首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhodotorula glutinis and Sporobolomyces roseus, grown under different aeration regimes, showed differential responses in their carotenoid content. At higher aeration, the concentration of total carotenoids increased relative to the biomass and total fatty acids in R. glutinis, but the composition of carotenoids (torulene > -carotene > -carotene > torularhodin) remained unaltered. In contrast, S. roseus responded to enhanced aeration by a shift from the predominant -carotene to torulene and torularhodin, indicating a biosynthetic switch at the -carotene branch point of carotenoid biosynthesis. The overall levels of total carotenoids in highly aerated flasks were 0.55 mol-percent and 0.50 mol-percent relative to the total fatty acids in R. glutinis and S. roseus (respectively), and 206 and 412 g g–1 dry weight (respectively).  相似文献   

2.
Due to the increasing demand for sustainable biofuels, microbial oils as feedstock for the transesterification into biodiesel have gained scientific and commercial interest. Also, microbial carotenoids have a considerable market potential as natural colorants. The carbon to nitrogen (C/N) ratio of the respective cultivation media is one of the most important parameters that influence the production of microbial lipids and carotenoids. Thus, in the present experiment, the influence of different C/N ratios, initial glucose loadings, and ammonium concentrations of the cultivation medium on microbial cell growth and lipid and carotenoid production by the oleaginous red yeast Rhodotorula glutinis has been assessed. As a general trend, both lipid and carotenoid production increased at high C/N ratios. It was shown that not only the final C/N ratio but also the respectively applied initial carbon and nitrogen contents influenced the observed parameters. The lipid yield was not affected by different ammonium contents, while the carotenoid production significantly decreased both at low and high levels of ammonium supply. A glucose-based increase from C/N 70 to 120 did not lead to an increased lipid production, while carotenoid synthesis was positively affected. Generally, it can be asserted that lipid and carotenoid synthesis are stimulated at higher C/N ratios.  相似文献   

3.
Rhodotorula mucilaginosa has been considered as a potential industrial yeast due to its unicellular and fast-growing characteristics, and its ability to produce carotenoids, including torularhodin. However, its low total carotenoid production limits its commercial application. In this study, mutation breeding and metabolic engineering were employed to enhance carotenoid production in the R. mucilaginosa strain KC8. After chemical–physical mutagenesis, R. mucilaginosa K4 with a 67% greater concentration of carotenoids (14.47 ± 0.06 mg L?1) than R. mucilaginosa KC8 (8.67 ± 0.07 mg L?1) was obtained. To further enhance carotenoid production, gene HMG1 encoding the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase was introduced from another yeast, Saccharomyces cerevisiae, and overexpressed in R. mucilaginosa K4. The carotenoid production of HMG1-gene-overexpression transformant G1 reached 16.98 mg L?1. To relieve the feedback inhibition of ergosterol, and to down-regulate ergosterol synthesis, ketoconazole, an ergosterol synthesis inhibitor, was added at a concentration of 28 mg L?1. The carotenoid production of the transformant G1 reached 19.14 ± 0.09 mg L?1, which was 121% higher than in R. mucilaginosa KC8. This suggests that a combination of chemical–physical mutagenesis, overexpression of the HMG1 gene, and adding ketoconazole is an effective strategy to improve carotenoid production.  相似文献   

4.
Zeaxanthin is an essential nutrient for prevention of macular degeneration. However, it is limited in our diet. For the production of zeaxanthin, we have engineered zeaxanthin synthesis into a carotenoid mutant of Xanthophyllomyces dendrorhous which is blocked in astaxanthin synthesis and accumulates β-carotene instead. Two strategies were followed to reach high-yield zeaxanthin synthesis. Total carotenoid synthesis was increased by over-expression of genes HMGR, crtE, and crtYB encoding for limiting enzymes in the pathway leading to and into carotenoid biosynthesis. Then bacterial genes crtZ were used to extend the pathway from β-carotene to zeaxanthin in this mutant. The increase of total carotenoids and the formation of zeaxanthin is dependent on the number of gene copies of crtYB and crtZ integrated into the X. dendrorhous upon transformation. The highest zeaxanthin content around 500 μg/g dw was reached by shaking flask cultures after codon optimization of crtZ for Xanthophyllomyces. Stabilization of carotenoid and zeaxanthin formation in the final transformant in the absence of selection agents was achieved after passing through a sexual cycle and germination of basidiospores. The values for the transformant before and after stabilization were very similar resembling about 70 % of total carotenoids and corresponding to a conversion rate of 80 % for hydroxylation of β-carotene to zeaxanthin. The stabilized transformant allowed experimental small-scale fermentation yielding X. dendrorhous cells with a zeaxanthin content similar to the shaking flask cultures. Our result demonstrates the potential of X. dendrorhous for its development as a zeaxanthin producer and its suitability for large-scale fermentation.  相似文献   

5.
Cassava is a widely grown staple in Sub-Saharan Africa and consumed as a cheap source of calories, but the crop is deficient in micronutrients including pro-vitamin A carotenoids. This challenge is currently being addressed through biofortification breeding that relies on phenotypic selection. Gene-based markers linked to pro-vitamin A content variation are expected to increase the rate of genetic gain for this critical trait. We sequenced four candidate carotenoid genes from 167 cassava accessions representing the diversity of elite breeder lines from IITA. Total carotenoid content was determined using spectrophotometer and total β-carotene was quantified by high-performance liquid chromatography. Storage root yellowness due to carotenoid pigmentation was assessed. We carried out candidate gene association analysis that accounts for population structure and kinship using genome-wide single nucleotide polymorphisms (SNPs) generated through genotyping-by-sequencing. Significant SNPs were used to design competitive allele-specific PCR assays and validated on the larger population for potential use in marker-assisted selection breeding. Candidate gene sequencing of the genes β-carotene hydroxylase (crtRB), phytoene synthase (PSY2), lycopene epsilon cyclase (lcyE), and lycopene beta cyclase (lcyB) yielded a total of 37 SNPs. Total carotenoid content, total β-carotene, and color parameters were significantly associated with markers in the PSY2 gene. The SNPs from lcyE were significantly associated with color while those of lcyB and crtRB were not significantly associated with carotenoids or color parameters. These validated and breeder-friendly markers have potential to enhance the efficiency of selection for high β-carotene cassava, thus accelerating genetic gain.  相似文献   

6.
Change of carotenoid composition in crabs during embryogenesis   总被引:1,自引:0,他引:1  
Changes of the qualitative and quantitative compositions of carotenoids are studied at various development stages of the external hard roe, determined based on color differences, for the species C. opilio, P. camtschaticus, and P. platypus. It has been revealed that the major carotenoids of the new egg are astaxanthin and β-carotene. Intermediate products of transformation of β-carotene into astaxanthin are identified: echinenone, canthaxanthine, and phenicoxanthine. The carotenoid content per embryo for the new hard roe of C. opilio (the orange egg) amounted to 22.7 ng, of P. camtschaticus and P. platypus (the violet egg)—to 49.2 and 23.3 ng, respectively. In the hard roe at the later development stage (the brown egg) the carotenoid content was decreased to 13.1 ng in C. opilio and to 20.1 ng in P. camtschaticus. Development of embryos is accompanied by accumulation of esterified carotenoids and a decrease of β-carotene and astaxanthine concentrations in all studied species.  相似文献   

7.
The genome of the model cyanobacterium, Synechococcus sp. PCC 7002, encodes two paralogs of CruA-type lycopene cyclases, SynPCC7002_A2153 and SynPCC7002_A0043, which are denoted cruA and cruP, respectively. Unlike the wild-type strain, a cruA deletion mutant is light-sensitive, grows slowly, and accumulates lycopene, γ-carotene, and 1-OH-lycopene; however, this strain still produces β-carotene and other carotenoids derived from it. Expression of cruA from Synechocystis sp. PCC 6803 (cruA 6803) in Escherichia coli strains that synthesize either lycopene or γ-carotene did not lead to the synthesis of either γ-carotene or β-carotene, respectively. However, expression of this orthologous cruA 6803 gene (sll0147) in the Synechococcus sp. PCC 7002 cruA deletion mutant produced strains with phenotypic properties identical to the wild type. CruA6803 was purified from Synechococcus sp. PCC 7002 by affinity chromatography, and the purified protein was pale yellow-green due to the presence of bound chlorophyll (Chl) a and β-carotene. Native polyacrylamide gel electrophoresis of the partly purified protein in the presence of lithium dodecylsulfate at 4 °C confirmed that the protein was yellow-green in color. When purified CruA6803 was assayed in vitro with either lycopene or γ-carotene as substrate, β-carotene was synthesized. These data establish that CruA6803 is a lycopene cyclase and that it requires a bound Chl a molecule for activity. Possible binding sites for Chl a and the potential regulatory role of the Chl a in coordination of Chl and carotenoid biosynthesis are discussed.  相似文献   

8.
Rhodotorula glutinis TISTR 5159 is oleaginous red yeast that accumulates both lipids and carotenoids. It was cultured in palm oil mill effluent (POME) with only the addition of ammonium sulfate and Tween 20 as a suitable nitrogen source and surfactant, respectively. Response surface methodology (RSM) was applied to optimize initial chemical oxygen demand (COD) in POME, C/N ratio, and Tween 20 concentration for concomitant production of lipids and carotenoids. Among three investigated factors, C/N ratio contributed a significant effect upon lipid and carotenoids production. Analysis of response surface plots revealed that the optimum C/N ratio for the biomass was 140, while that for lipid content and carotenoids were higher at 180 and 170, respectively. The high level of the nitrogen source (with a low C/N ratio) enhanced the biomass, making the accumulation of lipids and carotenoids less preferable. Hence, the two-stage process was attempted as an optimal way for cell growth in the first stage and product accumulation in the second stage. The lipid yield and carotenoid production obtained in the two-stage process were higher than those in the one-stage process. In the semi-continuous fermentation, R. glutinis TISTR 5159 accumulated high lipid content and produced a considerably high concentration of carotenoids during long-term cultivation. Additionally, efficient COD removal by R. glutinis TISTR 5159 was observed. The biodiesel produced from yeast lipids was composed mainly of oleic and palmitic acids, similar to those from plant oil.  相似文献   

9.
Lipid production is an important indicator for evaluating microalgal species for biodiesel production. In this study, a new green microalga was isolated from a salt lake in Egypt and identified as Asteromonas gracilis. The main parameters such as biomass productivity, lipid content, and lipid productivity were evaluated in A. gracilis, cultivated in nutrient-starved (nitrogen, phosphorous), and salinity stress as a one-factor-at-a-time method. These parameters in general did not vary significantly from the standard nutrient growth media when these factors were utilized separately. Hence, response surface methodology (RSM) was assessed to study the combinatorial effect of different concentrations of the abovementioned factor conditions and to maximize the biomass productivity, lipid content, and lipid productivity of A. gracilis by determining optimal concentrations. RSM optimized media, including 1.36 M NaCl, 1 g/L nitrogen, and 0.0 g/L phosphorus recorded maximum biomass productivity, lipid content, and lipid productivity (40.6 mg/L/day, 39.3%, and 15.9 mg/L/day, respectively) which agreed well with the predicted values (40.1 mg/L/day, 43.6%, and 14.6 mg/L/day, respectively). Fatty acid profile of A. gracilis was composed of C16:0, C16:1, C18:0, C18:3, C18:2, C18:1, and C20:5, and the properties of fuel were also in agreement with international standards. These results suggest that A. gracilis is a promising feedstock for biodiesel production.  相似文献   

10.
An evolutionary engineering approach for enhancing heterologous carotenoids production in an engineered Saccharomyces cerevisiae strain was used previously to isolate several carotenoids hyper-producers from the evolved populations. β-Carotene production was characterized in the parental and one of the evolved carotenoids hyper-producers (SM14) using bench-top bioreactors to assess the impact of pH, aeration, and media composition on β-carotene production levels. The results show that with maintaining a low pH and increasing the carbon-to-nitrogen ratio (C:N) from 8.8 to 50 in standard YNB medium, a higher β-carotene production level at 25.52 ± 2.15 mg β-carotene g?1 (dry cell weight) in the carotenoids hyper-producer was obtained. The increase in C:N ratio also significantly increased carotenoids production in the parental strain by 298 % [from 5.68 ± 1.24 to 22.58 ± 0.11 mg β-carotene g?1 (dcw)]. In this study, it was shown that Raman spectroscopy is capable of monitoring β-carotene production in these cultures. Raman spectroscopy is adaptable to large-scale fermentations and can give results in near real-time. Furthermore, we found that Raman spectroscopy was also able to measure the relative lipid compositions and protein content of the parental and SM14 strains at two different C:N ratios in the bioreactor. The Raman analysis showed a higher total fatty acid content in the SM14 compared with the parental strain and that an increased C:N ratio resulted in significant increase in total fatty acid content of both strains. The data suggest a positive correlation between the yield of β-carotene per biomass and total fatty acid content of the cell.  相似文献   

11.
Provitamin A (proVA) carotenoids are converted into retinol (vitamin A) in the human body, are the subject of human nutrition studies, and are targets for biofortification of staple crops. β-Carotene has been the principal target for enhancing levels of proVA. There is recent interest in enhancing the proVA carotenoid β-cryptoxanthin since it has excellent bioavailability, and in maize may be nearly as effective as β-carotene in providing retinol to humans. This study was designed to enhance our understanding of the genetic control of: levels of β-cryptoxanthin, conversion of β-carotene into β-cryptoxanthin and zeaxanthin, conversion of β-cryptoxanthin into zeaxanthin, and flux into and within the β-branch of carotenoid pathway. A biparental population derived from two inbreds with relatively high levels of β-cryptoxanthin and different ratios of β-carotene to β-cryptoxanthin and β-cryptoxanthin to zeaxanthin was studied. Three field replications of this F2:3 population were grown, grain analyzed by liquid chromatography (LC), and composite interval mapping (CIM) performed to identify 90 quantitative trait loci (QTL) for carotenoids. We detected QTL for β-carotene/(β-cryptoxanthin + zeaxanthin) and (β-carotene + β-cryptoxanthin)/zeaxanthin ratios that contain candidate gene hydroxylase 4 (hyd4), which has not been previously associated with QTL for carotenoids in maize grain. Two color assessment methods, visual score and chromameter reading, were used to phenotype one replicate of the population for initial assessment as simple alternative measuring procedures. A common finding for LC and chromameter analysis included QTL on chromosome 5 that contain candidate gene lycopene β cyclase (lcyβ).  相似文献   

12.
A β-carotene is the most well-known dietary source as provitamin A carotenoids. Among β-carotene-producing Golden Rice varieties, PAC (Psy:2A:CrtI) rice has been previously developed using a bicistronic recombinant gene that linked the Capsicum Psy and Pantoea CrtI genes by a viral 2A sequence. To enhance β-carotene content by improving this PAC gene, its codon was optimized for rice plants (Oryza sativa L.) by minimizing the codon bias between the transgene donor and the host rice and was then artificially synthesized as stPAC (stPsy:2A:stCrtI) gene. The GC content (58.7 from 50.9%) and codon adaptation index (0.85 from 0.77) of the stPAC gene were increased relative to the original PAC gene with 76% DNA identity. Among 67 T1 seeds of stPAC transformants showing positive correlations between transgene copy numbers (up to three) and carotenoid contents, three stPAC lines with a single intact copy were chosen to minimize unintended insertional effects and compared to the representative line of the PAC transgene with respect to their codon optimization effects. Translation levels were stably increased in all three stPAC lines (3.0-, 2.5-, 2.9-fold). Moreover, a greater intensity of the yellow color of stPAC seeds was correlated with enhanced levels of β-carotene (4-fold, 2.37 μg/g) as well as total carotenoid (2.9-fold, 3.50 μg/g) relative to PAC seeds, suggesting a β-branch preference for the stPAC gene. As a result, the codon optimization of the transgene might be an effective tool in genetic engineering for crop improvement as proven at the enhanced levels of translation and carotenoid production.  相似文献   

13.
A family of carotenoid cleavage dioxygenases (CCDs) produces diverse apocarotenoid compounds via the oxidative cleavage of carotenoids as substrates. Their types are highly dependent on the action of the CCD family to cleave the double bonds at the specific position on the carotenoids. Here, we report in vivo function of the AtCCD4 gene, one of the nine members of the Arabidopsis CCD gene family, in transgenic rice plants. Using two independent single-copy rice lines overexpressing the AtCCD4 transgene, the targeted analysis for carotenoids and apocarotenoids showed the markedly lowered levels of β-carotene (74 %) and lutein (72 %) along with the changed levels of two β-carotene (C40) cleavage products, a two-fold increase of β-ionone (C13) and de novo generation of β-cyclocitral (C10) at lower levels, compared with non-transgenic rice plants. It suggests that β-carotene could be the principal substrate being cleaved at 9–10 (9′–10′) for β-ionone and 7–8 (7′–8′) positions for β-cyclocitral by AtCCD4. This study is in planta report on the generation of apocarotenal volatiles from carotenoid substrates via cleavage by AtCCD4. We further verified that the production of these volatiles was due to the action of exogenous AtCCD4 and not the expression of endogenous rice CCD genes (OsCCD1, 4a, and 4b).  相似文献   

14.
A radio-resistant bacterium, designated as strain WMA-LM9, was isolated from desert soil. 16S rRNA gene sequencing indicated that the bacterium belongs to genus Deinococcus with maximum similarity to Deinococcus radiopugnans. Deinococcus sp. strain WMA-LM9 was found to be resistant to a ultraviolet (UV) dose of 5 × 103 J/m2, hydrogen peroxide (50 mM) and mitomycin C (10 μg/ml). A carotenoid pigment was extracted using chloroform/methanol/acetone (7:5:3) and purified by high-performance liquid chromatography on a C18 analytical column. The compound was characterised as mono-esterified astaxanthin by 1H, 13C nuclear magnetic resonance and mass spectrometry. It was tested for antioxidant activity, total flavonoids and phenolic content, radioprotective potential in correlation to the prevention of protein oxidation and DNA strand breaks in vitro. The carotenoid pigment showed a very potent antioxidant activity and significantly stronger scavenging ability against superoxides, with an IC50 (concentration causing 50% inhibition of the desired activity) of 41.6 μg/ml. The total phenolic and flavonoid contents were 12.1 and 7.4 μg in terms of gallic acid and quercetin equivalents per milligram of dried mass, respectively. astaxanthin also showed a higher inhibitory action against oxidative damage to collagen, elastin and bovine serum albumin than did β-carotene. The carotenoid also inhibited breaks to DNA strands, as indicated by the results of the DNA damage prevention assay. We conclude that astaxanthin from Deinococcus sp. strain WMA-LM9 has protective effects against radiation-mediated cell damage, and it also protects cellular protein and DNA against oxidative stress and other anti-oxidant activities.  相似文献   

15.
An optimum trophic mode condition was investigated to maximize biomass and lipid productivity of Micractinium inermum NLP-F014, which grown successfully in blended wastewater medium. In this study, four trophic modes were used, including photoautotrophic, photoheterotrophic, heterotrophic and mixotrophic modes. Mixotrophic mode showed the highest biomass and lipid productivity. However, a high concentration of organics resulted the negative effect on the growth of M. inermum NLP-F014. Mixotrophic cultivation using glucose below 500 mg/L was able to produce maximum biomass productivity up to 0.90 ± 0.03 g/L/day as well as maximum lipid productivity up to 129.31 ± 0.10 mg/L/day. From lipid analysis on mixotrophic mode using glucose, the major fatty acids are oleic acid (C18:1), linoleic acid (C18:2) and palmitic acid (C16:0). These results suggest that mixotrophic mode cultivation with wastewater containing chemical oxygen demand (COD) below 500 mg/L could be applicable for biodiesel production of M. inermum NLP-F014.  相似文献   

16.
A carotenoid-producing yeast strain, isolated from the sub-arctic, marine copepod Calanus finmarchicus, was identified as Rhodosporidium babjevae (Golubev) according to morphological and biochemical characteristics and phylogenetic inference from the small-subunit ribosomal RNA gene sequence. The total carotenoids content varied with cultivation conditions in the range 66–117 μg per g dry weight. The carotenoid pool, here determined for the first time, was dominated by torularhodin and torulene, which collectively constituted 75–91% of total carotenoids under various regimes of growth. β-Carotene varied in the range 5–23%. A high-peptone/low-yeast extract (weight ratio 38:1) marine growth medium favoured the production of torularhodin, the carotenoid at highest oxidation level, with an average of 63% of total carotenoids. In standard yeast medium (YM; ratio 1.7:1), torularhodin averaged 44%, with increased proportions of the carotenes, torulene and β-carotene. The anticipated metabolic precursor γ-carotene (β,ψ-carotene) constituted a minor fraction (≤8%) under all conditions of growth.  相似文献   

17.
Microbial oil produced by the oleaginous yeast Rhodosporidium toruloides ATCC 204091 (formerly referred to as Rhodotorula glutinis) has a similar fatty acid composition to the vegetable oils and represents a potential alternative for biodiesel production. Finding strategies to improve the oil production by this yeast is desirable, as it is one of this nutrient’s limitations during the accumulation phase, as well as one of the main factors influencing the process. Therefore, the effect of single or combined nutrient limitation on lipid accumulation by R. toruloides was investigated. Biomass production and lipid accumulation by R. toruloides was improved using experimental designs in a two-step batch culture on a chemically-defined culture medium with high initial glucose concentration. For the first culture step, a Box–Behnken design was applied to optimize the main medium components’ concentrations, while maintaining a high biomass production. A biomass concentration of 44.3 g/L was reached with a medium composed of (g/L): glucose, 100; KH2PO4, 4.6; NaNO3, 13.4; MgSO4 .7H2O, 0.2; and CaCl2 .2H2O, 0.11. For the second culture step, the biomass was transferred to lipid accumulation media. A 23 factorial experimental design was conducted to investigate the effect of N, P and S limitations (individually or jointly) on lipid production from glucose (100 g/L). Lipid accumulation on dry cell mass was 77.04, 65.42, 70.13 and 69.84% for N, P, S and simultaneous nutrients’ limitations, respectively.  相似文献   

18.
19.
The lactose-negative yeast Rhodotorula glutinis 22P and the homofermentative lactic acid bacterium Lactobacillus helveticus 12A were cultured together in a cheese whey ultrafiltrate containing 42 g L−1 lactose. The chemical composition of the caroteno-protein has been determined. The carotenoid and protein contents are 248  μ g g−1 dry cells and 48.2% dry weight. Carotenoids produced by Rhodotorula glutinis 22P have been identified as β-carotene 15%, torulene 10%, and torularhodin 69%. After separating the cell mass from the microbial association, the exopolysaccharides synthesized by Rhodotorula glutinis 22P were isolated from the supernatant medium in a yield of 9.2 g L−1. The monosaccharide composition of the synthesized biopolymer was predominantly D-mannose (57.5%). Received 08 July 1996/ Accepted in revised form 11 December 1996  相似文献   

20.
We attempted to enhance the growth and total lipid production of three microalgal species, Isochrysis galbana LB987, Nannochloropsis oculata CCAP849/1, and Dunaliella salina, which are capable of accumulating high content of lipid in cells. Low nitrogen concentration under photoautotrophic conditions stimulated total lipid production, but a decreasing total lipid content and an increasing biomass were observed with increasing nitrogen concentration. Among the different carbon sources tested for heterotrophic cultivation, glucose improved the growth of all three strains. The optimal glucose concentration for growth of I. galbana LB987 and N. oculata CCAP849/1 was 0.02 M, and that of D. salina was 0.05 M. Enhanced growth occurred when they were cultivated under heterotrophic or mixotrophic conditions compared with photoautotrophic conditions. Meanwhile, high total lipid accumulation in cells occurred when they were cultivated under photoautotrophic or mixotrophic conditions. During mixotrophic cultivation, biomass production was not affected significantly by light intensity; however, both chlorophyll concentration and total lipid content increased dramatically with increasing light intensity up to 150 µmol/m2/s. The amount and composition ratio of saturated and unsaturated fatty acids in cells were different from each other depending on both species and light intensity. The highest accumulation of total fatty acid (C16–C18) among the three strains was found from cells of N. oculata CCAP849/1, which indicates that this species can be used as a source for production of biodiesel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号