding site for allosteric inhibitors of kinesin-5, also undergoes a dramatic reorientation when ATP binds, suggesting that it is directly involved in controlling nucleotide binding. Our structures indicate that allosteric inhibitors of human kinesin-5, which are being developed as anti-cancer therapeutics, bind to a motor conformation that occurs in the course of normal function. However, due to evolutionarily defined sequence variations in L5, this conformation is not adopted by invertebrate kinesin-5s, explaining their resistance to drug inhibition. Together, our data reveal the precision with which the molecular mechanism of kinesin-5 motors has evolved for force generation.  相似文献   

10.
Cyclin-dependent kinase 1 (Cdk1) is thought to trigger centrosome separation in late G2 phase by phosphorylating the motor protein Eg5 at Thr927. However, the precise control mechanism of centrosome separation remains to be understood. Here, we report that in G2 phase polo-like kinase 1 (Plk1) can trigger centrosome separation independently of Cdk1. We find that Plk1 is required for both C-Nap1 displacement and for Eg5 localization on the centrosome. Moreover, Cdk2 compensates for Cdk1, and phosphorylates Eg5 at Thr927. Nevertheless, Plk1-driven centrosome separation is slow and staggering, while Cdk1 triggers fast movement of the centrosomes. We find that actin-dependent Eg5-opposing forces slow down separation in G2 phase. Strikingly, actin depolymerization, as well as destabilization of interphase microtubules (MTs), is sufficient to remove this obstruction and to speed up Plk1-dependent separation. Conversely, MT stabilization in mitosis slows down Cdk1-dependent centrosome movement. Our findings implicate the modulation of MT stability in G2 and M phase as a regulatory element in the control of centrosome separation.  相似文献   

11.
The centrosome is the main microtubule (MT)-organizing centre of animal cells. It consists of two centrioles and a multi-layered proteinaceous structure that surrounds the centrioles, the so-called pericentriolar material. Centrosomes promote de novo assembly of MTs and thus play important roles in Golgi organization, cell polarity, cell motility and the organization of the mitotic spindle. To execute these functions, centrosomes have to adopt particular cellular positions. Actin and MT networks and the association of the centrosomes to the nuclear envelope define the correct positioning of the centrosomes. Another important feature of centrosomes is the centrosomal linker that connects the two centrosomes. The centrosome linker assembles in late mitosis/G1 simultaneously with centriole disengagement and is dissolved before or at the beginning of mitosis. Linker dissolution is important for mitotic spindle formation, and its cell cycle timing has profound influences on the execution of mitosis and proficiency of chromosome segregation. In this review, we will focus on the mechanisms of centrosome positioning and separation, and describe their functions and mechanisms in the light of recent findings.  相似文献   

12.
Uncaria tomentosa inner bark extract is a popular plant remedy used in folk medicine to treat tumor and inflammatory processes. In this study, the anti-tumoral effects of its pentacyclic alkaloid mitraphylline were investigated. Furthermore, its growth-inhibitory and cytotoxic effects on glioma GAMG and neuroblastoma SKN-BE(2) cell lines were studied using cyclophosphamide and vincristine as controls. A colter counter was used to determine viable cell numbers, followed by application of the tetrazolium compound [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)2-(4-sulfophenyl)-2H-tetrazolium], inner salt, colorimetric method to evaluate cell viability in this cytotoxicity assay. Micromolar concentrations of mitraphylline (from 5 to 40 microM) inhibited the growth of both cell lines. It inhibited the growth of the two cell lines studied in a dose-dependent manner. The IC(50) values were 12.3 microM (30h) for SKN-BE(2) and 20 microM (48 h) for GAMG, respectively. This action suggests that mitraphylline is a new and promising agent in the treatment of human neuroblastoma and glioma.  相似文献   

13.
The first total synthesis of 6(E),8(Z),11(Z),13(E) 5-oxo-15-HETE 4 was accomplished. The synthetic material was evaluated with calcium mobilization assay and compared with 5-oxo-ETE the natural ligand for the OXE receptor.  相似文献   

14.
The average degree of separation and the accessibility of aminopropyl groups on SBA-15 silica materials prepared using different silane grafting approaches are compared. Three specific synthetic approaches are used: (1) the traditional grafting of 3-aminopropyltrimethoxysilane in toluene, (2) a protection/deprotection method using benzyl- or trityl-spacer groups, and (3) a cooperative dilution method where 3-aminopropyltrimethoxysilane and methyltrimethoxysilane are co-condensed on the silica surface as a silane mixture. The site-isolation and accessibility of the amine groups are probed via three methods: (a) evaluation of pyrene groups adsorbed onto the solids using fluorescence spectroscopy, (b) the reactions of chlorodimethyl(2,3,4,5-tetramethyl-2,4-cyclopentadien-1-yl)silane (Cp′Si(Me)2Cl) and chloro(cyclopenta-2,4-dienyl)dimethylsilane (CpSi(Me)2Cl) with the tethered amine sites, and (c) comparison of the reactivity of zirconium constrained-geometry-inspired catalysts (CGCs) prepared using the Cp′Si(Me)2-modified aminosilicas in the catalytic polymerization of ethylene to produce poly(ethylene). The spectroscopic probe of site-isolation suggests that both the protection/deprotection method and the cooperative dilution method yield similarly isolated amine sites that are markedly more isolated than sites on traditional aminosilica. In contrast, both reactivity probes show that the protection/deprotection strategy leads to more uniformly accessible amine groups. It is proposed that the reactivity probes are more sensitive tests for accessibility and site-isolation in this case.  相似文献   

15.
Members of the kinesin superfamily of molecular motors differ in several key structural domains, which probably allows these molecular motors to serve the different physiologies required of them. One of the most variable of these is a stem-loop motif referred to as L5. This loop is longest in the mitotic kinesin Eg5, and previous structural studies have shown that it can assume different conformations in different nucleotide states. However, enzymatic domains often consist of a mixture of conformations whose distribution shifts in response to substrate binding or product release, and this information is not available from the “static” images that structural studies provide. We have addressed this issue in the case of Eg5 by attaching a fluorescent probe to L5 and examining its fluorescence, using both steady state and time-resolved methods. This reveals that L5 assumes an equilibrium mixture of three orientations that differ in their local environment and segmental mobility. Combining these studies with transient state kinetics demonstrates that there is a major shift in this distribution during transitions that interconvert weak and strong microtubule binding states. Finally, in conjunction with previous cryo-EM reconstructions of Eg5·microtubule complexes, these fluorescence studies suggest a model in which L5 regulates both nucleotide and microtubule binding through a set of reversible interactions with helix α3. We propose that these features facilitate the production of sustained opposing force by Eg5, which underlies its role in supporting formation of a bipolar spindle in mitosis.  相似文献   

16.
Caspase activity is critical for both T-cell survival and death. However, little is known regarding what determines caspase activity in cycling T cells. Interleukin (IL)-2 and IL-15 confer very different susceptibilities to T-cell death. We therefore considered that IL-2 and IL-15 differentially regulate caspase activity to influence T-cell survival. We observed that IL-2-cultured primary murine effector T cells manifested elevated levels of caspase-3 activity compared with IL-15-cultured T cells. T cell receptor (TCR) restimulation further increased caspase activity and induced considerable cell death in IL-2-cultured T cells, but provoked only a minimal increase of caspase activity and cell death in IL-15-cultured T cells. IL-2 sensitization to cell death was caspase-3 mediated. Interestingly, increased active caspase-3 levels with IL-2 were independent of active initiator caspase-8 and caspase-9 that were similar with IL-2 and IL-15. Rather, caspase-3 activity was inhibited by posttranslational S-nitrosylation in IL-15-cultured T cells, but not in the presence of IL-2. This paralleled increased reactive nitrogen and oxygen species with IL-15 and reduced glycolysis. Taken together, these data suggest that the metabolic state conferred by IL-15 inhibits T-cell apoptosis in part by maintaining low levels of active caspase-3 via S-nitrosylation.  相似文献   

17.
Despite the high level of similarity in structural organisation of their motor domains and, consequently, in the mechanism of motility generation, kinesin-5 moves about 25-fold slower than conventional kinesin (kinesin-1). To elucidate the structural motifs contributing to velocity regulation, we expressed a set of Eg5- and KIF5A-based chimeric proteins with interchanged native neck linker and neck elements. Among them, the chimera consisting of the Eg5 catalytic core (residues 1-357) fused to the KIF5A linker and neck (residues 326-450) displayed increased velocity compared to the Eg5 control protein. This is the first evidence that the velocity of the slow-moving motor Eg5 can be elevated by insertion of neck linker and neck elements taken from a fast-moving motor. Whereas the complementary chimera composed of the KIF5A core (1-325) and the Eg5 linker and neck (358-513) was found to be immotile, insertion of the first half-KIF5A linker into this chimera restored motility. Our results indicate that the neck linker and the neck are involved not only in motility generation in general and in determination of movement direction, but also in velocity regulation.  相似文献   

18.
目的:使用microRNAs基因芯片及实时定量PCR法测定骨肉瘤组织中miR-15a-5p和miR-16-5p的相对表达含量,并与瘤旁组织对比,分析骨肉瘤细胞内miR-15a-5p和miR-16-5p的表达变化。方法:选取34例骨肉瘤组织蜡块样本,使用microRNAs基因芯片观察miR-15a-5p和miR-16-5p在骨肉瘤和瘤旁组织内的表达差异;实时定量PCR法测定骨肉瘤组织和瘤旁组织中miR-15a-5p和miR-16-5p的相对表达含量,并将两种结果对比分析。结果:microRNAs基因芯片结果显示,在骨肉瘤组织中,miR-15a-5p在肿瘤中的表达较瘤旁组织低1.79倍,miR-16-5p较瘤旁组织低1.62倍。实时定量PCR实验结果表明,miR-15a-5p和miR-16-5p表达较瘤旁组织降低,差异有统计学意义(P0.05)。经过统计学计算,miR-15a-5p在肿瘤中的表达较瘤旁组织低3.14倍,miR-16-5p较瘤旁组织低5.65倍。结论:在骨肉瘤中,miR-15a-5p和miR-16-5p表达含量降低,提示这两种microRNAs在骨肉瘤中可能做为抑癌因子存在。  相似文献   

19.
15-Norlubiminol and 15-norepilubiminol were obtained from Solanum aethiopicum as an inseparable 1:1 mixture in a relatively poor yield to that of the major phytoalexins, lubimin and epilubimin. Their structures were confirmed by chemical conversion starting from lubimin and epilubimin. Baeyer-Villiger oxidation of the protected lubimins with m-chloroperoxybenzoic acid provided the desired formates. Deoxygenation with triphenylphosphine selenide and subsequent methanolysis provided 15-norlubiminols, whose 1H-NMR spectra were respectively identical with that of the corresponding isomer in the natural 15-norlubiminol mixture. The antifungal activity of 15-norlubiminols would be weaker than that of lubimins.  相似文献   

20.
Eg5 is a plus end directed kinesin related motor protein (KRP) previously shown to be involved in the assembly and maintenance of the mitotic spindle. KRPs are molecular motors capable of generating forces upon microtubules (MTs) in dividing cells and driving structural rearrangements necessary in the developing spindle. In vitro experiments demonstrate that loss of Eg5 results in cell cycle arrest and defective centrosome separation resulting in the development of monopolar spindles. Here we describe mice with a genetrap insertion in Eg5. Heterozygous mutant mice appear phenotypically normal. In contrast, embryos homozygous for the Eg5 null allele recovered at embryonic days 2.5-3.5 display signs of a proliferation defect as reduced cell numbers and failure of compaction and progression to the blastocyst stage was observed. These data, in conjunction with previous in vitro data, suggest that loss of Eg5 results in abnormal spindle structure, cell cycle arrest and thereby reduced cell proliferation of early cleavage pre-implantation embryos. These observations further support the conclusion that Eg5 is essential for cell division early in mouse development, and that maternal contribution may sustain the embryo through the maternal to zygotic transition at which point supplies of functional Eg5 are exhausted, preventing further cell cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号