首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The two obligate intracellular alphaproteobacteria Rickettsia prowazekii and Caedibacter caryophilus, a human pathogen and a paramecium endosymbiont, respectively, possess transport systems to facilitate ATP uptake from the host cell cytosol. These transport proteins, which have 65% identity at the amino acid level, were heterologously expressed in Escherichia coli, and their properties were compared. The results presented here demonstrate that the caedibacter transporter had a broader substrate than the more selective rickettsial transporter. ATP analogs with modified sugar moieties, dATP and ddATP, inhibited the transport of ATP by the caedibacter transporter but not by the rickettsial transporter. Both transporters were specific for di- and trinucleotides with an adenine base in that adenosine tetraphosphate, AMP, UTP, CTP, and GTP were not competitive inhibitors. Furthermore, the antiporter nature of both transport systems was shown by the dependence of the efflux of [alpha-32P]ATP on the influx of substrate (ATP but not dATP for rickettsiae, ATP or dATP for caedibacter).  相似文献   

2.
Glucuronokinase from Lilium longiflorum pollen was purified 30- to 40- fold on a blue dextran-Sepharose column. Substrate analogs were tested for inhibitory effects, and nucleotide substrate specificity of the enzyme was determined. Nine nucleotides were tested, and all were inhibitory when the substrate was ATP. ADP was competitive with ATP and had a Ki value of 0.23 mm. None of the other nucleotide triphosphates could effectively substitute for ATP as a nucleotide substrate. Ten mm dATP and ITP reacted only 3% as rapidly as 10 mm ATP, while the rates for 10 mm GTP, CTP, UTP, and TTP were less than 1%. The glucuronic acid analogs, methyl α-glucuronoside, methyl β-glucuronoside, β-glucuronic acid-1-phosphate, and 4-O-methylglucuronic acid were tested as possible enzyme inhibitors. The three methyl derivatives showed little or no inhibition. The β-glucuronic acid-1-phosphate was inhibitory, with 50% inhibition obtained at 1 to 3 mm depending on the concentration of the glucuronic acid. It is concluded that the glucuronic acid-binding site on the enzyme is highly selective.  相似文献   

3.
A procedure for purifying human cytoplasmic and mitochondrial deoxycytidine kinase (NTP:deoxycytidine 5'-phosphotransferase, EC 2.7.1.74) was developed. Both purified isozymes have a similar molecular weight, activation energy and catalyze the reaction by a sequential mechanism. These two isozymes differ with respect to their substrate specificities. With cytoplasmic deoxycytidine kinase, ATP, GTP and TTP have the highest reaction velocity. Pyrimidine nucleoside triphosphates have higher affinity but lower V than purine nucleoside triphosphates. Cytidine and arabinosylcytidine can serve as substrates. With mitochondrial isozyme only ATP gives the highest reaction velocity. ATP and dATP have the same Km but different V values. Besides deoxycytidine, also deoxythymidine but not cytidine or arabinosylcytidine can serve as substrates. There are also differences between these two isozymes with respect to their sensitivity to inhibition. For cytoplasmic enzyme, Br5dCyd and Iodo5dCyd are not inhibitory. Both dCTP and UTP are competitive inhibitors (Ki 0.25 and 0.5 micronM, respectively) with respect to ATP. For mitochondrial isozyme both Br5dCyd and Iodo5dCyd are inhibitory and dCTP and TTP are competitive inhibitors (Ki 2 and 10 micronM, respectively) with respect to ATP.  相似文献   

4.
The nucleoside 5'-triphosphate (NTP) substrate specificities for Ca-stimulated ATPase and ATP-dependent Ca2+ uptake activities have been examined in cardiac sarcolemma (SL) and sarcoplasmic (SR) membrane vesicles. The results indicate that SL membrane vesicles exhibit a much narrower range of NTP substrate specificities than SR membranes. In SR membrane vesicles, the Ca-stimulated Mg-dependent hydrolysis of ATP and dATP occurred at nearly equivalent rates, whereas the rates of hydrolysis of GTP, ITP, CTP, and UTP ranged from 16-33% of that for ATP. All of the above nucleotides also supported Ca2+ transport into SR vesicles; dATP was somewhat more effective than ATP while GTP, ITP, CTP, and UTP ranged from 28-30% of the activity for ATP. In the presence of oxalate, the initial rate of Ca accumulation with dATP was 4-fold higher than for ATP, whereas the activity for GTP, ITP, CTP, and UTP ranged from 35-45% of that for ATP. For the SL membranes, Ca-activated dATP hydrolysis occurred at 60% of the rate for ATP; GTP, ITP, CTP, and UTP were hydrolyzed by the SL preparations at only 7-9% of the rate for ATP. NTP-dependent Ca2+ uptake in SL membranes was supported only by ATP and dATP, with dATP 60% as effective as ATP. GTP, ITP, CTP, and UTP did not support the transport of Ca2+ by SL vesicles. The results indicate that the SL and SR membranes contain distinctly different ATP-dependent Ca2+ transport systems.  相似文献   

5.
Eukaryotic initiation factor 2 (eIF-2) is shown to bind ATP with high affinity. Binding of ATP to eIF-2 induces loss of the ability to form a ternary complex with Met-tRNAf and GTP, while still allowing, and even stimulating, the binding of mRNA. Ternary complex formation between eIF-2, GTP, and Met-tRNAf is inhibited effectively by ATP, but not by CTP or UTP. Hydrolysis of ATP is not required for inhibition, for adenyl-5'-yl imidodiphosphate (AMP-PNP), a nonhydrolyzable analogue of ATP, is as active an inhibitor; adenosine 5'-O-(thiotriphosphate) (ATP gamma S) inhibits far more weakly. Ternary complex formation is inhibited effectively by ATP, dATP, or ADP, but not by AMP and adenosine. Hence, the gamma-phosphate of ATP and its 3'-OH group are not required for inhibition, but the beta-phosphate is indispensible. Specific complex formation between ATP and eIF-2 is shown 1) by effective retention of Met-tRNAf- and mRNA-binding activities on ATP-agarose and by the ability of free ATP, but not GTP, CTP, or UTP, to effect elution of eIF-2 from this substrate; 2) by eIF-2-dependent retention of [alpha-32P]ATP or dATP on nitrocellulose filters and its inhibition by excess ATP, but not by GTP, CTP, or UTP. Upon elution from ATP-agarose by high salt concentrations, eIF-2 recovers its ability to form a ternary complex with Met-tRNAf and GTP. ATP-induced inhibition of ternary complex formation is relieved by excess Met-tRNAf, but not by excess GTP or guanyl-5'-yl imidodiphosphate (GMP-PNP). Thus, ATP does not act by inhibiting binding of GTP to eIF-2. Instead, ATP causes Met-tRNAf in ternary complex to dissociate from eIF-2. Conversely, affinity of eIF-2 for ATP is high in the absence of GTP and Met-tRNAf (Kd less than or equal to 10(-12) M), but decreases greatly in conditions of ternary complex formation. These results support the concept that eIF-2 assumes distinct conformations for ternary complex formation and for binding of mRNA, and that these are affected differently by ATP. Interaction of ATP with an eIF-2 molecule in ternary complex with Met-tRNAf and GTP promotes displacement of Met-tRNAf from eIF-2, inducing a state favorable for binding of mRNA. ATP may thus regulate the dual binding activities of eIF-2 during initiation of translation.  相似文献   

6.
ATP, 2-deoxy ATP (dATP), CTP, and UTP support isometric force and unloaded shortening velocity (Vu) to various extents (Regnier et al., Biophys. J. 74:3044-3058). Vu correlated with the rate of cross-bridge dissociation after the power stroke and the steady-state hydrolysis rate in solution, whereas force was modulated by NTP binding and cleavage. Here we studied the influence of posthydrolytic cross-bridge steps on force and fiber shortening by measuring isometric force and stiffness, the rate of tension decline (kPi) after Pi photogeneration from caged Pi, and the rate of tension redevelopment (ktr) after a sudden release and restretch of fibers. The slope of the force versus [Pi] relationship was the same for ATP, dATP, and CTP, but for UTP it was threefold less. ktr and kPi increased with increasing [Pi] with a similar slope for ATP, dATP, and CTP, but had an increasing magnitude of the relationship ATP < dATP < CTP. UTP reduced ktr but increased kPi. The results suggest that the rate constant for the force-generating isomerization increases with the order ATP < dATP < CTP < UTP. Simulations using a six-state model suggest that increasing the force-generating rate accounts for the faster kPi in dATP, CTP, and UTP. In contrast, ktr appears to be strongly affected by the rates of NTP binding and cleavage and the rate of the force-generating isomerization.  相似文献   

7.
Deoxythymidine kinases (EC 2.7.1.--) induced in HeLa TK- cells by Herpes simplex Type I and Type II viruses both had a requirement for divalent cations. The enzymes had the highest activities in the presence of Mg2+, followed by Mn2+, Ca2+, Fe2+, and in that order, whereas they were inactive in the presence of Zn2+ and Cu2+. The amount of Mg2+ required for optimal activity was dependent on the amount of ATP present, so that optimal activities were found when the concentration of Mg2+ was equal to that of ATP; an excess of Mg2+ inhibited the reaction. The activities of various nucleoside triphosphates as phosphate donors for Herpes simplex virus Type I deoxythymidine kinase were in the order: ATP = dATP = ara ATP greater than CTP greater than dCTP greater than UTP greater than dUTP greater than GTP greater than dGTP. Those for Herpes simplex virus Type II deoxythymidine kinase were in the order: CTP greater than dCTP = ara CTP greater than dATP greater than ATP greater than UTP greater than GTP greater than dUTP = dGTP. For both deoxythymidine kinases induced by Herpes simplex virus, the nucleoside triphosphates tested exerted cooperative effects. The Km values of ATP and CTP for the Herpes simplex virus Type I enzyme were 30 and 70 muM respectively; whereas those for the Herpes simplex virus Typr II enzyme were 140 and 450 muM. Studies on binding of various thymidine analogs with free 5'-OH to these deoxythymidine kinases indicated that 5-substituted ethyl-, vinyl-, allyl-, propyl-, iodo- and bromo-dUrd as well as iodo5 dCyd and bromo5 dCyd had good affinity to both enzymes. In contrast, vinyl5 Urd, iodo5 Urd and arabinosylthymidine had good affinity only to the Herpes simplex virus Type I enzyme but not to the Herpes simplex virus Type II deoxythymidine kinase. All of these thymidine analogs were competitive inhibitors, with KI values in the range of 0.25 to 1.5 muM. Herpes simplex virus Type I deoxythymidine kinase was less sensitive to either dTTP or iodo dUTP inhibition than Herpes simplex virus Type II. Both dThd and dCyd could serve as substrates and competed with each other for Herpes simplex viruses Type I and Type II induced kinases, but they differed in their Km values for these enzymes. The Km values of dThd and dCyd were 0.59 muM and 25 muM for Herpes simplex virus Type I deoxythymidine kinase; while they were 0.36 muM and 88 muM respectively for the Herpes simplex virus Type II enzyme.  相似文献   

8.
To understand why the RecA proteins of the protease-constitutive recA1202 and recA1211 mutants show very high protease activities in vivo without the usual need for DNA damage (E. S. Tessman and P. Peterson, J. Bacteriol. 163:677-687, 1985), we examined the activation of the mutant proteins by nucleoside triphosphates (NTPs) in vitro. In vivo, the mutant protease activities are resistant to inhibition by cytidine plus guanosine (C + G) in the growth medium, in contrast to the activities of weaker mutants, such as recA441, which are sensitive to C + G inhibition. We found that RecA1202 and RecA1211 proteins, in contrast to RecA+, can use natural NTPs other than ATP and dATP as cofactors in the cleavage of LexA repressor. The effectiveness of NTPs in promoting LexA cleavage by RecA1202 and RecA1211 proteins decreased in roughly the following order: dATP greater than ATP greater than UTP greater than ATP-gamma S greater than dCTP greater than CTP greater than dGTP greater than GTP greater than TTP. These mutant proteins showed higher affinities for ATP and single-stranded DNA and higher repressor cleavage activities than RecA+ protein. With the various effectors (single-stranded DNA or NTPs), the RecA1202 protein always showed more activity than RecA1211 in the cleavage of LexA repressor in vitro, which is consistent with the greater activity of the recA1202 mutant in vivo. The results explain, in part, why some recA mutants have unusually high constitutive RecA protease activity and why that activity is more or less resistant to C + G inhibition.  相似文献   

9.
An ATPase/dATPase activity found associated with the nuclear matrix-pore complex-lamina fraction isolated from embryos of Drosophila melanogaster has been characterized. In the presence of either Ca2+ or Mg2+, this activity hydrolyzed either ATP or dATP to ADP or dADP, respectively, and Pi. Hydrolysis was optimal from pH 6.5-7.2, did not require either Na+ or K+, and was not significantly inhibited by NaF, ouabain, quercetin, Na3VO4, CTP, or GTP. In contrast, hydrolysis was inhibited by N-ethylmaleimide, EDTA, and cordycepin 5'-triphosphate. In all respects tested, hydrolysis of ATP was indistinguishable from that of dATP and when incubated in the same reaction mixture, each was linearly competitive with the other. Based upon these properties, a series of direct UV photoaffinity labeling experiments was performed. Using alpha-[32P]dATP, alpha-[32P]ATP, or gamma-[32P]ATP, only a single polypeptide (Mr approximately 174,000) was photolabeled in a manner completely consistent with the enzymology of ATP and dATP hydrolysis; cell fractionation studies revealed a predominantly or exclusively nuclear localization. A polypeptide with virtually the identical mobility on sodium dodecyl sulfate-polyacrylamide gels was similarly identified as the major photolabeled species in nuclear envelope fractions obtained from chickens, opossums, rats, and guinea pigs. Thus, it seems probable that this 174-kilodalton polypeptide constitutes at least the active site-containing subunit of the major insoluble ATPase/dATPase found in structural protein subfractions prepared from higher invertebrate as well as vertebrate nuclei.  相似文献   

10.
A recombinant form of spinach (Spinacia oleracea) phosphoribosyl diphosphate (PRPP) synthase isozyme 3 resembling the presumed mature enzyme has been synthesized in an Escherichia coli strain in which the endogenous PRPP synthase gene was deleted, and has been purified to near homogeneity. Contrary to other PRPP synthases the activity of spinach PRPP synthase isozyme 3 is independent of P(i), and the enzyme is inhibited by ribonucleoside diphosphates in a purely competitive manner, which indicates a lack of allosteric inhibition by these compounds. In addition spinach PRPP synthase isozyme 3 shows an unusual low specificity toward diphosphoryl donors by accepting dATP, GTP, CTP, and UTP in addition to ATP. The kinetic mechanism of the enzyme is an ordered steady state Bi Bi mechanism with K(ATP) and K(Rib-5-P) values of 170 and 110 micrometer, respectively, and a V(max) value of 13.1 micromol (min x mg of protein)(-1). The enzyme has an absolute requirement for magnesium ions, and maximal activity is obtained at 40 degrees C at pH 7.6.  相似文献   

11.
We have examined the expression of mRNA for several P2Y nucleotide receptors by northern blot analysis in purified type 1 cerebellar astrocyte cultures. These results suggest that different P2Y subtypes could be responsible for ATP metabotropic calcium responses in single type 1 astrocytes. To identify these subtypes we have studied the pharmacological profile of ATP calcium responses using fura-2 microfluorimetry. All tested astrocytes responded to ATP and UTP stimulations evoking similar calcium transients. Most astrocytes also responded to 2-methylthioATP and ADP challenges. The agonist potency order was 2-methylthioATP > ADP > ATP = UTP. Cross-desensitization experiments carried out with ATP, UTP, and 2-methylthioATP showed that 2-methylthioATP and UTP interact with different receptors, P2Y(1) and P2Y(2) or P2Y(4). In a subpopulation of type 1 astrocytes, ATP prestimulation did not block UTP responses, and UDP elicited clear intracellular Ca(2+) concentration responses at very low concentrations. 2-MethylthioATP and UTP calcium responses exhibited different sensitivity to pertussis toxin and different inhibition patterns in response to P2 antagonists. The P2Y(1)-specific antagonist N:(6)-methyl-2'-deoxyadenosine 3', 5'-bisphosphate (MRS 2179) specifically blocked the 2-methylthio-ATP responses. We can conclude that all single astrocytes coexpressed at least two types of P2Y metabotropic receptors: P2Y(1) and either P2Y(2) or P2Y(4) receptors. Moreover, 30-40% of astrocytes also coexpressed specific pyrimidine receptors of the P2Y(6) subtype, highly selective for UDP coupled to pertussis-toxin insensitive G protein.  相似文献   

12.
S C Kowalczykowski 《Biochemistry》1986,25(20):5872-5881
The binding and cross-linking of the ATP photoaffinity analogue 8-azidoadenosine 5'-triphosphate (azido-ATP) with recA protein have been investigated, and through cross-linking inhibition studies, the binding of other nucleotide cofactors to recA protein has also been studied. The azido-ATP molecule was shown to be a good ATP analogue with regard to recA protein binding and enzymatic function by three criteria: first, the cross-linking follows a simple hyperbolic binding curve with a Kd of 4 microM and a cross-linking efficiency ranging from 10% to 70% depending on conditions; second, ATP, dATP, and adenosine 5'-O-(3-thiotriphosphate) (ATP-gamma-S) specifically inhibit the cross-linking of azido-ATP to recA protein; third, azido-ATP is a substrate for recA protein ATPase activity. Quantitative analysis of the cross-linking inhibition studies using a variety of nucleotide cofactors as competitors has shown that the binding affinity of adenine-containing nucleotides for recA protein decreases in the following order: ATP-gamma-S greater than dATP greater than ATP greater than adenylyl beta,gamma-imidodiphosphate (AMP-PNP) much greater than adenylyl beta,gamma-methylenediphosphate (AMP-PCP) approximately adenine. Similar competition studies also showed that nearly all of the other nucleotide triphosphates also bind to recA protein, with the affinity decreasing in the following order: UTP greater than GTP approximately equal to dCTP greater than dGTP greater than CTP. In addition, studies performed in the presence of single-stranded DNA demonstrated that the affinity of ATP, dATP, ATP-gamma-S, and AMP-PNP for recA protein is significantly increased. These results are discussed in terms of the reciprocal effects that nucleotide cofactors have on the modulation of recA protein--single-stranded DNA binding affinity and vice versa. In addition, it is demonstrated that nucleotide and DNA binding are necessary though not sufficient conditions for ATPase activity. The significance of this result in terms of the possible requirement of critically sized clusters of 15 or more recA protein molecules contiguously bound to DNA for ATPase activity is discussed.  相似文献   

13.
The physical basis of ATP binding and activation of DNA polymerase III holoenzyme was studied by an ultraviolet irradiation cross-linking technique. ATP and dATP were photocrosslinked to the alpha, tau, gamma, and delta subunits of holoenzyme; photocrosslinking of dATP was competitively inhibited by ATP. No photocrosslinking was observed with GTP or CTP, nor did GTP, CTP, or UTP inhibit cross-linking of ATP. ADP and adenosine 5'-O-(3-thio)-triphosphate, both potent inhibitors of ATP activation of holoenzyme, inhibited cross-linking of ATP to tau, gamma, and delta subunits, but not to the alpha subunit, suggesting that one or more of these subunits are ATP (or dATP)-binding sites. Photocrosslinking of dTTP to the ATP-activated holoenzyme was exclusively to the epsilon subunit, the dnaQ ( mutD ) gene product; dCTP and dGTP were not photocrosslinked to any subunit. Binding of dTTP was enhanced by ATP, but by no other nucleotide (or deoxynucleotide). This binding of dTTP to epsilon, a subunit likely responsible for regulation of proofreading by the holoenzyme, may function in the control of the fidelity of replication.  相似文献   

14.
The studies reported in this paper were undertaken to compare the steady-state kinetics of ATPase of purified platelet actomyosin and myosin free of actin. Actomyosin exhibits highly sigmoid kinetics with at least two interacting ATP or UTP binding sites. These studies were done at O.6 m KCl where actin and myosin are generally supposed to be dissociated in the presence of these nucleotides (M. Gallaghar, T. C. Detwiler, and A. Stracher, 1976, in Cell Motility (Goldman, R., Pollard, T., and Rosenbaum, J., eds.), Vol. 3, Part A, pp. 475–485 Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.; A. Weber, 1969, J. Gen Physiol.53, 781–791). When the dissociation of platelet actomyosin was actually investigated by a sucrose density gradient technique under conditions which were similar to those of the steady-state kinetic experiments, only partial dissociation of actin from myosin was observed. This was especially true at low nucleotide concentrations where differences in the sigmoidicity of the saturation curves of actomyosin and actin-free myosin have been observed. These findings suggest that in platelet actomyosin, actin enhances the cooperativity of nucleotide binding sites of myosin by reducing the Km for ATP or UTP. In contrast, the saturation curves of platelet myosin using either ATP or UTP as substrates are less sigmoidal and possess an intermediary plateau region, when analyzed by Hill and reciprocal plots, these data indicate both positive and negative cooperativity suggesting more than two substrate binding sites. Platelet myosin also hydrolyzed other nucleotides (the order of rates being ITP > UTP > UTP > ATP > CTP > GTP). The kinetics of ITP differed from that of ATP or UTP in that no plateau region was observed on the saturation curve. In addition, no cooperativity of ITP binding sites was seen at low substrate concentrations (up to 0.2 mm) but was instead observed at high ITP concentration. It is concluded that conformational changes in myosin induced by ITP may not be necessarily identical to those induced by ATP or UTP.  相似文献   

15.
M J Modak 《Biochemistry》1978,17(15):3116-3120
The polymerization of deoxyribunucleoside triphosphate catalyzed by terminal deoxyribonucleotidyltransferase (TdT, EC 2.7.7.31) is severely inhibited by the addition of ribonucleoside triphosphates, ATP being the most potent inhibitor. Examination of the inhibitory effect of ATP using oligo(dA)12-18 as well as activated DNA as primers revealed that (a) ATP inhibition is not due to its addition onto a 3'-OH primer terminus ad judged by the lack of incorporation of labeled ATP, although under similar conditions incorporation of GTP can be demonstrated, (b) a consistent degree of inhibition was noted independent of primer or enzyme concentration; (c) addition of ATP to an ongoing reaction promptly reduces the rate of polymerization; (d) kinetic studies indicate a competitive (with respect to substrate deoxy triphosphate) pattern of inhibition; (e) addition of excess deoxyribotriphosphate promptly relieves the inhibition. Unlike ATP, other ribotriphosphates yield a mixed pattern of inhibition partly mediated by competitive mechanisms. GTP and CTP and to a minor extent UTP are incorporated into DNA in the presence or absence of deoxy triphosphate. Furthermore, addition of ATP also inhibits incorporation of GTP and CTP.  相似文献   

16.
The synergistic effects of potential amino donors were studied in the assay of CTP synthetase in extracts of Chinese hamster fibroblasts. We found that L-glutamine was not effective as the sole amino donor, but combinations of L-glutamine with NH4HCO3, L-arginine or potassium phosphate did result in the conversion of UTP to CTP. L-arginine or potassium phosphate were also not effective when used alone, and NH4HCO3 was only slightly effective. Our studies demonstrate that the individual synergistic combinations were not additive; multiple combinations of components decreased rather than increased the formation of CTP. The synergistic combinations of L-glutamine with either NH4HCO3 or L-arginine had an absolute requirement for ATP; when ATP and PEP were absent no conversion of UTP to CTP occurred. The presence of GTP in a reaction mixture slightly increased the formation of CTP when L-glutamine and NH4HCO3 were used and substantially increased CTP formation when L-glutamine and L-arginine were used. De novo CTP synthesis was greatly reduced when nonradioactive CTP was added to an assay mixture, suggesting feedback inhibition. A TLC procedure has been developed that allows for the direct separation of UTP and CTP without requiring prior conversion to the mononucleotide or nucleoside level.  相似文献   

17.
ATPase and GTPase activities of EF-3 were similarly inhibited by various nucleotides including CTP, UTP and four dNTP's. The low specificity of EF-3 was in remarkable contrast with the high specificity of EF-1 alpha and EF-2 directed only to quanine nucleotides. The pH-activity and salt concentration-activity profiles as well as the above inhibition experiments coincidently supported that the same active site functions for ATPase and GTPase of EF-3. The stimulation of poly(Phe) synthesis was not observed with AMPPNP in place of ATP. The stimulation required ATP hydrolysis, probably catalyzed by ATPase of EF-3. Reflecting the low specificity of the ATPase, UTP, dTTP, dATP and dGTP stimulated the poly(Phe) synthesis. EF-3 appears to drive yeast elongation cycle using the energy from ATP hydrolysis by its ATPase without serving for GTP regeneration.  相似文献   

18.
Abstract: Incubation of Neuro 2A mouse neuroblastoma cells with UTP and UDP results in a concentration-dependent increase in the accumulation of inositol phosphates with equal potency and maximal effect; ATP, ADP, and 2-methylthioadenosine 5′-triphosphate were much less potent, indicating the expression of P2Y receptor in these cells. The effects of UTP and ATP were not affected by pretreatment of cells with pertussis toxin, indicating that the P2Y receptor in Neuro 2A cells is coupled to pertussis toxin-insensitive Gq protein. Short-term (10 min) treatment of cells with 1 µM 12-O-tetradecanoylphorbol 13-acetate (TPA) resulted in the inhibition of the UTP and ATP effects; this inhibitory effect was gradually attenuated with increased length of TPA treatment (1.5–6 h) and was not seen after long-term (24 h) treatment. Western blot analysis showed the expression of protein kinase C (PKC) α, ε, θ, and ζ in Neuro 2A cells. Translocation of PKCα, ε, and θ from the cytosol to the membrane was seen after 10 min or 1.5 h of treatment with TPA. However, partial and complete down-regulation of both membrane PKCα and θ were seen after 3 and 6 h of treatment, respectively. In contrast, the TPA-induced translocation of PKCε was maintained after 3–6 h of treatment, and almost complete down-regulation occurred only after a 24-h treatment. The observed TPA-induced inhibition of UTP- or ATP-stimulated phosphoinositide hydrolysis, therefore, correlated well with the extent of translocation of PKCε. Phosphoinositide hydrolysis induced by AlF4?, but not Ca2+ ionophores, was inhibited by a 10-min treatment with TPA. This was not seen after a 24-h treatment, indicating that the site of action of PKCε in the P2Y receptor/Gq protein/phospholipase Cβ pathway might be the Gq protein. This is the first study to show the existence of the P2Y receptor in Neuro 2A cells and the possible involvement of neuronal PKCε in the regulation of the receptor-mediated phosphoinositide turnover.  相似文献   

19.
9-beta-D-Arabinofuranosyladenosine triphosphate (araATP) is a potent inhibitor of DNA primase. Primase readily incorporates araATP into primers, and primers containing araAMP are then elongated by DNA polymerase alpha (pol alpha) upon addition of dNTPs. AraATP did not inhibit utilization of primers under conditions where the ability of pol alpha to elongate primers was independent of the dATP concentration. The fraction of primers elongated by pol alpha was reduced by araATP only when elongation was dependent upon the dATP concentration. When the Ki for primase was measured in terms of the inhibition of the synthesis of primers that can be utilized by pol alpha, we obtained Ki = 2.7 microM (37 degrees C) and 2.0 microM (25 degrees C). Inhibition was competitive with ATP. Inhibition of pol alpha activity by araATP was measured under conditions where primase-catalyzed primer synthesis was required for the pol alpha activity. The decreased pol alpha activity was due to primase inhibition, and at constant dATP, araATP inhibition was competitive with ATP and gave Ki = 1.2 microM, similar to the Ki for primase alone. Increasing the dATP concentration had no effect on inhibition. In combination with previously reported in vivo data, we conclude that DNA primase is the primary in vivo target of the arabinofuranosyl nucleotides, not pol alpha.  相似文献   

20.
A biochemical and cytochemical study has been made of the distribution of ATPase in mature and differentiating phloem cells of Nicotiana tabacum and of the substrate specificity and effects of fixation on enzyme activity. Homogenates of unfixed leaf midveins and midveins fixed in formaldehyde-glutaraldehyde were assayed for enzyme activity by determining the amount of Pi, liberated per milligram of protein from various substrates in a 30 min period at pH 7.2. In fresh homogenates, hydrolysis of ATP was not significantly different from that of ITP, CTP, and UTP. Hydrolysis of GTP was slightly higher than that of ATP. ATP hydrolysis by fresh homogenates was 17% more extensive than that of ADP, 76% more extensive than that of 5'-AMP, and was inhibited by fluoride and p-chloromercuribenzoate (PCMB). There was little or no hydrolysis of the competitive inhibitors 2'- and 3'-AMP nor with the alternate substrates p-nitrophenylphosphate (PNP) or β-glycerophosphate (β-GP). In homogenates of material fixed in formaldehyde-glutaraldehyde for 1¼ h, ATPase activity was 13% preserved. Hydrolysis of ATP by fixed homogenates was not significantly different from that of ADP, 5'-AMP, ITP, CTP, and GTP. Hydrolysis of UTP was lower. Fluoride and PCMB inhibited fixed ATPase activity. The results of cytochemical localization experiments using a lead phosphate precipitation technique were in agreement with the biochemical results. Similar localization patterns were obtained with the nucleoside triphosphates ATP, CTP, GTP, ITP, and UTP. Activity was also localized with ADP and 5'-AMP but not with the competitive inhibitors 2'- and 3'-AMP, nor with PNP or β-GP. Little or no reaction product was deposited in other controls incubated without substrate or with substrate plus fluoride, PCMB, or N-ethylmaleimide. ATPase activity was demonstrated chiefly at the plasma membrane of mature and differentiating phloem cells and was associated with the P-protein of mature sieve elements. It is suggested that the phloem transport system derives its energy from the demonstrated nucleoside triphosphatase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号