首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Maternal transmission of mitochondrial DNA (mtDNA) in animals is thought to prevent the spread of selfish deleterious mtDNA mutations in the population. Various mechanisms have been evolved independently to prevent the entry of sperm mitochondria in the embryo. However, the increasing number of instances of paternal mtDNA leakage suggests that these mechanisms are not very effective. The destruction of sperm mitochondria in mammalian embryos is mediated by nuclear factors. Also, the destruction of paternal mitochondria in intraspecific crosses is more effective than in interspecific ones. These observations have led to the hypothesis that leakage of paternal mtDNA (and consequently mtDNA recombination owing to ensuing heteroplasmy) might be more common in inter‐ than in intraspecific crosses and that it should increase with phylogenetic distance of hybridizing species. We checked paternal leakage in inter‐ and intraspecific crosses in Drosophila and found little evidence for this hypothesis. In addition, we have observed a higher level of leakage among male than among female progeny from the same cross. This is the first report of sex‐specific leakage of paternal mtDNA. It suggests that paternal mtDNA leakage might not be a stochastic result of an error‐prone mechanism, but rather, it may be under complex genetic control.  相似文献   

2.
Chromosomal inversions, structural mutations that reverse a segment of a chromosome, cause suppression of recombination in the heterozygous state. Several studies have shown that inversion polymorphisms can form clines or fluctuate predictably in frequency over seasonal time spans. These observations prompted the hypothesis that chromosomal rearrangements might be subject to spatially and/or temporally varying selection. Here, we review what has been learned about the adaptive significance of inversion polymorphisms in the vinegar fly Drosophila melanogaster, the species in which they were first discovered by Sturtevant in 1917. A large body of work provides compelling evidence that several inversions in this system are adaptive; however, the precise selective mechanisms that maintain them polymorphic in natural populations remain poorly understood. Recent advances in population genomics, modelling and functional genetics promise to greatly improve our understanding of this long‐standing and fundamental problem in the near future.  相似文献   

3.
Wolbachia pipientis is one of the most widely studied endosymbionts today, yet we know little about its short‐term adaptation and evolution. Here, using a set of 91 inbred Drosophila melanogaster lines from five populations, we explore patterns of diversity and recent evolution in the Wolbachia strain wMel. Within the D. melanogaster lines, we identify six major mitochondrial clades and four wMel clades. Concordant with past studies, the Wolbachia haplotypes contain an overall low level of nucleotide diversity, yet they still display geographic structuring. Using Bayesian analysis informed with demographic estimates of colonization times, we estimate that all extant D. melanogaster mitochondrial haplotypes coalesce to a Wolbachia‐infected ancestor approximately 2200 years ago. Finally, we measure wMel titre within the infected flies and find that titre varies across populations, an effect attributable to host genetic factors. This demonstration of local phenotypic divergence suggests that intraspecific host genetic variation plays a key role in shaping this model symbiotic system.  相似文献   

4.
Despite the popularity of Drosophila melanogaster in functional and evolutionary genetics, the global pattern of natural variation has not yet been comprehensively described in this species. For the first time, we report a combined survey using neutral microsatellites and mitochondrial sequence variation jointly. Thirty-five populations originating from five continents were compared. In agreement with previous microsatellite studies, sub-Saharan African populations were the most variable ones. Consistent with previous reports of a single 'out of Africa' habitat expansion, we found that non-African populations contained a subset of the African alleles. The pattern of variation detected for the mitochondrial sequences differed substantially. The most divergent haplotypes were detected in the Mediterranean region while Africa harboured most haplotypes, which were all closely related. In the light of the well-established African origin of D. melanogaster, our results cast severe doubts about the suitability of mtDNA for biogeographic inference in this model organism.  相似文献   

5.
Positive selection leaves characteristic footprints on DNA variation but detecting such patterns is challenging as the age, the intensity and the mode of selection as well as demography and evolutionary parameters (mutation and recombination rates) all play roles and these are difficult to disentangle. We recorded nucleotide variation in a sample of isogenic chromosomes from a western African population of Drosophila melanogaster at a locus (Fbp2) for which a partial selective sweep had previously been reported. We compared this locus to four other genes from the same chromosomes and from a European and an East African population. Then, we assessed Fbp2 variation in a sample of 370 chromosomes covering a comprehensive geographic sampling of 16 African localities. The signature of selection was tested while accounting for the demographic history of the populations. We found a significant signal of selection in two West African localities including Ivory Coast. Variation at Fpb2 would thus represent a case of an ongoing selective sweep in the range of this species. A weaker, nonsignificant, signal of selection was, however, apparent in some other populations, thus leaving open several possibilities: (i) the selective sweep originated in Ivory Coast and has spread to the rest of the continent; (ii) several African populations report the signature of a selective event having occurred in an ancestral population; (iii) this genome region is subject to independent selective events in African populations; and (iv) A neutral scenario with population subdivision and local bottleneck cannot be fully excluded to explain the molecular patterns observed in some populations.  相似文献   

6.
The diversity and infection dynamics of the endosymbiont Wolbachia can be influenced by many factors, such as transmission rate, cytoplasmic incompatibility, environment, selection and genetic drift. The interplay of these factors in natural populations can result in heterogeneous infection patterns with substantial differences between populations and strains. The causes of these heterogeneities are not yet understood, partly due to the complexity of natural environments. We present experimental evolution as a new approach to study Wolbachia infection dynamics in replicate populations exposed to a controlled environment. A natural Drosophila melanogaster population infected with strains of Wolbachia belonging to different clades evolved in two laboratory environments (hot and cold) for 1.5 years. In both treatments, the rate of Wolbachia infection increased until fixation. In the hot environment, the relative frequency of different Wolbachia clades remained stable over 37 generations. In the cold environment, however, we observed marked changes in the composition of the Wolbachia population: within 15 generations, one Wolbachia clade increased more than 50% in frequency, whereas the other two clades decreased in frequency, resulting in the loss of one clade. The frequency change was highly reproducible not only among replicates, but also when flies that evolved for 42 generations in the hot environment were transferred to the cold environment. These results document how environmental factors can affect the composition of Wolbachia in D. melanogaster. The high reproducibility of the pattern suggests that experimental evolution studies can efficiently determine the functional basis of habitat‐specific fitness among Wolbachia strains.  相似文献   

7.
Larvae of Drosophila melanogaster reared at 23°C and switched to 14°C for 1 h are 0.5°C warmer than the surrounding medium. In keeping with dissipation of energy, respiration of Drosophila melanogaster larvae cannot be decreased by the F‐ATPase inhibitor oligomycin or stimulated by protonophore. Silencing of Ucp4C conferred sensitivity of respiration to oligomycin and uncoupler, and prevented larva‐to‐adult progression at 15°C but not 23°C. Uncoupled respiration of larval mitochondria required palmitate, was dependent on Ucp4C and was inhibited by guanosine diphosphate. UCP4C is required for development through the prepupal stages at low temperatures and may be an uncoupling protein.  相似文献   

8.
Mating causes many changes in physiology, behavior, and gene expression in a wide range of organisms. These changes are predicted to be sex specific, influenced by the divergent reproductive roles of the sexes. In female insects, mating is associated with an increase in egg production which requires high levels of nutritional input with direct consequences for the physiological needs of individual females. Consequently, females alter their nutritional acquisition in line with the physiological demands imposed by mating. Although much is known about the female mating‐induced nutritional response, far less is known about changes in males. In addition, it is unknown whether variation between genotypes translates into variation in dietary behavioral responses. Here we examine mating‐induced shifts in male and female dietary preferences across genotypes of Drosophila melanogaster. We find sex‐ and genotype‐specific effects on both the quantity and quality of the chosen diet. These results contribute to our understanding of sex‐specific metabolism and reveal genotypic variation that influences responses to physiological demands.  相似文献   

9.
Drosophila melanogaster is postulated to have colonized North America in the past several 100 years in two waves. Flies from Europe colonized the east coast United States while flies from Africa inhabited the Caribbean, which if true, make the south‐east US and Caribbean Islands a secondary contact zone for African and European D. melanogaster. This scenario has been proposed based on phenotypes and limited genetic data. In our study, we have sequenced individual whole genomes of flies from populations in the south‐east US and Caribbean Islands and examined these populations in conjunction with population sequences from the west coast US, Africa, and Europe. We find that west coast US populations are closely related to the European population, likely reflecting a rapid westward expansion upon first settlements into North America. We also find genomic evidence of African and European admixture in south‐east US and Caribbean populations, with a clinal pattern of decreasing proportions of African ancestry with higher latitude. Our genomic analysis of D. melanogaster populations from the south‐east US and Caribbean Islands provides more evidence for the Caribbean Islands as the source of previously reported novel African alleles found in other east coast US populations. We also find the border between the south‐east US and the Caribbean island to be the admixture hot zone where distinctly African‐like Caribbean flies become genomically more similar to European‐like south‐east US flies. Our findings have important implications for previous studies examining the generation of east coast US clines via selection.  相似文献   

10.
Pupation site choice of Drosophila third‐instar larvae is critical for the survival of individuals, as pupae are exposed to various biotic and abiotic dangers while immobilized during the 3–4 days of metamorphosis. This singular behavioural choice is sensitive to both environmental and genetic factors. Here, we developed a high‐throughput phenotyping approach to assay the variation in pupation height in Drosophila melanogaster, while controlling for possibly confounding factors. We find substantial variation of mean pupation height among sampled natural stocks and we show that the Drosophila Genetic Reference Panel (DGRP) reflects this variation. Using the DGRP stocks for genome‐wide association (GWA) mapping, 16 loci involved in determining pupation height could be resolved. The candidate genes in these loci are enriched for high expression in the larval central nervous system. A genetic network could be constructed from the candidate loci, which places scribble (scrib) at the centre, plus other genes known to be involved in nervous system development, such as Epidermal growth factor receptor (Egfr) and p53. Using gene disruption lines, we could functionally validate several of the initially identified loci, as well as additional loci predicted from network analysis. Our study shows that the combination of high‐throughput phenotyping with a genetic analysis of variation captured from the wild can be used to approach the genetic dissection of an environmentally relevant behavioural phenotype.  相似文献   

11.
Populations arrayed along broad latitudinal gradients often show patterns of clinal variation in phenotype and genotype. Such population differentiation can be generated and maintained by both historical demographic events and local adaptation. These evolutionary forces are not mutually exclusive and can in some cases produce nearly identical patterns of genetic differentiation among populations. Here, we investigate the evolutionary forces that generated and maintain clinal variation genome‐wide among populations of Drosophila melanogaster sampled in North America and Australia. We contrast patterns of clinal variation in these continents with patterns of differentiation among ancestral European and African populations. Using established and novel methods we derive here, we show that recently derived North America and Australia populations were likely founded by both European and African lineages and that this hybridization event likely contributed to genome‐wide patterns of parallel clinal variation between continents. The pervasive effects of admixture mean that differentiation at only several hundred loci can be attributed to the operation of spatially varying selection using an FST outlier approach. Our results provide novel insight into the well‐studied system of clinal differentiation in D. melanogaster and provide a context for future studies seeking to identify loci contributing to local adaptation in a wide variety of organisms, including other invasive species as well as temperate endemics.  相似文献   

12.
A prominent hypothesis for polyandry says that male–male competitive drivers induce males to coerce already‐mated females to copulate, suggesting that females are more likely to be harassed in the presence of multiple males. This early sociobiological idea of male competitive drive seemed to explain why sperm‐storing females mate multiply. Here, we describe an experiment eliminating all opportunities for male–male behavioral competition, while varying females’ opportunities to mate or not with the same male many times, or with many other males only one time each. We limited each female subject's exposure to no more than one male per day over her entire lifespan starting at the age at which copulations usually commence. We tested a priori predictions about relative lifespan and daily components of RS of female Drosophila melanogaster in experimental social situations producing lifelong virgins, once‐mated females, lifelong monogamous, and lifelong polyandrous females, using a matched‐treatments design. Results included that (1) a single copulation enhanced female survival compared to survival of lifelong virgins, (2) multiple copulations enhanced the number of offspring for both monogamous and polyandrous females, (3) compared to females in lifelong monogamy, polyandrous females paired daily with a novel, age‐matched experienced male produced offspring of enhanced viability, and (4) female survival was unchallenged when monogamous and polyandrous females could re‐mate with age‐ and experienced‐matched males. (5) Polyandrous females daily paired with novel virgin males had significantly reduced lifespans compared to polyandrous females with novel, age‐matched, and experienced males. (6) Polyandrous mating enhanced offspring viability and thereby weakened support for the random mating hypothesis for female multiple mating. Analyzes of nonequivalence of variances revealed opportunities for within‐sex selection among females. Results support the idea that females able to avoid constraints on their behavior from simultaneous exposure to multiple males can affect both RS and survival of females and offspring.  相似文献   

13.
Maternal inheritance is one of the hallmarks of animal mitochondrial DNA (mtDNA) and central to its success as a molecular marker. This mode of inheritance and subsequent lack of heterologous recombination allows us to retrace evolutionary relationships unambiguously down the matriline and without the confounding effects of recombinant genetic information. Accumulating evidence of biparental inheritance of mtDNA (paternal leakage), however, challenges our current understanding of how this molecule is inherited. Here, using Drosophila simulans collected from an East African metapopulation exhibiting recurring mitochondrial heteroplasmy, we conducted single fly matings and screened F1 offspring for the presence of paternal mtDNA using allele-specific PCR assays (AS–PCR). In all, 27 out of 4092 offspring were identified as harboring paternal mtDNA, suggesting a frequency of 0.66% paternal leakage in this species. Our findings strongly suggest that recurring mtDNA heteroplasmy as observed in natural populations of Drosophila simulans is most likely caused by repeated paternal leakage. Our findings further suggest that this phenomenon to potentially be an integral part of mtDNA inheritance in these populations and consequently of significance for mtDNA as a molecular marker.  相似文献   

14.
Directional dominance is a prerequisite of inbreeding depression. Directionality arises when selection drives alleles that increase fitness to fixation and eliminates dominant deleterious alleles, while deleterious recessives are hidden from it and maintained at low frequencies. Traits under directional selection (i.e., fitness traits) are expected to show directional dominance and therefore an increased susceptibility to inbreeding depression. In contrast, traits under stabilizing selection or weakly linked to fitness are predicted to exhibit little‐to‐no inbreeding depression. Here, we quantify the extent of inbreeding depression in a range of male reproductive characters and then infer the mode of past selection on them. The use of transgenic populations of Drosophila melanogaster with red or green fluorescent‐tagged sperm heads permitted in vivo discrimination of sperm from competing males and quantification of characteristics of ejaculate composition, performance, and fate. We found that male attractiveness (mating latency) and competitive fertilization success (P2) both show some inbreeding depression, suggesting they may have been under directional selection, whereas sperm length showed no inbreeding depression suggesting a history of stabilizing selection. However, despite having measured several sperm quality and quantity traits, our data did not allow us to discern the mechanism underlying the lowered competitive fertilization success of inbred (f = 0.50) males.  相似文献   

15.
Advanced paternal age has been repeatedly shown to modulate offspring quality via male- and/or female-driven processes, and there are theoretical reasons to expect that some of these effects can be sex-specific. For example, sex allocation theory predicts that, when mated with low-condition males, mothers should invest more in their daughters compared to their sons. This is because male fitness is generally more condition-dependent and more variable than female fitness, which makes it less risky to invest in female offspring. Here, we explore whether paternal age can affect the quality and quantity of offspring in a sex-specific way using Drosophila melanogaster as a model organism. In order to understand the contribution of male-driven processes on paternal age effects, we also measured the seminal vesicle size of young and older males and explored its relationship with reproductive success and offspring quality. Older males had lower competitive reproductive success, as expected, but there was no difference between the offspring sex ratio of young and older males. However, we found that paternal age caused an increase in offspring quality (i.e., offspring weight), and that this increase was more marked in daughters than sons. We discuss different male- and female-driven processes that may explain such sex-specific paternal age effects.  相似文献   

16.
Insecticide resistance evolves extremely rapidly, providing an illuminating model for the study of adaptation. With climate change reshaping species distribution, pest and disease vector control needs rethinking to include the effects of environmental variation and insect stress physiology. Here, we assessed how both long‐term adaptation of populations to temperature and immediate temperature variation affect the genetic architecture of DDT insecticide response in Drosophila melanogaster. Mortality assays and behavioural assays based on continuous activity monitoring were used to assess the interaction between DDT and temperature on three field‐derived populations from climate extremes (Raleigh for warm temperate, Tasmania for cold oceanic and Queensland for hot tropical). The Raleigh population showed the highest mortality to DDT, whereas the Queensland population, epicentre for derived alleles of the resistance gene Cyp6g1, showed the lowest. Interaction between insecticide and temperature strongly affected mortality, particularly for the Tasmanian population. Activity profiles analysed using self‐organizing maps show that the insecticide promoted an early response, whereas elevated temperature promoted a later response. These distinctive early or later activity phases revealed similar responses to temperature and DDT dose alone but with more or less genetic variance depending on the population. This change in genetic variance among populations suggests that selection particularly depleted genetic variance for DDT response in the Queensland population. Finally, despite similar (co)variation between traits in benign conditions, the genetic responses across population differed under stressful conditions. This showed how stress‐responsive genetic variation only reveals itself in specific conditions and thereby escapes potential trade‐offs in benign environments.  相似文献   

17.
Water pollution due to human activities produces sedimentation, excessive nutrients, and toxic chemicals, and this, in turn, has an effect on the normal endocrine functioning of living beings. Overall, water pollution may affect some components of the fitness of organisms (e.g., developmental time and fertility). Some toxic compounds found in polluted waters are known as endocrine disruptors (ED), and among these are nonhalogenated phenolic chemicals such as bisphenol A and nonylphenol. To evaluate the effect of nonhalogenated phenolic chemicals on the endocrine system, we subjected two generations (F0 and F1) of Drosophila melanogaster to different concentrations of ED. Specifically, treatments involved wastewater, which had the highest level of ED (bisphenol A and nonylphenol) and treated wastewater from a constructed Heliconia psittacorum wetland with horizontal subsurface water flow (He); the treated wastewater was the treatment with the lowest level of ED. We evaluated the development time from egg to pupa and from pupa to adult as well as fertility. The results show that for individuals exposed to treated wastewater, the developmental time from egg to pupae was shorter in individuals of the F1 generation than in the F0 generation. Additionally, the time from pupae to adult was longer for flies growing in the H. psittacorum treated wastewater. Furthermore, fertility was lower in the F1 generation than in the F0 generation. Although different concentrations of bisphenol A and nonylphenol had no significant effect on the components of fitness of D. melanogaster (developmental time and fertility), there was a trend across generations, likely as a result of selection imposed on the flies. It is possible that the flies developed different strategies to avoid the effects of the various environmental stressors.  相似文献   

18.
In many species, males have the capacity to directly influence (either positively or negatively) the fitness of their mates and offspring, not only via parental care contributions and/or precopulatory resource provisioning, but also via the post‐copulatory activity of those substances passed on to their mates in their ejaculates. Here, we examine how an individual male's identity may be related to phenotypic variation in short‐term female fecundity in the model species, Drosophila melanogaster. The effect of male identity on short‐term fecundity stimulation of females was repeatable across time and accounted for over a fifth of the total observed phenotypic variation in fecundity in two independent populations. The functional explanations for these results and the implications for our understanding of the factors that contribute to the adaptive significance of mating preferences and/or sexual conflict are discussed.  相似文献   

19.
In many invertebrates, body size shows genetically based clines, with size increasing in colder climates. Large body size is typically associated with prolonged development times. We consider variation in the CNS‐specific gene neurofibromin 1 (Nf1) and its association with body size and development time. We identified two major Nf1 haplotypes in natural populations, Nf1‐insertion‐A and Nf1‐deletion‐G. These haplotypes are characterized by a 45‐base insertion/deletion (INDEL) in Nf1 intron 2 and an A/G synonymous substitution (locus L17277). Linkage disequilibrium (LD) between the INDEL and adjacent sites is high but appears to be restricted within the Nf1 gene interval. In Australia, the frequency of the Nf1‐insertion‐A haplotype increases with latitude where wing size is larger, independent of the chromosomal inversion In(3R)Payne. Unexpectedly, the Nf1‐insertion‐A haplotype is negatively associated with wing size. We found that the Nf1‐insertion‐A haplotype is enriched in females with shorter development time. This suggests that the Nf1 haplotype cline may be driven by selection for development time rather than size; females from southern (higher latitude) D. melanogaster populations maintain a rapid development time despite being relatively larger, and the higher incidence of Nf1‐insertion‐A in Southern Australia may contribute to this pattern, whereas the effects of the Nf1 haplotypes on size may be countered by other loci with antagonistic effects on size and development time. Our results point to the potential complexity involved in identifying selection on genetic variants exhibiting pleiotropic effects when studies are based on spatial patterns or association studies.  相似文献   

20.
We considered genome‐wide four‐fold degenerate sites from an African Drosophila melanogaster population and compared them to short introns. To include divergence and to polarize the data, we used its close relatives Drosophila simulans, Drosophila sechellia, Drosophila erecta and Drosophila yakuba as outgroups. In D. melanogaster, the GC content at four‐fold degenerate sites is higher than in short introns; compared to its relatives, more AT than GC is fixed. The former has been explained by codon usage bias (CUB) favouring GC; the latter by decreased intensity of directional selection or by increased mutation bias towards AT. With a biallelic equilibrium model, evidence for directional selection comes mostly from the GC‐rich ancestral base composition. Together with a slight mutation bias, it leads to an asymmetry of the unpolarized allele frequency spectrum, from which directional selection is inferred. Using a quasi‐equilibrium model and polarized spectra, however, only purifying and no directional selection is detected. Furthermore, polarized spectra are proportional to those of the presumably unselected short introns. As we have no evidence for a decrease in effective population size, relaxed CUB must be due to a reduction in the selection coefficient. Going beyond the biallelic model and considering all four bases, signs of directional selection are stronger. In contrast to short introns, complementary bases show strand specificity and allele frequency spectra depend on mutation directions. Hence, the traditional biallelic model to describe the evolution of four‐fold degenerate sites should be replaced by more complex models assuming only quasi‐equilibrium and accounting for all four bases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号