首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Adult neurogenesis occurs in the subgranular zone of the hippocampal dentate gyrus and the subventricular zone of the lateral ventricles. This process is highly regulated by intrinsic and extrinsic factors, which may control the proliferation and/or maturation of neural progenitor cells. Adult-born neurons are integrated in preexisting networks and may have functional implications for adult brain. Here we attempt to summarize relevant findings concerning the physiological role of adult neurogenesis mainly focused on the subgranular zone, and to discuss the reduced neurogenesis observed during aging and the factors that have been involved in this phenomenon. Finally, we focus on hippocampal neurogenesis in Alzheimer's disease, reviewing animal models of the disease used for the study of this process and the conclusions that have been drawn in this context.  相似文献   

2.
    
An early diagnosis of Alzheimer's disease is crucial as treatment efficacy is limited to the early stages. However, the current diagnostic methods are limited to mid or later stages of disease development owing to the limitations of clinical examinations and amyloid plaque imaging. Therefore, this study aimed to identify molecular signatures including blood plasma extracellular vesicle biomarker proteins associated with Alzheimer's disease to aid early-stage diagnosis. The hippocampus, cortex, and blood plasma extracellular vesicles of 3- and 6-month-old 5xFAD mice were analyzed using quantitative proteomics. Subsequent bioinformatics and biochemical analyses were performed to compare the molecular signatures between wild type and 5xFAD mice across different brain regions and age groups to elucidate disease pathology. There was a unique signature of significantly altered proteins in the hippocampal and cortical proteomes of 3- and 6-month-old mice. The plasma extracellular vesicle proteomes exhibited distinct informatic features compared with the other proteomes. Furthermore, the regulation of several canonical pathways (including phosphatidylinositol 3-kinase/protein kinase B signaling) differed between the hippocampus and cortex. Twelve potential biomarkers for the detection of early-stage Alzheimer's disease were identified and validated using plasma extracellular vesicles from stage-divided patients. Finally, integrin α-IIb, creatine kinase M-type, filamin C, glutamine γ-glutamyltransferase 2, and lysosomal α-mannosidase were selected as distinguishing biomarkers for healthy individuals and early-stage Alzheimer's disease patients using machine learning modeling with approximately 79% accuracy. Our study identified novel early-stage molecular signatures associated with the progression of Alzheimer's disease, thereby providing novel insights into its pathogenesis.  相似文献   

3.
4.
5.
6.
    
The aim of this study was to investigate the effect of melatonin (MT) and its metabolite N(1)‐acetyl‐N(2)‐formyl‐5‐methoxykynuramine (AFMK) on Alzheimer‐like learning and memory impairment in rats intracerebroventricularly injected with streptozotocin (STZ). The results showed that the escape latency of the STZ group was longer than that of the control (CON), MT, and AFMK groups. Increased levels of hyperphosphorylated tau, neurofilament proteins, and malondialdehyde and decreased superoxide dismutase levels were observed in the brains of the rats from the STZ group compared with the brains of the rats from the CON, MT, AFMK high and low group. These results suggest that exogenous MT and AFMK can improve memory impairment and downregulate AD‐like hyperphosphorylation induced by STZ, most likely through their antioxidation function. Meanwhile, we found that an equal dose of AFMK had a stronger effect than that of MT. Our results indicate that MT and its metabolite AFMK represent novel treatment strategies for Alzheimer's disease.  相似文献   

7.
    
How are memories stored and retrieved? It was one of the most discussed questions in the past century by neuroscientists. Leading studies of the period brought two different explanations to this question: The first statement considers memory as a physiological change in the brain and suggest that the retrieval of memory is only occurred by the same physiologic changes observed during the memory formation, while the second suggests that memory is a psychic mood stored in mind and the retrieval of memory is occurred by mystical energy fluctuations. Although the exact reason and the pathogenesis of Alzheimer's disease have not yet been fully understood, the approaches that centered the retrieval strategy of lost memory constitutes the basis of the treatment strategies in Alzheimer's disease today. The majority of treatment studies has based on the manipulation of the cholinergic system; however, although serotonin has mnemonic effects, its role in the pathogenesis of Alzheimer's disease has not been investigated as much as the cholinergic system. Here we show how serotonin affects the pathogenesis of Alzheimer's disease in a comprehensive perspective and we suggest that the optogenetics manipulation of serotonin nuclei retrieve the lost memory by closing the inward-rectifier potassium channel Kir2 on the memory engram cells. Also, we raise the possible effects of serotonin on the memory engram cells and the interactions between the amyloid-centric hypothesis of Alzheimer's disease and the memory engram hypothesis to explain the pathophysiology of memory loss in Alzheimer's disease.  相似文献   

8.
Correct lipid homeostasis at the plasma membrane is essential for cell survival and performance. These are critically challenged in the aging brain. Changes in the levels of cholesterol, a major membrane component especially enriched in neurons, accompany the brain aging process. They also occur in neurodegenerative diseases. Understanding the causes and consequences of these changes is a crucial step when trying to delay the cognitive decline, which comes with age, or to design strategies to fight neurodegenerative disorders such as Alzheimer's disease. We here review work that has contributed to this understanding.  相似文献   

9.
    
Inflammatory protein biomarkers induced by immune responses have been associated with cognitive decline and the pathogenesis of Alzheimer's disease (AD). Here, we investigate associations between a panel of inflammatory biomarkers and cognitive function and incident dementia outcomes in the well-characterized Framingham Heart Study Offspring cohort. Participants aged ≥40 years and dementia-free at Exam 7 who had a stored plasma sample were selected for profiling using the OLINK proteomics inflammation panel. Cross-sectional associations of the biomarkers with cognitive domain scores (N = 708, 53% female, 22% apolipoprotein E (APOE) ε4 carriers, 15% APOE ε2 carriers, mean age 61) and incident all-cause and AD dementia during up to 20 years of follow-up were tested. APOE genotype-stratified analyses were performed to explore effect modification. Higher levels of 12 and 3 proteins were associated with worse executive function and language domain factor scores, respectively. Several proteins were associated with more than one cognitive domain, including IL10, LIF-R, TWEAK, CCL19, IL-17C, MCP-4, and TGF-alpha. Stratified analyses suggested differential effects between APOE ε2 and ε4 carriers: most ε4 carrier associations were with executive function and memory domains, whereas most ε2 associations were with the visuospatial domain. Higher levels of TNFB and CDCP1 were associated with higher risks of incident all-cause and AD dementia. Our study found that TWEAK concentration was associated both with cognitive function and risks for AD dementia. The association of these inflammatory biomarkers with cognitive function and incident dementia may contribute to the discovery of therapeutic interventions for the prevention and treatment of cognitive decline.  相似文献   

10.
11.
    
Alzheimer's disease (AD) is characterized by cognitive disorders and alterations of behavioral traits such as anhedonia and anxiety. Contribution of nonphysiological forms of amyloid and tau peptides to the onset of neurological dysfunctions remains unclear because most preclinical models only present one of those pathological AD-related biomarkers. A more recently developed model, the TgF344-AD rat has the advantage of overexpressing amyloid and naturally developing tauopathy, thus making it close to human familial forms of AD. We showed the presence of a learning dysfunction in a reference memory test, without spatial working memory impairment but with an increase in anxiety levels and a decrease in motivation to participate in the test. In the sucrose preference test, TgF344-AD rats did not show signs of anhedonia but did not increase the volume of liquid consumed when the water was replaced by sucrose solution. These behavioral phenomena were observed at an age when tau accumulation are absent, and where amyloid deposits are predominant in the hippocampus and the entorhinal cortex. Within the hippocampus itself, amyloid accumulation is heterogenous between the subiculum, the dorsal hippocampus and the ventral hippocampus. Thus, our data demonstrated heterogeneity in the appearance of various behavioral and neurochemical markers in the TgF344-AD rat. This multivariate analysis will therefore make it possible to define the stage of the pathology, to measure its evolution and the effects of future therapeutic treatments.  相似文献   

12.
    
Alzheimer's disease (AD) is a neurodegenerative disease characterized by formation of amyloid‐β (Aβ) plaques, activated microglia, and neuronal cell death leading to progressive dementia. Recent data indicate that microglia and monocyte‐derived macrophages (MDM) are key players in the initiation and progression of AD, yet their respective roles remain to be clarified. As AD occurs mostly in the elderly and aging impairs myeloid functions, we addressed the inflammatory profile of microglia and MDM during aging in TgAPP/PS1 and TgAPP/PS1dE9, two transgenic AD mouse models, compared to WT littermates. We only found MDM infiltration in very aged mice. We determined that MDM highly expressed activation markers at basal state. In contrast, microglia exhibited an activated phenotype only with normal aging and Aβ pathology. Our study showed that CD14 and CD36, two receptors involved in phagocytosis, were upregulated during Aβ pathogenesis. Moreover, we observed, at the protein levels in AD models, higher production of pro‐inflammatory mediators: IL‐1β, p40, iNOS, CCL‐3, CCL‐4, and CXCL‐1. Taken together, our data indicate that microglia and MDM display distinct phenotypes in AD models and highlight the specific effects of normal aging vs Aβ peptides on inflammatory processes that occur during the disease progression. These precise phenotypes of different subpopulations of myeloid cells in normal and pathologic conditions may allow the design of pertinent therapeutic strategy for AD.  相似文献   

13.
    
Physiological or α‐processing of amyloid‐β precursor protein (APP) prevents the formation of Aβ, which is deposited in the aging brain and may contribute to Alzheimer's disease. As such, drugs promoting this pathway could be useful for prevention of the disease. Along this line, we searched through a number of substances and unexpectedly found that a group of high‐energy compounds (HECs), namely ATP, phosphocreatine, and acetyl coenzyme A, potently increased APP α‐processing in cultured SH‐SY5Y cells, whereas their cognate counterparts, i.e., ADP, creatine, or coenzyme A did not show the same effects. Other HECs such as GTP, CTP, phosphoenol pyruvate, and S‐adenosylmethionine also promoted APP α‐processing with varying potencies and the effects were abolished by energy inhibitors rotenone or NaN3. The overall efficacy of the HECs in the process ranged from three‐ to four‐fold, which was significantly greater than that exhibited by other physiological stimulators such as glutamate and nicotine. This suggested that the HECs were perhaps the most efficient physiological stimulators for APP α‐processing. Moreover, the HECs largely offset the inefficient APP α‐processing in aged human fibroblasts or in cells impaired by rotenone or H2O2. Most importantly, some HECs markedly boosted the survival rate of SH‐SY5Y cells in the death process induced by energy suppression or oxidative stress. These findings suggest a new, energy‐dependent regulatory mechanism for the putative α‐secretase and thus will help substantially in its identification. At the same time, the study raises the possibility that the HECs may be useful to energize and strengthen the aging brain cells to slow down the progression of Alzheimer's disease.  相似文献   

14.
15.
《Free radical research》2013,47(9):1049-1060
Abstract

Male C57BL/6J mice treated with D-galactose (DG) were used to examine the effects of ergothioneine (EGT), melatonin (MEL), or their combination (EGT+MEL) on learning and memory abilities. The mice were divided into five groups and injected subcutaneously with DG (0.3 mL of 1% DG/mouse) except for group 1 (normal controls). Group 3 was orally supplemented with EGT [0.5 mg/kg body weight (bw)], group 4 with MEL (10 mg/kg bw, p.o.), and group 5 with EGT+MEL. EGT and MEL were provided daily for 88 days, while DG was provided between days 7 to 56. Active avoidance task and Morris water-maze task were used to evaluate learning and memory abilities. DG treatment markedly increased escape latency and decreased the number of avoidance in the active avoidance test, whereas EGT and MEL alone significantly improved the performance. DG also impaired the learning and memory abilities in the water-maze task, and EGT and MEL alone also significantly improved the performance. EGT+MEL produced the strongest effects in both tasks. EGT and MEL alone markedly decreased β-amyloid protein accumulation in the hippocampus and significantly inhibited lipid peroxidation and maintained glutathione/glutathione disulfide ratio and superoxide dismutase activity in brain tissues of DG-treated mice. MEL alone completely prevented the rise in brain acetylcholine esterase activity induced by DG, whereas EGT and EGT+MEL were only partially effective. Overall, EGT, MEL, and, in particular, the combination of EGT and MEL effectively protect against learning and memory deficits in C57BL/6J mice treated with DG, possibly through attenuation of oxidative damage.  相似文献   

16.
目的:阿尔茨海默病(Alzheimer's Disease,AD)是一种以学习和记忆能力逐渐下降为显著特征的神经退行性疾病,我们通过生物信息学分析识别其相关枢纽基因,以探索潜在的靶向治疗方法。方法:本研究从Gene Expression Omnibus(GEO)数据库中提取了AD患者的基因表达数据,包括GSE5281和GSE36980,并通过GSEA数据库检索了学习与记忆相关的基因集。在GSE5281与GSE36980差异表达基因的重叠部分,我们共鉴定出158个与海马区AD相关的基因。这些基因随后被用于基因本体论(Gene Ontology, GO)和京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes, KEGG)途径富集分析,进而构建了蛋白-蛋白相互作用(Protein-Protein Interaction, PPI)网络。在识别出PPI网络中的20个枢纽基因后,我们再次进行GO和KEGG通路的富集分析,最终鉴定出3个关键的学习与记忆基因。结果:本研究发现,PPI网络中的20个枢纽基因在GO和KEGG通路的突触变化中显著富集,提示这些基因可能在突触功能的调控中发挥重要作用。此外,这些基因的富集分析结果与158个AD相关基因的分析结果呈现出相似的趋势,进一步支持其在AD病理机制中的潜在关键作用。随后,我们通过深入分析PPI网络中最为紧密连接的20个枢纽基因,结合MCODE和cytoHubba的分析结果,最终筛选并确定了3个与学习和记忆密切相关的核心枢纽基因(SNAP25、SYT4和GABRG2)。结论:SNAP25、SYT4和GABRG2可能作为AD的生物标志物和治疗靶点,为改善学习与记忆能力的逐渐下降提供了新的治疗思路。  相似文献   

17.
To develop potent multi-target ligands against Alzheimer's disease (AD), a series of novel bivalent β-carboline derivatives were designed, synthesized, and evaluated. In vitro studies revealed these compounds exhibited good multifunctional activities. In particular, compounds 8f and 8g showed the good selectivity potency on BuChE inhibition (IC50?=?1.7 and 2.7?μM, respectively), Aβ1-42 disaggregation and neuroprotection. Compared with the positive control resveratrol, 8f and 8g showed better activity in inhibiting Aβ1-42 aggregation, with inhibitory rate 82.7% and 85.7% at 25?μM, respectively. Moreover, compounds 8e, 8f and 8g displayed excellent neuroprotective activity by ameliorating the impairment induced by H2O2, okadaic acid (OA) and Aβ1-42 without cytotoxicity in SH-SY5Y cells. Thus, the present study evidently showed that compounds 8f and 8g are potent multi-functional agents against AD and might serve as promising lead candidates for further development.  相似文献   

18.
    
Loss of neuronal proteostasis, a common feature of the aging brain, is accelerated in neurodegenerative disorders, including different types of tauopathies. Aberrant turnover of tau, a microtubule‐stabilizing protein, contributes to its accumulation and subsequent toxicity in tauopathy patients’ brains. A direct toxic effect of pathogenic forms of tau on the proteolytic systems that normally contribute to their turnover has been proposed. In this study, we analyzed the contribution of three different types of autophagy, macroautophagy, chaperone‐mediated autophagy, and endosomal microautophagy to the degradation of tau protein variants and tau mutations associated with this age‐related disease. We have found that the pathogenic P301L mutation inhibits degradation of tau by any of the three autophagic pathways, whereas the risk‐associated tau mutation A152T reroutes tau for degradation through a different autophagy pathway. We also found defective autophagic degradation of tau when using mutations that mimic common posttranslational modifications in tau or known to promote its aggregation. Interestingly, although most mutations markedly reduced degradation of tau through autophagy, the step of this process preferentially affected varies depending on the type of tau mutation. Overall, our studies unveil a complex interplay between the multiple modifications of tau and selective forms of autophagy that may determine its physiological degradation and its faulty clearance in the disease context.  相似文献   

19.
20.
    
Age‐related diseases characteristic of post‐reproductive life, aging, and life span are the examples of polygenic non‐Mendelian traits with intricate genetic architectures. Polygenicity of these traits implies that multiple variants can impact their risks independently or jointly as combinations of specific variants. Here, we examined chances to live to older ages, 85 years and older, for carriers of compound genotypes comprised of combinations of genotypes of rs429358 (APOE ɛ4 encoding polymorphism), rs2075650 (TOMM40), and rs12721046 (APOC1) polymorphisms using data from four human studies. The choice of these polymorphisms was motivated by our prior results showing that the ɛ4 carriers having minor alleles of the other two polymorphisms were at exceptionally high risk of Alzheimer''s disease (AD), compared with non‐carriers of the minor alleles. Consistent with our prior findings for AD, we show here that the adverse effect of the ɛ4 allele on survival to older ages is significantly higher in carriers of minor alleles of rs2075650 and/or rs12721046 polymorphisms compared with their non‐carriers. The exclusion of AD cases made this effect stronger. Our results provide compelling evidence that AD does not mediate the associations of the same compound genotypes with chances to survive until older ages, indicating the existence of genetically heterogeneous mechanisms. The survival chances can be mainly associated with lipid‐ and immunity‐related mechanisms, whereas the AD risk, can be driven by the AD‐biomarker‐related mechanism, among others. Targeting heterogeneous polygenic profiles of individuals at high risks of complex traits is promising for the translation of genetic discoveries to health care.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号