共查询到20条相似文献,搜索用时 15 毫秒
1.
Zooplankton can display complex habitat selection behaviours that influence the way they interact with their environments. Some species, although primarily pelagic, can exploit sediment‐borne particles as a food source or use sediments as a refuge from pelagic predation. However, this strategy may increase the exposure to other risks such as benthic predation and infection from sediment‐borne parasite transmission stages. The evolution of habitat selection behaviour in these species is thus expected to be influenced by multiple and possibly contrasting selective forces. Here, we study the browsing behaviour of the water flea Daphnia magna on bottom sediments. First, we demonstrated genetic variation for sediment browsing among D. magna genotypes from natural populations sampled across a broad geographic range. Next, we used an F2 recombinant panel to perform a QTL analysis and identified three regions in the D. magna genome contributing to variation in browsing behaviour. We also analysed the correlation between our data and previously published data on the phototactic behaviour of genotypes from the same F2 panel. Clonal means of the two behavioral traits were not correlated, suggesting that they may evolve independently. Browsing behaviour is likely to be a relevant component of habitat selection in D. magna, and its study may help to incorporate the interactions with the sediment into eco‐evolutionary models of this key freshwater species. 相似文献
2.
Mieke Jansen Anja Coors Joost Vanoverbeke Melissa Schepens Pim De Voogt Karel A. C. De Schamphelaere Luc De Meester 《Evolutionary Applications》2015,8(5):442-453
Exposure of nontarget populations to agricultural chemicals is an important aspect of global change. We quantified the capacity of natural Daphnia magna populations to locally adapt to insecticide exposure through a selection experiment involving carbaryl exposure and a control. Carbaryl tolerance after selection under carbaryl exposure did not increase significantly compared to the tolerance of the original field populations. However, there was evolution of a decreased tolerance in the control experimental populations compared to the original field populations. The magnitude of this decrease was positively correlated with land use intensity in the neighbourhood of the ponds from which the original populations were sampled. The genetic change in carbaryl tolerance in the control rather than in the carbaryl treatment suggests widespread selection for insecticide tolerance in the field associated with land use intensity and suggests that this evolution comes at a cost. Our data suggest a strong impact of current agricultural land use on nontarget natural Daphnia populations. 相似文献
3.
Cladocerans (water fleas) are planktonic crustaceans that typically have a bivalved carapace. Each valve of the carapace consists of two cuticle‐secreting epithelial layers that are separated by a hemolymphatic chamber and joined by pillar structures. Ultrastructural analyses in several species of Cladocera have shown that the carapace epithelia and pillars contain filamentous structures of unknown composition. In the present study we used a fluorescent phalloidin conjugate to show that the carapaces of three cladocerans, Daphnia magna, D. pulex, and Sida crystallina, are rich in large bundles of filamentous actin (F‐actin). In D. magna we employed confocal microscopy and orthogonal views of three‐dimensional reconstructions to show that these bundles extend radially from foci in the pillars towards the integument surfaces, and their structure is consistent with that of contractile stress fibers. Using a fluorescent lipophilic stain, DiOC6(3), we show that the F‐actin bundles are distributed in membrane‐rich regions within the carapace epithelia, and that, in the superficial epithelium, these may be large membrane‐bound organelles. In D. magna, the F‐actin bundles are present in embryonic, juvenile instar, and adult, developmental stages, and through development the bundles become larger, contain more F‐actin, and become more widely spaced. We present an alignment of the deduced amino acid sequences of six putative D. pulex actin genes, and discuss the implications that their respective sequences have on the likelihood of their inclusion into the F‐actin bundles of the carapace. Our identification of these large F‐actin bundles within the pillars of three cladocerans provides new insight into the role these structures play in influencing carapace dynamics within this order. 相似文献
4.
France Dufresne Claude Belzile Charlotte McKindsey Nicholas Beaudreau 《Invertebrate Biology》2019,138(3)
Daphnia magna and Daphnia pulex are two important model species in ecotoxicology. In daphniids, studies of the effects of contaminants have mostly focused on female life history traits, yet it would also be important to examine male reproductive traits, particularly in relation to endocrine disruptors. In this study, we developed a protocol that uses flow cytometry to measure sperm number in individual males of different species of Daphnia. We tested our protocol on 114 males from several clones of three common species of Daphnia. Sperm count varied widely among individuals and reached high numbers (up to 1.45 × 105). Positive relationships between male length and sperm number were observed in D. pulex and Daphnia pulicaria, but not in D. magna. Important inter‐clonal differences in sperm production were observed in all species, with some clones producing very little sperm. Duplicated sperm samples showed on average only 6% difference in sperm counts. Sperm counts were stable at least over a 2‐hr period and up to 5 hr for most samples. This sperm isolation protocol and flow cytometric enumeration approach will be of major interest to ecotoxicologists. 相似文献
5.
Kelsey J. R. P. Byers Kathy Darragh Sylvia Fernanda Garza Diana Abondano Almeida Ian A. Warren Pasi M. A. Rastas Richard M. Merrill Stefan Schulz W. Owen McMillan Chris D. Jiggins 《Ecology and evolution》2021,11(1):89-107
The degree to which loci promoting reproductive isolation cluster in the genome—that is, the genetic architecture of reproductive isolation—can influence the tempo and mode of speciation. Tight linkage between these loci can facilitate speciation in the face of gene flow. Pheromones play a role in reproductive isolation in many Lepidoptera species, and the role of endogenously produced compounds as secondary metabolites decreases the likelihood of pleiotropy associated with many barrier loci. Heliconius butterflies use male sex pheromones to both court females (aphrodisiac wing pheromones) and ward off male courtship (male‐transferred antiaphrodisiac genital pheromones), and it is likely that these compounds play a role in reproductive isolation between Heliconius species. Using a set of backcross hybrids between H. melpomene and H. cydno, we investigated the genetic architecture of putative male pheromone compound production. We found a set of 40 significant quantitative trait loci (QTL) representing 33 potential pheromone compounds. QTL clustered significantly on two chromosomes, chromosome 8 for genital compounds and chromosome 20 for wing compounds, and chromosome 20 was enriched for potential pheromone biosynthesis genes. There was minimal overlap between pheromone QTL and known QTL for mate choice and color pattern. Nonetheless, we did detect linkage between a QTL for wing androconial area and optix, a color pattern locus known to play a role in reproductive isolation in these species. This tight clustering of putative pheromone loci might contribute to coincident reproductive isolating barriers, facilitating speciation despite ongoing gene flow. 相似文献
6.
Due to the combined effects of global warming and eutrophication, the frequency of deleterious cyanobacterial blooms in freshwater ecosystems has increased. In line with this, local adaptation of the aquatic keystone herbivore Daphnia to cyanobacteria has received major attention. Besides microcystins, the most frequent cyanobacterial secondary metabolites in such blooms are protease inhibitors (PIs). Recently, it has been shown that a protease gene showed copy number variation between four D. magna populations that differed in tolerance to PIs. From that study, we chose two distinct populations of D. magna which had or had not coexisted with cyanobacteria in the past. By calculating FST values, we found that the two populations were genetically more distant in the protease loci than in neutral loci. Population genetic tests applied to the tolerant population revealed that positive selection was most probably acting on the gene loci of the digestive protease CT448 and CT802. We conclude that the selection of digestive proteases and subsequent reduction in copy number is the molecular basis of evolutionary changes leading to local adaptation to PIs. 相似文献
7.
Anne C. Roulin Mahendra Mariadassou Matthew D. Hall Jean‐Claude Walser Christoph Haag Dieter Ebert 《Evolution; international journal of organic evolution》2015,69(10):2747-2756
Local adaptation is a key process for the maintenance of genetic diversity and population diversification. A better understanding of the mechanisms that allow (or prevent) local adaptation constitutes a key in apprehending how and at what spatial scale it occurs. The production of resting stages is found in many taxa and reflects an adaptation to outlast adverse environmental conditions. Daphnia magna (Crustacea) can alternate between asexual and sexual reproduction, the latter being linked to dormancy, as resting stages can only be produced sexually. In this species, on a continental scale, resting‐stage production is locally adapted—that is, it is induced when the photoperiod indicates the imminence of habitat deterioration. Here, we aimed to explore whether selection is strong enough to maintain local adaptation at a scale of a few kilometers. We assessed life‐history traits of 64 D. magna clones originating from 11 populations of a metapopulation with permanent and intermittent pool habitats. We found large within‐ and between‐population variation for all dormancy‐related traits, but no evidence for the hypothesized higher resting‐stage production in animals from intermittent habitats. We discuss how gene flow, founder events, or other forms of selection might interfere with the process of local adaptation. 相似文献
8.
在4个温度(15、20、25、30℃)和3个食物浓度(1×104,1×105,5×105 cells ml-1)下研究了大型溞(Daphnia magna)淮河种群的动态和两性生殖,结果表明:(1)在实验初期,大型溞种群密度不断增加,达到最大值后种群密度呈现缓慢下降或趋于稳定的趋势.除15℃下最大瞬时增长率(1.36 d-1)出现在中食物浓度组外,20℃(1.51 d-1)、25℃(1.39 d-1)、30℃(0.69 d-1)下的最大瞬时增长率均出现在高食物浓度组.(2)相同温度下,食物浓度与大型溞最大种群密度间存在显著正相关(p<0.01).(3)相同食物浓度下,随温度升高,大型溞首次产幼溞时间(5~21d)和到达最大种群密度的时间(15~29d)缩短,首次抱卵时的体长(1.75~2.67 mm)减少.(4)在较低的温度和中食物浓度组下,大型溞产生了较多的休眠卵或卵鞍(15℃:(16.7±2.5) ind. 和20℃:(18.3±3.8) ind.);30℃下没有出现休眠卵或卵鞍.除15℃、中食物浓度组外,其它实验组均产生雄体.实验25d后,雄体密度与种群密度呈显著的相关性(30℃:p<0.05;15~25℃:p<0.01).(5)本研究结果暗示大型溞休眠卵的形成受温度、食物浓度和种群密度的共同影响,且较低的温度是大型溞休眠卵形成的主要诱因. 相似文献
9.
Extinction is ubiquitous in natural systems and the ultimate fate of all biological populations. However, the factors that contribute to population extinction are still poorly understood, particularly genetic diversity and composition. A laboratory experiment was conducted to examine the influences of environmental variation and genotype diversity on persistence in experimental Daphnia magna populations. Populations were initiated in two blocks with one, two, three, or six randomly selected and equally represented genotypes, fed and checked for extinction daily, and censused twice weekly over a period of 170 days. Our results show no evidence for an effect of the number of genotypes in a population on extinction hazard. Environmental variation had a strong effect on hazards in both experimental blocks, but the direction of the effect differed between blocks. In the first block, variable environments hastened extinction, while in the second block, hazards were reduced under variable food input. This occurred despite greater fluctuations in population size in variable environments in the second block of our experiment. Our results conflict with previous studies, where environmental variation consistently increased extinction risk. They are also at odds with previous studies in other systems that documented significant effects of genetic diversity on population persistence. We speculate that the lack of sexual reproduction, or the phenotypic similarity among our experimental lines, might underlie the lack of a significant effect of genotype diversity in our study. 相似文献
10.
11.
Approximate Bayesian computation (ABC) is useful for parameterizing complex models in population genetics. In this study, ABC was applied to simultaneously estimate parameter values for a model of metapopulation coalescence and test two alternatives to a strict metapopulation model in the well‐studied network of Daphnia magna populations in Finland. The models shared four free parameters: the subpopulation genetic diversity (θS), the rate of gene flow among patches (4Nm), the founding population size (N0) and the metapopulation extinction rate (e) but differed in the distribution of extinction rates across habitat patches in the system. The three models had either a constant extinction rate in all populations (strict metapopulation), one population that was protected from local extinction (i.e. a persistent source), or habitat‐specific extinction rates drawn from a distribution with specified mean and variance. Our model selection analysis favoured the model including a persistent source population over the two alternative models. Of the closest 750 000 data sets in Euclidean space, 78% were simulated under the persistent source model (estimated posterior probability = 0.769). This fraction increased to more than 85% when only the closest 150 000 data sets were considered (estimated posterior probability = 0.774). Approximate Bayesian computation was then used to estimate parameter values that might produce the observed set of summary statistics. Our analysis provided posterior distributions for e that included the point estimate obtained from previous data from the Finnish D. magna metapopulation. Our results support the use of ABC and population genetic data for testing the strict metapopulation model and parameterizing complex models of demography. 相似文献
12.
Local adaptation is considered to be the result of fitness trade‐offs for particular phenotypes across different habitats. However, it is unclear whether such phenotypic trade‐offs exist at the level of individual genetic loci. Local adaptation could arise from trade‐offs of alternative alleles at individual loci or by complementary sets of loci with different fitness effects of alleles in one habitat but selective neutrality in the alternative habitat. To evaluate the genome‐wide basis of local adaptation, we performed a field‐based quantitative trait locus (QTL) mapping experiment on recombinant inbred lines (RILs) created from coastal perennial and inland annual races of the yellow monkeyflower (Mimulus guttatus) grown reciprocally in native parental habitats. Overall, we detected 19 QTLs affecting one or more of 16 traits measured in two environments, most of small effect. We identified 15 additional QTL effects at two previously identified candidate QTLs [DIV ERGENCE (DIV)]. Significant QTL by environment interactions were detected at the DIV loci, which was largely attributable to genotypic differences at a single field site. We found no detectable evidence for trade‐offs for any one component of fitness, although DIV2 showed a trade‐off involving different fitness traits between sites, suggesting that local adaptation is largely controlled by non‐overlapping loci. This is surprising for an outcrosser, implying that reduced gene flow prevents the evolution of individuals adapted to multiple environments. We also determined that native genotypes were not uniformly adaptive, possibly reflecting fixed mutational load in one of the populations. 相似文献
13.
Population extinction is a fundamental ecological process which may be aggravated by the exchange of organisms between productive (source) and unproductive (sink) habitat patches. The extent to which such source‐sink exchange affects extinction rates is unknown. We conducted an experiment in which metapopulation effects could be distinguished from source‐sink effects in laboratory populations of Daphnia magna. Time‐to‐extinction in this experiment was maximized at intermediate levels of habitat fragmentation, which is consistent with a minority of theoretical models. These results provided a baseline for comparison with experimental treatments designed to detect effects of concentrating resources in source patches. These treatments showed that source‐sink configurations increased population variability (the coefficient of variation in abundance) and extinction hazard compared with homogeneous environments. These results suggest that where environments are spatially heterogeneous, accurate assessments of extinction risk will require understanding the exchange of organisms among population sources and sinks. Such heterogeneity may be the norm rather than the exception because of both the intrinsic heterogeneity naturally exhibited by ecosystems and increasing habitat fragmentation by human activity. 相似文献
14.
Jong‐Yun Choi Seong‐Ki Kim Geung‐Hwan La Kwang‐Hyeon Chang Dong‐Kyun Kim Keon‐Young Jeong Min S. Park Gea‐Jae Joo Hyun‐Woo Kim Kwang‐Seuk Jeong 《Ecology and evolution》2016,6(9):2817-2832
The objective of our study was to investigate sexual reproduction of Daphnia magna associated with mating behaviors and hatching rates, according to different algal food sources. Since a diatom is known to contain more abundant long‐chain poly unsaturated fatty acids (PUFAs), we hypothesized that the diatom‐consuming D. magna would exhibit more successful reproduction rates. Upon the hypothesis, we designed three experiments using two algal species, a green alga (Chlorella vulgaris) and a diatom (Stephanodiscus hantzschii). From the results, we found that the mating frequency and copulation duration increased in the treatment with S. hantzschii, resulting in a significant increase of hatching rates of resting eggs. In the other two repetitive mating strategies (e.g., one female vs. multiple males, and one male vs. multiple females), we found that the hatching rates of resting eggs were greater in the S. hantzschii treatment. In addition to the mating strategy, male body size significantly increased in the diatom treatment, hence average diameter of penis was also statistically different among the treatments (greater diameter in the S. hantzschii treatment). To examine the effect of algal food quality, we estimated quantity of fatty acids in the two algal species. Our result showed that S. hantzschii had a higher proportion of long‐chain PUFAs than C. vulgaris. Furthermore, a stable isotope analysis revealed that carbon and nitrogen originated from S. hantzschii were more assimilated to D. magna. In summary, our study manifested that diatom consumption of D. magna leads to more successful sexual reproduction. We then discussed how the diatom consumption of zooplankton influences food web dynamics in a freshwater ecosystem. 相似文献
15.
The evidence for adaptive phenotypic differentiation in mobile marine species remains scarce, partly due to the difficulty of obtaining quantitative genetic data to demonstrate the genetic basis of the observed phenotypic differentiation. Using a combination of phenotypic and molecular genetic approaches, we elucidated the relative roles of natural selection and genetic drift in explaining lateral plate number differentiation in threespine sticklebacks (Gasterosteus aculeatus) across the entire Baltic Sea basin (approximately 392 000 km2). We found that phenotypic differentiation (PST = 0.213) in plate number exceeded that in neutral markers (FST = 0.008), suggesting an adaptive basis for the observed differentiation. Because a close correspondence was found between plate phenotype and genotype at a quantitative trait loci (QTL; STN381) tightly linked to the gene (Ectodysplasin) underlying plate variation, the evidence for adaptive differentiation was confirmed by comparison of FST at the QTL (FSTQ = 0.089) with FST at neutral marker loci. Hence, the results provide a comprehensive demonstration of adaptive phenotypic differentiation in a high‐gene‐flow marine environment with direct, rather than inferred, verification for the genetic basis of this differentiation. In general, the results illustrate the utility of PST–FST–FSTQ comparisons in uncovering footprints of natural selection and evolution and add to the growing evidence for adaptive genetic differentiation in high‐gene‐flow marine environments, including that of the relatively young Baltic Sea. 相似文献
16.
K. Natan Hoefnagel E. H. J. de Vries Eelke Jongejans Wilco C. E. P. Verberk 《Ecology and evolution》2018,8(8):3828-3841
Ectotherms tend to grow faster, but reach a smaller size when reared under warmer conditions. This temperature‐size rule (TSR) is a widespread phenomenon. Despite the generality of this pattern, no general explanation has been found. We therefore tested the relative importance of two proposed mechanisms for the TSR: (1) a stronger increase in development rate relative to growth rate at higher temperatures, which would cause a smaller size at maturity, and (2) resource limitation placing stronger constraints on growth in large individuals at higher temperatures, which would cause problems with attaining a large size in warm conditions. We raised Daphnia magna at eight temperatures to assess their size at maturity, asymptotic size, and size of their offspring. We used three clonal lines that differed in asymptotic size and growth rate. A resource allocation model was developed and fitted to our empirical data to explore the effect of both mechanisms for the TSR. The genetic lines of D. magna showed different temperature dependence of growth and development rates resulting in different responses for size at maturity. Also, at warm temperatures, growth was constrained in large, but not in small individuals. The resource allocation model could fit these empirical data well. Based on our empirical results and model explorations, the TSR of D. magna at maturity is best explained by a stronger increase in development rate relative to growth rate at high temperature, and the TSR at asymptotic size is best explained by a size‐dependent and temperature‐dependent constraint on growth, although resource limitation could also affect size at maturity. In conclusion, the TSR can take different forms for offspring size, size at maturity, and asymptotic size and each form can arise from its own mechanism, which could be an essential step toward finding a solution to this century‐old puzzle. 相似文献
17.
Cyclical parthenogenesis presents an interesting challenge for the study of sex allocation, as individuals’ allocation decisions involve both the choice between sexual and asexual reproduction, and the choice between sons and daughters. Male production is therefore expected to depend on ecological and evolutionary drivers of overall investment in sex, and those influencing male reproductive value during sexual periods. We manipulated experimental populations, and made repeated observations of natural populations over their growing season, to disentangle effects of population density and the timing of sex from effects of adult sex ratio on sex allocation in cyclically parthenogenetic Daphnia magna. Male production increased with population density, the major ecological driver of sexual reproduction; however, this response was dampened when the population sex ratio was more male‐biased. Thus, in line with sex ratio theory, we show that D. magna adjust offspring sex allocation in response to the current population sex ratio. 相似文献
18.
Verena A. Kottler Axel Künstner Iris Koch Matthias Flötenmeyer Tobias Langenecker Margarete Hoffmann Eshita Sharma Detlef Weigel Christine Dreyer 《Pigment cell & melanoma research》2015,28(5):545-558
Guppies (Poecilia reticulata) are colorful fish that have attracted the attention of pigmentation researchers for almost a century. Here, we report that the blond phenotype of the guppy is caused by a spontaneous mutation in the guppy ortholog of adenylate cyclase 5 (adcy5). Using double digest restriction site‐associated DNA sequencing (ddRADseq) and quantitative trait locus (QTL) mapping, we linked the blond phenotype to a candidate region of 118 kb, in which we subsequently identified a 2‐bp deletion in adcy5 that alters splicing and leads to a premature stop codon. We show that adcy5, which affects life span and melanoma growth in mouse, is required for melanophore development and formation of male orange pigmentation traits in the guppy. We find that some components of the male orange pattern are particularly sensitive to loss of Adcy5 function. Our work thus reveals a function for Adcy5 in patterning of fish color ornaments. 相似文献
19.
Understanding the genetic properties of adaptive trait evolution is a fundamental crux of biological inquiry that links molecular processes to biological diversity. Important uncertainties persist regarding the genetic predictability of adaptive trait change, the role of standing variation, and whether adaptation tends to result in the fixation of favored variants. Here, we use the recurrent evolution of enhanced ethanol resistance in Drosophila melanogaster during this species’ worldwide expansion as a promising system to add to our understanding of the genetics of adaptation. We find that elevated ethanol resistance has evolved at least three times in different cooler regions of the species’ modern range—not only at high latitude but also in two African high‐altitude regions. Applying a bulk segregant mapping framework, we find that the genetic architecture of ethanol resistance evolution differs substantially not only between our three resistant populations, but also between two crosses involving the same European population. We then apply population genetic scans for local adaptation within our quantitative trait locus regions, and we find potential contributions of genes with annotated roles in spindle localization, membrane composition, sterol and alcohol metabolism, and other processes. We also apply simulation‐based analyses that confirm the variable genetic basis of ethanol resistance and hint at a moderately polygenic architecture. However, these simulations indicate that larger‐scale studies will be needed to more clearly quantify the genetic architecture of adaptive evolution and to firmly connect trait evolution to specific causative loci. 相似文献
20.
Thomas Dumartinet Catherine Abadie Franois Bonnot Franoise Carreel Vronique Roussel Rmy Habas Reina Teresa Martinez Luis Perez‐Vicente Jean Carlier 《Evolutionary Applications》2020,13(4):824-836
Understanding the mechanisms involved in pathogen adaptation to quantitative resistance in plants has a key role to play in establishing durable strategies for resistance deployment, especially in perennial crops. The erosion of quantitative resistance has been recently suspected in Cuba and the Dominican Republic for a major fungal pathogen of such a crop: Pseudocercospora fijiensis, causing black leaf streak disease on banana. This study set out to test whether such erosion has resulted from an adaptation of P. fijiensis populations, and to determine whether or not the adaptation is local. Almost 600 P. fijiensis isolates from Cuba and the Dominican Republic were sampled using a paired‐population sampling design on resistant and susceptible banana varieties. A low genetic structure of the P. fijiensis populations was detected in each country using 16 microsatellite markers. Cross‐inoculation experiments using isolates from susceptible and resistant cultivars were carried out, measuring a quantitative trait (the diseased leaf area) related to pathogen fitness on three varieties. A further analysis based on those data suggested the existence of a local pattern of adaptation to resistant cultivars in both of the study countries, due to the existence of specific (or genotype by genotype) host–pathogen interactions. However, neither cost nor benefit effects for adapted populations were found on the widely used “Cavendish” banana group. These results highlight the need to study specific host–pathogen interactions and pathogen adaptation on a wide range of quantitative resistance phenotypes in banana, in order to develop durable strategies for resistance deployment. 相似文献