首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photosynthetic organisms respond to strong illumination by activating several photoprotection mechanisms. One of them, non-photochemical quenching (NPQ), consists in the thermal dissipation of energy absorbed in excess. In vascular plants NPQ relies on the activity of PSBS, whereas in the green algae Chlamydomonas reinhardtii it requires a different protein, LHCSR. The moss Physcomitrella patens is the only known organism in which both proteins are present and active in triggering NPQ, making this organism particularly interesting for the characterization of this protection mechanism. We analysed the acclimation of Physcomitrella to high light and low temperature, finding that these conditions induce an increase in NPQ correlated to overexpression of both PSBS and LHCSR. Mutants depleted of PSBS and/or LHCSR showed that modulation of their accumulation indeed determines NPQ amplitude. All mutants with impaired NPQ also showed enhanced photosensitivity when exposed to high light or low temperature, indicating that in this moss the fast-responding NPQ mechanism is also involved in long-term acclimation.  相似文献   

2.
Non‐photochemical quenching (NPQ) of the light energy absorbed is one of the main photoprotective mechanisms evolved by oxygenic photosynthetic organisms to avoid photodamage, at a cost of reduced photosynthetic efficiency. Tuning of NPQ has been reported as a promising biotechnological strategy to increase productivity in both higher plants and unicellular microalgae. Engineering of NPQ induction requires the comprehension of its molecular mechanism(s), strongly debated in the last three decades with several different models proposed. In this work, the molecular details of NPQ induction was investigated at intramolecular level by in vitro and in vitro site‐specific mutagenesis on chlorophyll binding sites of the Light‐Harvesting Complex Stress‐Related 3 (LHCSR3) protein, the pigment binding complexes identified as the quencher during NPQ induction in the model organism for green algae Chlamydomonas reinhardtii. The results obtained demonstrate a correlation between the quenching activity of LHCSR3 variants in vitro and the NPQ phenotypes observed in vivo. In particular, multiple quenching sites in LHCSR3 cooperatively dissipating the excitation energy were revealed with a peculiar role of Chl 613, a chromophore located a close distance to carotenoid binding site L1.  相似文献   

3.
Nonphotochemical quenching (NPQ) dissipates excess energy to protect the photosynthetic apparatus from excess light. The moss Physcomitrella patens exhibits strong NPQ by both algal-type light-harvesting complex stress-related (LHCSR)–dependent and plant-type S subunit of Photosystem II (PSBS)-dependent mechanisms. In this work, we studied the dependence of NPQ reactions on zeaxanthin, which is synthesized under light stress by violaxanthin deepoxidase (VDE) from preexisting violaxanthin. We produced vde knockout (KO) plants and showed they underwent a dramatic reduction in thermal dissipation ability and enhanced photoinhibition in excess light conditions. Multiple mutants (vde lhcsr KO and vde psbs KO) showed that zeaxanthin had a major influence on LHCSR-dependent NPQ, in contrast with previous reports in Chlamydomonas reinhardtii. The PSBS-dependent component of quenching was less dependent on zeaxanthin, despite the near-complete violaxanthin to zeaxanthin exchange in LHC proteins. Consistent with this, we provide biochemical evidence that native LHCSR protein binds zeaxanthin upon excess light stress. These findings suggest that zeaxanthin played an important role in the adaptation of modern plants to the enhanced levels of oxygen and excess light intensity of land environments.  相似文献   

4.
Two LHC-like proteins, Photosystem II Subunit S (PSBS) and Light-Harvesting Complex Stress-Related (LHCSR), are essential for triggering excess energy dissipation in chloroplasts of vascular plants and green algae, respectively. The mechanism of quenching was studied in Physcomitrella patens, an early divergent streptophyta (including green algae and land plants) in which both proteins are active. PSBS was localized in grana together with photosystem II (PSII), but LHCSR was located mainly in stroma-exposed membranes together with photosystem I (PSI), and its distribution did not change upon high-light treatment. The quenched conformation can be preserved by rapidly freezing the high-light-treated tissues in liquid nitrogen. When using green fluorescent protein as an internal standard, 77K fluorescence emission spectra on isolated chloroplasts allowed for independent assessment of PSI and PSII fluorescence yield. Results showed that both photosystems underwent quenching upon high-light treatment in the wild type in contrast to mutants depleted of LHCSR, which lacked PSI quenching. Due to the contribution of LHCII, P. patens had a PSI antenna size twice as large with respect to higher plants. Thus, LHCII, which is highly abundant in stroma membranes, appears to be the target of quenching by LHCSR.  相似文献   

5.
《BBA》2020,1861(5-6):148183
Photosynthetic organisms are frequently exposed to excess light conditions and hence to photo-oxidative stress. To counteract photo-oxidative damage, land plants and most algae make use of non- photochemical quenching (NPQ) of excess light energy, in particular the rapidly inducible and relaxing qE-mechanism. In vascular plants, the constitutively active PsbS protein is the key regulator of qE. In the green algae C. reinhardtii, however, qE activation is only possible after initial high-light (HL) acclimation for several hours and requires the synthesis of LHCSR proteins which act as qE regulators. The precise function of PsbS, which is transiently expressed during HL acclimation in C. reinhardtii, is still unclear. Here, we investigated the impact of different PsbS amounts on HL acclimation characteristics of C. reinhardtii cells. We demonstrate that lower PsbS amounts negatively affect HL acclimation at different levels, including NPQ capacity, electron transport characteristics, antenna organization and morphological changes, resulting in an overall increased HL sensitivity and lower vitality of cells. Contrarily, higher PsbS amounts do not result in a higher NPQ capacity, but nevertheless provide higher fitness and tolerance towards HL stress. Strikingly, constitutively expressed PsbS protein was found to be degraded during HL acclimation. We propose that PsbS is transiently required during HL acclimation for the reorganization of thylakoid membranes and/or antenna proteins along with the activation of NPQ and adjustment of electron transfer characteristics, and that degradation of PsbS is essential in the fully HL acclimated state.  相似文献   

6.
Light harvesting complex stress-related 3 (LHCSR3) is the protein essential for photoprotective excess energy dissipation (non-photochemical quenching, NPQ) in the model green alga Chlamydomonas reinhardtii. Activation of NPQ requires low pH in the thylakoid lumen, which is induced in excess light conditions and sensed by lumen-exposed acidic residues. In this work we have used site-specific mutagenesis in vivo and in vitro for identification of the residues in LHCSR3 that are responsible for sensing lumen pH. Lumen-exposed protonatable residues, aspartate and glutamate, were mutated to asparagine and glutamine, respectively. By expression in a mutant lacking all LHCSR isoforms, residues Asp117, Glu221, and Glu224 were shown to be essential for LHCSR3-dependent NPQ induction in C. reinhardtii. Analysis of recombinant proteins carrying the same mutations refolded in vitro with pigments showed that the capacity of responding to low pH by decreasing the fluorescence lifetime, present in the wild-type protein, was lost. Consistent with a role in pH sensing, the mutations led to a substantial reduction in binding the NPQ inhibitor dicyclohexylcarbodiimide.  相似文献   

7.
Abstract: Light‐dependent NADPH‐protochlorophyllide oxidoreductase (LPOR) is a nuclear‐encoded chloroplast protein in green algae and higher plants which catalyzes the light‐dependent reduction of protochlorophyllide to chlorophyllide. Light‐dependent chlorophyll biosynthesis occurs in all oxygenic photosynthetic organisms. With the exception of angiosperms, this pathway coexists with a separate light‐independent chlorophyll biosynthetic pathway, which is catalyzed by light‐independent protochlorophyllide reductase (DPOR) in the dark. In contrast, the light‐dependent function of chlorophyll biosynthesis is absent from anoxygenic photosynthetic bacteria. Consequently, the question is whether cyanobacteria are the ancestors of all organisms that conduct light‐dependent chlorophyll biosynthesis. If so, how did photosynthetic eukaryotes acquire the homologous genes of LPOR in their nuclear genomes? The large number of complete genome sequences now available allow us to detect the evolutionary history of LPOR genes by conducting a genome‐wide sequence comparison and phylogenetic analysis. Here, we show the results of a detailed phylogenetic analysis of LPOR and other functionally related enzymes in the short chain dehydrogenase/reductase (SDR) family. We propose that the LPOR gene originated in the cyanobacterial genome before the divergence of eukaryotic photosynthetic organisms. We postulated that the photosynthetic eukaryotes obtained their LPOR homologues through endosymbiotic gene transfer.  相似文献   

8.
9.
Light is essential for photosynthesis but excess light is hazardous as it may lead to the formation of reactive oxygen species. Photosynthetic organisms struggle to optimize light utilization and photosynthesis while minimizing photo-oxidative damage. Hereby light to heat dissipation via specialized proteins is a potent mechanism to acclimate toward excess light. In the green alga Chlamydomonas reinhardtii the expression of an ancient light-harvesting protein LHCSR3 enables cells to dissipate harmful excess energy. Herein we summarize newest insights into the function of LHCSR3 from C. reinhardtii.  相似文献   

10.
Photosynthesis uses light as a source of energy but its excess can result in production of harmful oxygen radicals. To avoid any resulting damage, phototrophic organisms can employ a process known as non-photochemical quenching (NPQ), where excess light energy is safely dissipated as heat. The mechanism(s) of NPQ vary among different phototrophs. Here, we describe a new type of NPQ in the organism Rhodomonas salina, an alga belonging to the cryptophytes, part of the chromalveolate supergroup. Cryptophytes are exceptional among photosynthetic chromalveolates as they use both chlorophyll a/c proteins and phycobiliproteins for light harvesting. All our data demonstrates that NPQ in cryptophytes differs significantly from other chromalveolates - e.g. diatoms and it is also unique in comparison to NPQ in green algae and in higher plants: (1) there is no light induced xanthophyll cycle; (2) NPQ resembles the fast and flexible energetic quenching (qE) of higher plants, including its fast recovery; (3) a direct antennae protonation is involved in NPQ, similar to that found in higher plants. Further, fluorescence spectroscopy and biochemical characterization of isolated photosynthetic complexes suggest that NPQ in R. salina occurs in the chlorophyll a/c antennae but not in phycobiliproteins. All these results demonstrate that NPQ in cryptophytes represents a novel class of effective and flexible non-photochemical quenching.  相似文献   

11.
Light-dependent conversion of violaxanthin to zeaxanthin, the so-called xanthophyll cycle, was shown to serve as a major, short-term light acclimation mechanism in higher plants. The role of xanthophylls in thermal dissipation of surplus excitation energy was deduced from the linear relationship between zeaxanthin formation and the magnitude of non-photochemical quenching. Unlike in higher plants, the role of the xanthophyll cycle in green algae (Chlorophyta) is ambiguous, since its contribution to energy dissipation can significantly vary among species. Here, we have studied the role of the xanthophyll cycle in the adaptation of several species of green algae (Chlorella, Scenedesmus, Haematococcus, Chlorococcum, Spongiochloris) to high irradiance. The xanthophyll cycle has been found functional in all tested organisms; however its contribution to non-photochemical quenching is not as significant as in higher plants. This conclusion is supported by three facts: (i) in green algae the content of zeaxanthin normalized per chlorophyll was significantly lower than that reported from higher plants, (ii) antheraxanthin + zeaxanthin content displayed different diel kinetics from NPQ and (iii) in green algae there was no such linear relationship between NPQ and Ax + Zx, as found in higher plants. We assume that microalgae rely on other dissipation mechanism(s), which operate along with xanthophyll cycle-dependent quenching.  相似文献   

12.

Light is essential for all photosynthetic organisms while an excess of it can lead to damage mainly the photosystems of the thylakoid membrane. In this study, we have grown Chlamydomonas reinhardtii cells in different intensities of high light to understand the photosynthetic process with reference to thylakoid membrane organization during its acclimation process. We observed, the cells acclimatized to long-term response to high light intensities of 500 and 1000 µmol m?2 s?1 with faster growth and more biomass production when compared to cells at 50 µmol m?2 s?1 light intensity. The ratio of Chl a/b was marginally decreased from the mid-log phase of growth at the high light intensity. Increased level of zeaxanthin and LHCSR3 expression was also found which is known to play a key role in non-photochemical quenching (NPQ) mechanism for photoprotection. Changes in photosynthetic parameters were observed such as increased levels of NPQ, marginal change in electron transport rate, and many other changes which demonstrate that cells were acclimatized to high light which is an adaptive mechanism. Surprisingly, PSII core protein contents have marginally reduced when compared to peripherally arranged LHCII in high light-grown cells. Further, we also observed alterations in stromal subunits of PSI and low levels of PsaG, probably due to disruption of PSI assembly and also its association with LHCI. During the process of acclimation, changes in thylakoid organization occurred in high light intensities with reduction of PSII supercomplex formation. This change may be attributed to alteration of protein–pigment complexes which are in agreement with circular dichoism spectra of high light-acclimatized cells, where decrease in the magnitude of psi-type bands indicates changes in ordered arrays of PSII–LHCII supercomplexes. These results specify that acclimation to high light stress through NPQ mechanism by expression of LHCSR3 and also observed changes in thylakoid protein profile/supercomplex formation lead to low photochemical yield and more biomass production in high light condition.

  相似文献   

13.
Salt stress is a major abiotic stress factor that can induce many adverse effects on photosynthetic organisms. Plants and algae have developed several mechanisms that help them respond to adverse environments. Non‐photochemical quenching (NPQ) is one of these mechanisms. The thalli of algae in the intertidal zone that are attached to rocks can be subjected to salt stress for a short period of time due to the rise and fall of the tide. Ulva prolifera causes green tides and can form floating mats when green tides occur and the upper part of the thalli is subjected to high salt stress for a long period of time. In this study, we compared the Ulva prolifera photosynthetic activities and NPQ kinetics when it is subjected to different salinities over various periods of time. Thalli exposed to a salinity of 90 for 4 d showed enhanced NPQ, and photosynthetic activities decreased from 60 min after exposure up to 4 d. This indicated that the induction of NPQ in Ulva prolifera under salt stress was closely related to the stressing extent and stressing time. The enhanced NPQ in the treated samples exposed for 4 d may explain why the upper layer of the floating mats formed by Ulva prolifera thalli were able to survive in the harsh environment. Further inhibitor experiments demonstrated that the enhanced NPQ was xanthophyll cycle and transthylakoid proton gradient‐dependent. However, photosystem II subunit S and light‐harvesting complex stress‐related protein didn't over accumulate and may not be responsible for the enhanced NPQ.  相似文献   

14.
Streptophyte algae and the origin of embryophytes   总被引:1,自引:0,他引:1  

Background

Land plants (embryophytes) evolved from streptophyte green algae, a small group of freshwater algae ranging from scaly, unicellular flagellates (Mesostigma) to complex, filamentous thalli with branching, cell differentiation and apical growth (Charales). Streptophyte algae and embryophytes form the division Streptophyta, whereas the remaining green algae are classified as Chlorophyta. The Charales (stoneworts) are often considered to be sister to land plants, suggesting progressive evolution towards cellular complexity within streptophyte green algae. Many cellular (e.g. phragmoplast, plasmodesmata, hexameric cellulose synthase, structure of flagellated cells, oogamous sexual reproduction with zygote retention) and physiological characters (e.g. type of photorespiration, phytochrome system) originated within streptophyte algae.

Recent Progress

Phylogenetic studies have demonstrated that Mesostigma (flagellate) and Chlorokybus (sarcinoid) form the earliest divergence within streptophytes, as sister to all other Streptophyta including embryophytes. The question whether Charales, Coleochaetales or Zygnematales are the sister to embryophytes is still (or, again) hotly debated. Projects to study genome evolution within streptophytes including protein families and polyadenylation signals have been initiated. In agreement with morphological and physiological features, many molecular traits believed to be specific for embryophytes have been shown to predate the Chlorophyta/Streptophyta split, or to have originated within streptophyte algae. Molecular phylogenies and the fossil record allow a detailed reconstruction of the early evolutionary events that led to the origin of true land plants, and shaped the current diversity and ecology of streptophyte green algae and their embryophyte descendants.

Conclusions

The Streptophyta/Chlorophyta divergence correlates with a remarkably conservative preference for freshwater/marine habitats, and the early freshwater adaptation of streptophyte algae was a major advantage for the earliest land plants, even before the origin of the embryo and the sporophyte generation. The complete genomes of a few key streptophyte algae taxa will be required for a better understanding of the colonization of terrestrial habitats by streptophytes.Key words: Chlorophyta, Streptophyta, Embryophyta, Charales, Coleochaetales, Zygnematales, viridiplant phylogeny, land plants, genome evolution, freshwater adaptation, sporophyte origin, diversification, extinction  相似文献   

15.
Members of the superfamily of plant, fungal, and bacterial peroxidases are known to be present in a wide variety of living organisms. Extensive searching within sequencing projects identified organisms containing sequences of this superfamily. Class I peroxidases, cytochrome c peroxidase (CcP), ascorbate peroxidase (APx), and catalase peroxidase (CP), are known to be present in bacteria, fungi, and plants, but have now been found in various protists. CcP sequences were detected in most mitochondria-possessing organisms except for green plants, which possess only ascorbate peroxidases. APx sequences had previously been observed only in green plants but were also found in chloroplastic protists, which acquired chloroplasts by secondary endosymbiosis. CP sequences that are known to be present in prokaryotes and in Ascomycetes were also detected in some Basidiomycetes and occasionally in some protists. Class II peroxidases are involved in lignin biodegradation and are found only in the Homobasidiomycetes. In fact class II peroxidases were identified in only three orders, although degenerate forms were found in different Pezizomycota orders. Class III peroxidases are specific for higher plants, and their evolution is thought to be related to the emergence of the land plants. We have found, however, that class III peroxidases are present in some green algae, which predate land colonization. The presence of peroxidases in all major phyla (except vertebrates) makes them powerful marker genes for understanding the early evolutionary events that led to the appearance of the ancestors of each eukaryotic group.  相似文献   

16.
The charophyte green algae (CGA, Streptophyta, Viridiplantae) occupy a key phylogenetic position as the immediate ancestors of land plants but, paradoxically, are less well‐studied than the other major plant lineages. This is particularly true in the context of functional genomic studies, where the lack of an efficient protocol for their stable genetic transformation has been a major obstacle. Observations of extant CGA species suggest the existence of some of the evolutionary adaptations that had to occur for land colonization; however, to date, there has been no robust experimental platform to address this genetically. We present a protocol for high‐throughput Agrobacterium tumefaciens‐mediated transformation of Penium margaritaceum, a unicellular CGA species. The versatility of Penium as a model for studying various aspects of plant cell biology and development was illustrated through non‐invasive visualization of protein localization and dynamics in living cells. In addition, the utility of RNA interference (RNAi) for reverse genetic studies was demonstrated by targeting genes associated with cell wall modification (pectin methylesterase) and biosynthesis (cellulose synthase). This provided evidence supporting current models of cell wall assembly and inter‐polymer interactions that were based on studies of land plants, but in this case using direct observation in vivo. This new functional genomics platform has broad potential applications, including studies of plant organismal biology and the evolutionary innovations required for transition from aquatic to terrestrial habitats.  相似文献   

17.
Charophyte algae and land plant origins   总被引:8,自引:0,他引:8  
The charophyte algae are six distinct groups of mostly freshwater green algae that are related to modern land plants. Charophyte algae exhibit diverse morphologies and reproductive strategies, from unicells to branching erect forms, and from swimming asexual spores to sex involving eggs and sperm, respectively. The green algae known as stoneworts (Charales) are suggested to be the extant sister group to all land plants, although the phylogeny is not conclusive. Here we review recent molecular phylogenetic work on the charophyte algae and its implications for our understanding of the origins of land plants and of characters in their aquatic ancestors that might have played a role in the explosive diversification of plants on land.  相似文献   

18.
Desiccation has significant effects on photosynthetic processes in intertidal macro‐algae. We studied an intertidal macro‐alga, Ulva sp., which can tolerate desiccation, to investigate changes in photosynthetic performance and the components and structure of thylakoid membrane proteins in response to desiccation. Our results demonstrate that photosystem II (PSII) is more sensitive to desiccation than photosystem I (PSI) in Ulva sp. Comparative proteomics of the thylakoid membrane proteins at different levels of desiccation suggested that there were few changes in the content of proteins involved in photosynthesis during desiccation. Interestingly, we found that both the PSII subunit, PsbS (Photosystem II S subunit) (a four‐helix protein in the LHC superfamily), and light‐harvesting complex stress‐related (LHCSR) proteins, which are required for non‐photochemical quenching in land plants and algae, respectively, were present under both normal and desiccation conditions and both increased slightly during desiccation. In addition, the results of immunoblot analysis suggested that the phosphorylation of PSII and LHCII increases during desiccation. To investigate further, we separated out a supercomplex formed during desiccation by blue native‐polyacrylamide gel electrophoresis and identified the components by mass spectrometry analysis. Our results show that phosphorylation of the complex increases slightly with decreased water content. All the results suggest that during the course of desiccation, few changes occur in the content of thylakoid membrane proteins, but a rearrangement of the protein complex occurs in the intertidal macro‐alga Ulva sp.  相似文献   

19.
Plants must switch rapidly between light harvesting and photoprotection in response to environmental fluctuations in light intensity. This switch can lead to losses in absorbed energy usage, as photoprotective energy dissipation mechanisms can take minutes to hours to fully relax. One possible way to improve photosynthesis is to engineer these energy dissipation mechanisms (measured as non‐photochemical quenching of chlorophyll a fluorescence, NPQ) to induce and relax more quickly, resulting in smaller losses under dynamic light conditions. Previous studies aimed at understanding the enzymes involved in the regulation of NPQ have relied primarily on labor‐intensive and time‐consuming generation of stable transgenic lines and mutant populations – approaches limited to organisms amenable to genetic manipulation and mapping. To enable rapid functional testing of NPQ‐related genes from diverse organisms, we performed Agrobacterium tumefaciens‐mediated transient expression assays in Nicotiana benthamiana to test if NPQ kinetics could be modified in fully expanded leaves. By expressing Arabidopsis thaliana genes known to be involved in NPQ, we confirmed the viability of this method for studying dynamic photosynthetic processes. Subsequently, we used naturally occurring variation in photosystem II subunit S, a modulator of NPQ in plants, to explore how differences in amino acid sequence affect NPQ capacity and kinetics. Finally, we functionally characterized four predicted carotenoid biosynthesis genes from the marine algae Nannochloropsis oceanica and Thalassiosira pseudonana and examined the effect of their expression on NPQ in N. benthamiana. This method offers a powerful alternative to traditional gene characterization methods by providing a fast and easy platform for assessing gene function in planta.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号