首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parasitism of Heliothis virescens larvae by the endoparasitoid Cardiochiles nigriceps resulted in a reduction in the amount of food consumed by parasitized larvae. This effect was attributed in part to inoculation of material from the accessory reproductive glands of the female at the time of oviposition. Injection of solutions of either the calyx fluid or the poison gland (0·04 gl/larva) into non-parasitized larvae resulted in a reduction in the amount of food consumed by these larvae. A 1 : 1 mixture of these glands (total of 0·04 gl/larva) appeared to be more active than either of the two glands alone. Both of these glands were essential for total activity since larvae parasitized by females lacking the poison gland (poi gl? female) continued to eat and consumed more food than did those parasitized by a normal female.Parasitism resulted in a slower rate of crop-emptying. This effect was, however, shown to be a result of the quantity of food consumed. Inhibition of gut movement was therefore not considered the cause for the reduction in the amount of food consumed by parasitized larvae.The effect of parasitism on the ability of H. virescens larvae to utilize ingested food was partially reduced by parasitism. Larvae parasitized by a normal female were less efficient than non-parasitized larvae in digesting food. Those larvae parasitized by a poi gl? female did not convert as much of their food to body substance as did non-parasitized larvae. Injection of solutions of accessory glands into non-parasitized larvae did not cause these effects.  相似文献   

2.
Parasitism of Heliothis virescens by Cardiochiles nigriceps reduced the growth of the host. Both the poison gland and the calyx of the female parasitoid were important in reducing the growth of the parasitized host. Injections of poison gland contents (0·04 gl/larva) or calyx fluid (0·04 gl/larva) into H. virescens larvae did not affect their growth. However, a mixture of the two glands (1:1) at this low dosage significantly reduced the weight gained by Heliothis larvae.  相似文献   

3.
Larval development of the parasitoid Cardiochiles nigriceps Viereck occurs in the last instar larva of its host, Heliothis virescens (F.). This allows the parasitoid to exploit the nutritional increase in the biosynthetic activity occurring in the host in preparation for metamorphosis. To understand the biochemical basis of this host parasitoid developmental synchrony, we undertook host ligation studies and analyzed host hemolymph for proteins and glycerol esters. Parasitization affected the biochemical profile of the host. The hemolymph protein concentration of parasitized last instar H. virescens larvae increased through time, whereas unparasitized (control) larvae were characterized by a decrease in the protein titer when they reached the prepupal stage. The effect of parasitism on glyceride titers of host hemolymph was not as pronounced as the effect on proteins. Ligation conducted on 5th instar hosts, which were parasitized as 4th instars, affected parasitoid development in a time-dependent way. The percentage of successfully developing C. nigriceps larvae increased with the increase of the time interval between parasitization and ligation. Ligation performed before day 2 of the 5th larval instar of H. virescens completely inhibited parasitoid development. Ligations that disrupted parasitoid developmentwere associated with a low host hernolymph protein concentration. Parasitoid development was successful when hernolymph protein titer was high, as occurred when ligations were performed after day 3 of the 5th host instar in both control and parasitized larvae. Ligations in both situations resulted in a slight increase in glyceride titers. The results suggest that host proteins and/or some factor(s) associated with them may play a role in parasitoid growth and development. © 1993 Wiley-Liss, Inc.  相似文献   

4.
Habitat conservation for threatened temperate insect species is often guided by one of two paradigms: a metapopulation approach focusing on patch area, isolation and number; or a habitat approach focusing on maintaining high quality habitat for the focal species. Recent research has identified the additive and interacting importance of both approaches for maintaining populations of threatened butterflies. For specialised host-parasitoid interactions, understanding the consequences of habitat characteristics for the interacting species is important, because (1) specialised parasitoids are particularly vulnerable to the consequences of fragmentation, and (2) altered interaction frequencies resulting from changes to habitat management or the spatial configuration of habitat are likely to have consequences for host dynamics. The spatial ecology of Cotesia bignellii, a specialist parasitoid of the threatened butterfly Euphydryas aurinia, was investigated at two spatial scales: within habitat patches (at the scale of individual aggregations of larvae, or ‘webs’) and among habitat patches (the scale of local populations). Parasitism rates were investigated in relation to larval web size, vegetation sward height and host density. Within patches, the probability of a larval webs being parasitized increased significantly with increasing number of larvae in the web, and parasitism rates increased significantly with increasing web isolation. The proportion of webs parasitized was significantly and negatively correlated with cluster density. Among habitat patches the proportion of parasitized webs decreased as cluster density increased. Clusters with a high proportion of larval webs parasitized tended to have lower parasitism rates per larval web. These results support the call for relatively large and continuous habitat patches to maintain stable parasitoid and host populations. Conservation efforts directed towards maintenance of high host plant density could allow E. aurinia to reduce parasitism risk, while providing C. bignellii with sufficient larval webs to allow population persistence.  相似文献   

5.
6.
Many aphid species possess wingless (apterous) and winged (alate) stages, both of which can harbor parasitoids at various developmental stages. Alates can either be parasitized directly or can bear parasitoids eggs or larvae resulting from prior parasitism of alatoid nymphs. Winged aphids bearing parasitoid eggs or young larvae eventually still engage in long-distance flights, thereby facilitating parasitoid dispersal. This may have a number of important implications for biological control of aphids by parasitoids. In this study, we determined the effect of parasitism by Aphelinus varipes (Hymenoptera: Aphelinidae) on wing development and flight of the soybean aphid, Aphis glycines (Hemiptera: Aphididae). We also quantified the influence of aphid flight distance on subsequent A. varipes development. Parasitism by A. varipes was allowed at different A. glycines developmental stages (i.e., alatoid 3rd and 4th-instar nymphs, alates) and subsequent aphid flight was measured using a computer-monitored flight mill. Only 35% of aphids parasitized as L3 alatoid nymphs produced normal winged adults compared to 100% of L4 alatoids. Flight performance of aphids parasitized as 4th-instar alatoid nymphs 24 or 48 h prior to testing was similar to that of un-parasitized alates of identical age, but declined sharply for alates that had been parasitized as 4th-instar alatoid nymphs 72 and 96 h prior to testing. Flight performance of aphids parasitized as alate adults for 24 h was not significantly different from un-parasitized alates of comparable ages. Flight distance did not affect parasitoid larval or pupal development times, or the percent mummification of parasitized aphids. Our results have implications for natural biological control of A. glycines in Asia and classical biological control of the soybean aphid in North America.  相似文献   

7.
Growth of Heliothis virescens was stopped following parasitism by the ichneumonid parasitoid, Campoletis sonorensis. The source of the active factor was found to be the lateral oviducts of the female parasitoid. The active factor appears to be a protein.  相似文献   

8.
Sisterson MS  Averill AL 《Oecologia》2003,135(3):362-371
Parasitism influences many aspects of a host's behavior and physiology. Therefore, parasitism is also likely to influence the competitive ability of the host. Field populations of phytophagous insects are often a mix of parasitized and unparasitized conspecifics and the inclusion of parasitism in their competitive dynamics may alter expected outcomes. We investigated the influence of parasitism by the hymenopteran parasitoid Phanerotoma franklini Gahan on the competitive interactions among larvae of its host Acrobasis vaccinii Riley. We found that parasitized larvae were poorer competitors and required less food to complete development compared to unparasitized larvae. To examine the influence of parasitism on the competitive dynamics of this system, we constructed an individual-based model parameterized with our laboratory data. The model examined the role of resource availability and parasitism rate on larval survival. The model suggests that parasitized larvae (and, hence parasitoids) experience higher levels of mortality from competition than unparasitized larvae. Further, the model also suggests that the decreased consumption of resources by parasitized larvae results in a decline in the occurrence of competition as the parasitism rate increases. We suggest that these observations may be general to many parasitoid-host systems.  相似文献   

9.
P. Kumar  C. R. Ballal 《BioControl》1992,37(2):197-203
The effect of parasitism byHyposoter didymator (Thunb.) [Hym.: Ichneumonidae] on food consumption and utilization bySpodoptera litura (Fb.) [Lep.: Noctuidae] was studied for seven days, during which the parasitoid completed its larval development. Food consumption, weight gained and faeces produced were significantly less in parasitized larvae than in unparasitized larvae after the 4th day following parasitization. Approximate digestibility was higher in parasitized larvae after the 2nd day following parasitization. Efficiency of conversion of ingested and digested food into body weight was greater in unparasitized larvae after the 2nd day of parasitization. There seems to be a definite immediate advantage to the crop on releasing the parasitoid due to the reduced consumption of food. Contribution No. 46004 of Biological Control Centre (NCIPM), Bangalore 560 024.  相似文献   

10.
Trybliographa rapae (Westwood) is an important parasitoid of Delia radicum (L.). Parasitism of D. radicum larvae by T. rapae in relation to host density on canola (oilseed rape) and cauliflower roots was examined at 10 field sites in Germany and Switzerland. For roots with host larvae, the proportion of roots with one or more parasitized hosts increased with increasing host density. However, for these infested roots, the parasitism of individual larvae was not consistently related to host density. When considering only roots on which there were parasitized larvae and the opportunity for multiple attacks, the proportion of larvae that were parasitized decreased with increasing host density in the field locations, and in a cage study under controlled conditions. A model of patch‐finding and number of attacks by female parasitoids suggests that patch‐finding is density‐dependent, but that low attack rate and interference effects limit numbers of attacks to three or less per visit to a host patch; the reduced number of attacks per visit leads to the inverse relationship of larval parasitism with host density in the host patches visited. The interplay of the density‐dependent and inversely density‐dependent processes appears to be responsible for the inconsistency of density dependence of overall larval parasitism in this and previous studies. In the laboratory, adult female T. rapae parasitized hosts at ≤4 cm deep in soil, but not at 6 cm deep. From the depth distribution of larval feeding sites in the field, we infer that between 4% and 20% of Delia larvae may be in a physical refuge from T. rapae parasitism, which may have a stabilizing influence on the host–parasitoid interaction.  相似文献   

11.
The solitary parasitoid Microplitis tuberculifer (Wesmael) is an important biological control agent of various lepidopteran pests in Asia. We examined the preference of M. tuberculifer for different instars of its common host, Mythimna separata (Walker), host instar effects on parasitoid development, and the consequences of parasitism in different stages for growth and consumption of host larvae. The wasp successfully parasitized the first four larval instars of M. separata, but not the fifth, which appeared to be behaviorally resistant. First and second instars were parasitized at higher rates compared to thirds and fourths in no-choice situations, ostensibly due to longer handling times for the latter, but second instars were most preferred in a choice test that presented all stages simultaneously. Although later instar hosts yielded heavier cocoons, the fastest parasitoid development was obtained in second instars. Lower sex ratios were obtained from first instars as females appeared to lay a smaller proportion of fertilized eggs in small hosts. Both weight gain and food consumption of parasitized larvae were reduced significantly within 24 h of parasitism, regardless of the stage parasitized, and final body weights were less than 10% those of unparasitized larvae. Thus, M. tuberculifer has good potential as a biological control agent of M. separata, successfully parasitizing the first four larval instars and dramatically reducing plant consumption by the host in all cases.  相似文献   

12.
Pupal parasitism of the gypsy moth,Lymantria dispar (L.), was monitored in 15 study plots in New Jersey from 1978 to 1988. The predominant parasitoid was a chalcidid wasp,Brachymeria intermedia (Nees), which was found in only six plots. Parasitism was generally observed in the year of or preceding the peak numbers of gypsy moth egg masses. Parasitism exceeded 4% in only one plot. Percentage parasitism was correlated significantly with numbers of egg masses per hectare in the current season and with numbers of pupae per plot in the previous season, suggesting delayed density dependence. A multiple regression analysis found percentage parasitism to be correlated significantly with percentage infection by nuclear polyhedrosis virus, density of male host pupae, and mean minimum temperature in August and March. A canonical discriminant analysis carried out to distinguish study plots with and without the parasitoid was significant. Plots withB. intermedia had relatively higher host populations and defoliation.  相似文献   

13.
Toxoneuron nigriceps (Viereck) (Hymenoptera, Braconidae) and Campoletis sonorensis (Cameron) (Hymenoptera, Ichneumonidae) are solitary endoparasitoids of the tobacco budworm, Heliothis virescens (Fabricius) (Lepidoptera, Noctuidae). They provide biological control of H. virescens populations in Southeastern US agricultural production systems. Field and greenhouse experiments conducted from 2011–2014 compared parasitism rates of parasitoids that developed inside H. virescens larvae fed on tobacco plants treated with and without imidacloprid. The parasitoids in our study did not have a similar response. Toxoneuron nigriceps had reduced parasitism rates, but parasitism rates of C. sonorensis were unaffected. Preliminary data indicate that adult female lifespans of T. nigriceps are also reduced. ELISA was used to measure concentrations of neonicotinoids, imidacloprid and imidacloprid metabolites in H. virescens larvae that fed on imidacloprid-treated plants and in the parasitoids that fed on these larvae. Concentrations were detectable in the whole bodies of parasitized H. virescens larvae, T. nigriceps larvae and T. nigriceps adults, but not in C. sonorensis larvae and adults. These findings suggest that there are effects of imidacloprid on multiple trophic levels, and that insecticide use may differentially affect natural enemies with similar feeding niches.  相似文献   

14.
Expression of Campoletis sonorensis virus (CsV) in parasitized Heliothis virescens larvae was investigated by Northern blot analysis of poly(A)+ mRNAs isolated from H. virescens larvae at various times after parasitization by C. sonorensis. At least 12 CsV mRNAs were detected in parasitized H. virescens larvae. Injection of nonparasitized H. virescens larvae with purified CsV resulted in a pattern of viral mRNAs similar to that observed in naturally parasitized larvae. With CsV DNA restriction fragments which contained expressed sequences, individual CsV mRNAs were mapped to the superhelical DNAs of the viral genome. Two gene-specific probes, which consisted of cloned S1 nuclease-protected restriction fragments, each hybridized to several CsV superhelical DNAs, suggesting that some CsV genes may be shared on several superhelical DNAs. Cloned restriction fragments containing sequences which flank the expressed sequences also hybridized to numerous CsV superhelical DNAs. Some CsV proteins were identified by in vitro translation of hybrid-selected CsV mRNAs.  相似文献   

15.
Interest in sustainable farming methods that rely on alternatives to conventional synthetic fertilizers and pesticides is increasing. Sustainable farming methods often utilize natural populations of predatory and parasitic species to control populations of herbivores, which may be potential pest species. We investigated the effects of several types of fertilizer, including those typical of sustainable and conventional farming systems, on the interaction between a herbivore and parasitoid. The effects of fertilizer type on percentage parasitism, parasitoid performance, parasitoid attack behaviour and responses to plant volatiles were examined using a model Brassica system, consisting of Brassica oleracea var capitata, Plutella xylostella (Lepidoptera) larvae and Cotesia vestalis (parasitoid). Percentage parasitism was greatest for P. xylostella larvae feeding on plants that had received either a synthetic ammonium nitrate fertilizer or were unfertilized, in comparison to those receiving a composite fertilizer containing hoof and horn. Parasitism was intermediate on plants fertilized with an organically produced animal manure. Male parasitoid tibia length showed the same pattern as percentage parasitism, an indication that offspring performance was maximized on the treatments preferred by female parasitoids for oviposition. Percentage parasitism and parasitoid size were not correlated with foliar nitrogen concentration. The parasitoids did not discriminate between hosts feeding on plants in the four fertilizer treatments in parasitoid behaviour assays, but showed a preference for unfertilized plants in olfactometer experiments. The percentage parasitism and tibia length results provide support for the preference–performance hypothesis.  相似文献   

16.
Changes in haemolymph proteins of the fall armyworm, Spodoptera frugiperda, associated with parasitism by the parasitoid Cotesia (= Apanteles) marginiventris were monitored by sodium dodecyl sulphate polyacrylamide gel electrophoresis. As early as hour 4 after parasitization treatment, several electrophoretically slow-migrating, high-molecular-weight proteins were detected in the host's haemolymph. These proteins were detected earlier in haemolymph from parasitized larvae than in haemolymph from control larvae, and their concentrations were higher in heavily parasitized host larvae (≥ 3 eggs/host) than in lightly parasitized larvae (1 egg/host). Additionally, unique proteins that migrated electrophoretically with bovine serum albumin appeared in the haemolymph of parasitized larvae at hour 8 after parasitization treatment and were evident in haemolymph collected through to hour 64.  相似文献   

17.
In 16-ha plots aerially sprayed with single and double applications of Bacillus thuringiensis, percentage parasitism by A. melanoscelus and the number of A. melanoscelus cocoons under burlap strips were higher than in comparable untreated plots in the same area. Strong correlations occurred between percentage parasitism and caterpillar size, with plots having the smallest caterpillars being the most heavily parasitized. However, these parameters were also negatively correlated with number of caterpillars per plot. The increased numbers of parasitoid progeny, i.e., cocoons, found in treated plots showed that corresponding increases in percentage parasitism could not be due simply to improved parasitoid: host ratios. Evidence strongly suggests that the retarding effect of B. thuringiensis infection kept gypsy moth larvae small enough in the treated plots to permit A. melanoscelus females to parasitize relatively large numbers of caterpillars.  相似文献   

18.
Parasitization of a braconid wasp, Apanteles glomeratus, of larvae of a common cabbage butterfly, Pieris rapae crucivora, caused changes in differential haemocyte count (DHC), total haemocyte count (THC), and encapsulative capacity against dead eggs of Apanteles in the fourth and fifth instar host larvae.However, no correlation could be found between the number of Apanteles eggs deposited and THC of the middle fourth instar host larvae or between the number of parasitoid larvae and specific gravity of the haemolymph from the late fifth instar host larvae.From the changes in DHC and in THC of both non-parasitized and parasitized Pieris larvae, an increase in the number of plasmatocytes of non-parasitized Pieris larvae in the early fourth instar period was supposed to be due to transformation of prohaemocytes into plasmatocytes, and a low population of plasmatocytes of parasitized larvae in the comparable period was assumed to be due to a suppression of transformation of prohaemocytes by some factor released from the parasitoid eggs.Failure of the parasitized fourth instar Pieris larvae to encapsulate injected dead eggs of Apanteles indicated that the parasitoid embryos were, in some way, actively inhibiting the encapsulation reactions of the host.The increase in THC of the parasitized fifth instar larvae could not be ascribed to a decrease in the volume of host haemolymph. Rather it could be interpreted by a suppression of adhesive capacity of haemocytes in the host haemocoel to tissue surfaces.Reduced encapsulative capacity of the parasitized fifth instar larvae might be attributed either to a depression of the adhesive activity of plasmatocytes resulting from a depletion of energy source for haemocytes in the host haemolymph by parasitization, or from an active suppression of adhesiveness of the plasmatocytes by secretions from ‘giant cells’ (teratocytes) originated from the parasitoid.  相似文献   

19.
In laboratory studies the effect of parasitism by the egg-larval endoparasitoidChelonus insularis Cresson on the resulting larvae of 2 host species,Heliothis virescens (F.) andSpodoptera ornithogalli Guénée) were determined by comparing daily measurements of larval weights. Growth of parasitized larvae of both host species was slower than growth of unparasitized larvae. Injections of fluids from the female parasitoid's calyx or poison gland intoH. virescens eggs retarded subsequent larval growth. However, a combination of fluids from these 2 organs produced the most significant reduction in the host larval growth rate. The growth reducing factor(s) was also effective when injected into 5-day-old host larvae.  相似文献   

20.
Zoophthora radicans (Zygomycetes: Entomophthorales), Diadegma semiclausum (Hymenoptera: Ichneumonidae), and Cotesia plutellae (Hymenoptera: Braconidae) are all natural enemies of the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Adult C. plutellae are not susceptible to Z. radicans infection but the pathogen can infect and kill adult D. semiclausum. Infection of adult D. semiclausum prior to exposure to P. xylostella host larvae significantly reduced the number of parasitoid cocoons subsequently developing from the host larvae. Although Z. radicans infection of P. xylostella larvae prior to parasitism by D. semiclausum or C. plutellae always resulted in the death of the immature parasitoids, neither species discriminated between healthy and Z. radicans-infected host larvae in an oviposition choice experiment. However, host larvae recently killed by Z. radicans were always rejected by D. semiclausum but sometimes accepted by C. plutellae. At 20 degrees C, egg to pupa development took 6.7 and 7.8 days for D. semiclausum and C. plutellae, respectively. C. plutellae parasitism significantly increased host instar duration but D. semiclausum parasitism did not. Cadavers of P. xylostella larvae parasitized 1 day prior to fungal infection showed no reduction in Z. radicans conidia yield. However, cadavers of larvae parasitized 3 days prior to fungal infection demonstrated a marked decrease in Z. radicans conidia yield. Z. radicans infection of P. xylostella larvae < or = 4 days after parasitism resulted in 100% parasitoid mortality; thereafter, the reduction in parasitoid cocoon yield decreased as the time between parasitism and initiation of fungal infection increased. The extended duration of the host larval stage induced by C. plutellae parasitism increased the availability of the parasitoid to the pathogen. Estimates of interspecific competition indicated a similar pattern for the interaction between Z. radicans and each species of parasitoid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号