首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Accelerated hatching is one of few defences available to embryos, and is effective against many egg-stage risks. We present the first analysis of genetic variation in hatching plasticity, examining premature hatching of American toad embryos in response to pathogenic water moulds. We reared eggs from half- and full-sib families in the presence and absence of water mould. Hatching age and hatchling size showed low cross-environment genetic correlations, suggesting that early-induced hatching can evolve largely independently of spontaneous hatching. We found less phenotypic and additive genetic variation for early-induced hatching than spontaneous hatching, and a stronger correlation between egg and induced hatchling sizes. Directional selection by the pathogen may have eroded variation in early-induced hatching, pushing it against the constraint of hatching gland development. Later hatching has a second, muscular component. This pattern of variation may characterize defences based on developmental transitions, although other inducible defences show more variation in induced phenotypes.  相似文献   

2.
In animals with complex life cycles, fitness trade-offs across life stages determine the optimal time for transitions between stages. If these trade-offs vary predictably, adaptive plasticity in the timing of life history transitions may evolve. For instance, embryos of many species are capable of accelerating hatching to escape from egg predation and other hazards, but for plasticity in hatching timing to be selectively maintained, early hatching must also entail costs, probably in subsequent life stages. However the post-hatching environment, which influences this cost, is variable in nature. We assessed how two elements of the post-hatching environment, predator species and age structure created by hatching age plasticity, affect costs of hatching early in red-eyed treefrogs, Agalychnis callidryas. Red-eyed treefrog embryos were induced to hatch at the onset of hatching competence or near the peak of spontaneous hatching and exposed to one of three insect predators in single or mixed hatching-age treatments. Age structure created by hatching-age plasticity did not affect tadpole survivorship or growth; however, the consequences of hatching timing depended on predator species and foraging mode. Tadpoles that were induced to hatch early experienced initially higher mortality rates only with the more actively foraging predator. Nonetheless, mortality costs of accelerated hatching were apparent with all predators once we factored in the longer duration of exposure that early hatchlings experience in nature. This study suggests that extended exposure of young larvae to predators may be a general cost of early hatching, explaining why spontaneous hatching occurs later in life across variable environmental contexts.  相似文献   

3.
The identification and characterization of age‐related degenerative changes is a critical goal because it can elucidate mechanisms of aging biology and contribute to understanding interventions that promote longevity. Here, we document a novel, age‐related degenerative change in C. elegans hermaphrodites, an important model system for the genetic analysis of longevity. Matricidal hatching—intra‐uterine hatching of progeny that causes maternal death—displayed an age‐related increase in frequency and affected ~70% of mated, wild‐type hermaphrodites. The timing and incidence of matricidal hatching were largely independent of the levels of early and total progeny production and the duration of male exposure. Thus, matricidal hatching appears to reflect intrinsic age‐related degeneration of the egg‐laying system rather than use‐dependent damage accumulation. Consistent with this model, mutations that extend longevity by causing dietary restriction significantly delayed matricidal hatching, indicating age‐related degeneration of the egg‐laying system is controlled by nutrient availability. To identify the underlying tissue defect, we analyzed serotonin signaling that triggers vulval muscle contractions. Mated hermaphrodites displayed an age‐related decline in the ability to lay eggs in response to exogenous serotonin, indicating that vulval muscles and/or a further downstream function that is necessary for egg laying degenerate in an age‐related manner. By characterizing a new, age‐related degenerative event displayed by C. elegans hermaphrodites, these studies contribute to understanding a frequent cause of death in mated hermaphrodites and establish a model of age‐related reproductive complications that may be relevant to the birthing process in other animals such as humans.  相似文献   

4.
Two ways in which organisms adapt to variable environments are phenotypic plasticity and bet‐hedging. Theory suggests that bet‐hedging is expected to evolve in unpredictable environments for which reliable cues indicative of future conditions (or season length) are lacking. Alternatively, if reliable cues exist indicating future conditions, organisms will be under selection to produce the most appropriate phenotype —that is, adaptive phenotypic plasticity. Here, we experimentally test which of these modes of adaptation are at play in killifish that have evolved an annual life cycle. These fish persist in ephemeral pools that completely dry each season through the production of eggs that can remain in developmental arrest, or diapause, buried in the soil, until the following rainy season. Consistent with diversified bet‐hedging (a risk spreading strategy), we demonstrate that the eggs of the annual killifish Nothobranchius furzeri exhibit variation at multiple levels—whether or not different stages of diapause are entered, for how long diapause is entered, and the timing of hatching—and this variation persists after controlling for both genetic and environmental sources of variation. However, we show that phenotypic plasticity is also present in that the proportion of eggs that enter diapause is influenced by environmental factors (temperature and light level) that vary seasonally. In nature there is typically a large parameter zone where environmental cues are somewhat correlated with seasonality, but not perfectly so, such that it may be advantageous to have a combination of both bet‐hedging and plasticity.  相似文献   

5.
Responses to sexually antagonistic selection are thought to be constrained by the shared genetic architecture of homologous male and female traits. Accordingly, adaptive sexual dimorphism depends on mechanisms such as genotype‐by‐sex interaction (G×S) and sex‐specific plasticity to alleviate this constraint. We tested these mechanisms in a population of Xiphophorus birchmanni (sheepshead swordtail), where the intensity of male competition is expected to mediate intersexual conflict over age and size at maturity. Combining quantitative genetics with density manipulations and analysis of sex ratio variation, we confirm that maturation traits are dimorphic and heritable, but also subject to large G×S. Although cross‐sex genetic correlations are close to zero, suggesting sex‐linked genes with important effects on growth and maturation are likely segregating in this population, we found less evidence of sex‐specific adaptive plasticity. At high density, there was a weak trend towards later and smaller maturation in both sexes. Effects of sex ratio were stronger and putatively adaptive in males but not in females. Males delay maturation in the presence of mature rivals, resulting in larger adult size with subsequent benefit to competitive ability. However, females also delay maturation in male‐biased groups, incurring a loss of reproductive lifespan without apparent benefit. Thus, in highly competitive environments, female fitness may be limited by the lack of sex‐specific plasticity. More generally, assuming that selection does act antagonistically on male and female maturation traits in the wild, our results demonstrate that genetic architecture of homologous traits can ease a major constraint on the evolution of adaptive dimorphism.  相似文献   

6.
For species with complex life cycles, transitions between life stages result in niche shifts that are often associated with evolutionary trade-offs. When conditions across life stages are unpredictable, plasticity in niche shift timing may be adaptive; however, factors associated with clutch identity (e.g., genetic or maternal) may influence the effects of such plasticity. The red-eyed treefrog (Agalychnis callidryas) is an ideal organism for investigating the effects of genetics and life stage switch point timing because embryos exhibit adaptive phenotypic plasticity in hatching time. In this study, we evaluated the effects of experimentally manipulated hatching time and clutch identity on antipredator behavior of tadpoles and on developmental traits of metamorphs, including larval period, mass, SVL, and jumping ability. We found that in the presence of dragonfly nymph predator cues at 21 days post-oviposition, tadpoles reduced both their activity level and height in the water column. Furthermore, early-hatched tadpoles were less active than late-hatched tadpoles of the same age. This difference in behavior patterns of early- and late-hatched tadpoles may represent an adaptive response due to a longer period of susceptibility to odonate predators for early-hatched tadpoles, or it may be a carry-over effect mediated by early exposure to an environmental stressor (i.e., induction of early hatching). We also found that hatching time affected both behavioral traits and developmental traits, but its effect on developmental traits varied significantly among clutches. This study shows that a single early-life event may influence a suite of factors during subsequent life stages and that some of these effects appear to be dependent on clutch identity. This interaction may represent an evolutionary response to a complex life cycle and unpredictable environments, regardless of whether the clutch differences are due to additive genetic variance or maternal effects.  相似文献   

7.
Several ecological and genetic factors affect the diet specialization of insect herbivores. The evolution of specialization may be constrained by lack of genetic variation in herbivore performance on different food‐plant species. By traditional view, trade‐offs, that is, negative genetic correlations between the performance of the herbivores on different food‐plant species favour the evolution of specialization. To investigate whether there is genetic variation or trade‐offs in herbivore performance between different food plants that may influence specialization of the oligophagous seed‐eating herbivore, Lygaeus equestris (Heteroptera), we conducted a feeding trial in laboratory using four food‐plant species. Although L. equestris is specialized on Vincetoxicum hirundinaria (Apocynaceae) to some degree, it occasionally feeds on alternative food‐plant species. We did not find significant negative genetic correlations between mortality, developmental time and adult biomass of L. equestris on the different food‐plant species. We found genetic variation in mortality and developmental time of L. equestris on some of the food plants, but not in adult biomass. Our results suggest that trade‐offs do not affect adaptation and specialization of L. equestris to current and novel food‐plant species, but the lack of genetic variation may restrict food‐plant utilization. As food‐plant specialization of herbivores may have wide‐ranging effects, for instance, on coevolving plant–herbivore interactions and speciation, it is essential to thoroughly understand the factors behind the specialization process. Our findings provide valuable information about the role of genetic factors in food‐plant specialization of this oligophagous herbivore.  相似文献   

8.
Phenotypic plasticity can enhance a species’ ability to persist in a new and stressful environment, so that reaction norms are expected to evolve as organisms encounter novel environments. Biological invasions provide a robust system to investigate such changes. We measured the rates of early growth and development in tadpoles of invasive cane toads (Rhinella marina) in Australia, from a range of locations and at different larval densities. Populations in long‐colonized areas have had the opportunity to adapt to local conditions, whereas at the expanding range edge, the invader is likely to encounter challenges that are both novel and unpredictable. We thus expected invasion‐vanguard populations to exhibit less phenotypic plasticity than range‐core populations. Compared to clutches from long‐colonized areas, clutches from the invasion front were indeed less plastic (i.e. rates of larval growth and development were less sensitive to density). In contrast, those rates were highly variable in clutches from the invasion front, even among siblings from the same clutch under standard conditions. Clutches with highly variable rates of growth and development under constant conditions had lower phenotypic plasticity, suggesting a trade‐off between these two strategies. Although these results reveal a strong pattern, further investigation is needed to determine whether these different developmental strategies are adaptive (i.e. adaptive phenotypic plasticity vs. bet‐hedging) or instead are driven by geographic variation in genetic quality or parental effects.  相似文献   

9.
Organismal performance in a changing environment is dependent on temporal patterns and duration of exposure to thermal variability. We experimentally assessed the time‐dependent effects of thermal variability (i.e., patterns of thermal exposure) on the hatching performance of Drosophila melanogaster. Flies were collected in central Chile and maintained for four generations in laboratory conditions. Fourth generation eggs were acclimated to different thermal fluctuation cycles until hatching occurred. Our results show that the frequency of extreme thermal events has a significant effect on hatching success. Eggs exposed to 24 hr cycles of thermal fluctuation had a higher proportion of eggs that hatched than those acclimated to shorter (6 and 12 hr) and longer cycles (48 hr). Furthermore, eggs subjected to frequent thermal fluctuations hatched earlier than those acclimated to less frequent thermal fluctuations. Overall, we show that, egg‐to‐adult viability is dependent on the pattern of thermal fluctuations experienced during ontogeny; thus, the pattern of thermal fluctuation experienced by flies has a significant and until now unappreciated impact on fitness.  相似文献   

10.
Offspring size is a key characteristic in life histories, reflecting maternal investment per offspring and, in marine invertebrates, being linked to mode of development. Few studies have focused explicitly on intraspecific variation and plasticity in developmental characteristics such as egg size and hatching size in marine invertebrates. We measured over 1000 eggs and hatchlings of the marine gastropods Crepidula atrasolea and Crepidula ustulatulina from two sites in Florida. A common‐garden experiment showed that egg size and hatching size were larger at 23 °C than at 28 °C in both species. In C. ustulatulina, the species with significant genetic population structure in cytochrome oxidase I (COI), there was a significant effect of population: Eggs and hatchlings from the Atlantic population were smaller than those from the Gulf. The two populations also differed significantly in hatchling shape. Population effects were not significant in C. atrasolea, the species with little genetic population structure in COI, and were apparent through their marginal interaction with temperature. In both species, 60–65% of the variation in egg size and hatching size was a result of variation among females and, in both species, the population from the Atlantic coast showed greater temperature‐mediated plasticity than the population from the Gulf. These results demonstrate that genetic differentiation among populations, plastic responses to variation in environmental temperature, and differences between females all contribute significantly to intraspecific variation in egg size and hatching size. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 489–499.  相似文献   

11.
Both traits and the plasticity of these traits are subject to evolutionary change and therefore affect the long‐term persistence of populations and their role in local communities. We subjected clones from 12 different populations of Alnus glutinosa, located along a latitudinal gradient, to two different temperature treatments, to disentangle the distribution of genetic variation in timing of bud burst and bud burst plasticity within and among genotypes, populations, and regions. We calculated heritability and evolvability estimates for bud burst and bud burst plasticity and assessed the influence of divergent selection relative to neutral drift. We observed higher levels of heritability and evolvability for bud burst than for its plasticity, whereas the total phenological heritability and evolvability (i.e. combining timing of bud burst and bud burst plasticity) suggest substantial evolutionary potential with respect to phenology. Earlier bud burst was observed for the low‐latitudinal populations than for the populations from higher latitudes, whereas the high‐latitudinal populations did not show the expected delayed bud burst. This countergradient variation can be due to evolution towards increased phenological plasticity at higher latitudes. However, because we found little evidence for adaptive differences in phenological plasticity across the latitudinal gradient, we suggest differential frost tolerance as the most likely explanation for the observed phenological patterns in A. glutinosa.  相似文献   

12.
Most animals begin life in eggs, protected and constrained by a capsule, shell, or other barrier. As embryos develop, their needs and abilities change, altering the costs and benefits of encapsulation, and the risks and opportunities of the outside world. When the cost/benefit ratio is better outside the egg, animals should hatch. Adaptive timing of hatching evolves in this context. However, many environmental variables affect the optimal timing of hatching so there is often no consistent best time. Across a broad range of animals, from flatworms and snails to frogs and birds, embryos hatch at different times or at different developmental stages in response to changing risks or opportunities. Embryos respond to many types of cues, assessed via different sensory modalities. Some responses appear simple. Others are surprisingly complex and sophisticated. Parents also manipulate the timing of hatching. The number and breadth of examples of cued hatching suggest that, in the absence of specific information, we should not assume that hatching timing is fixed. Our challenge now is to integrate information on the timing of hatching across taxa to better understand the diversity of patterns and how they are structured in relation to different types of environmental and developmental variation. As starting points for comparative studies, I: (1) suggest a framework based on heterokairy-individual, plastic variation in the rate, timing, or sequence of developmental events and processes-to describe patterns and mechanisms of variation in the timing of hatching; (2) briefly review the distribution of environmentally cued hatching across the three major clades of Bilateria, highlighting the diverse environmental factors and mechanisms involved; and (3) discuss factors that shape the diversity of plastic and fixed timing of hatching, drawing on evolutionary theory on phenotypic plasticity which directs our attention to fitness trade-offs, environmental heterogeneity, and predictive cues. Combining mechanistic and evolutionary perspectives is necessary because development changes organismal interactions with the environment. Integrative and comparative studies of the timing of hatching will improve our understanding of embryos as both evolving and developing organisms.  相似文献   

13.
Populations often differ in phenotype and these differences can be caused by adaptation by natural selection, random neutral processes, and environmental responses. The most straightforward way to divide mechanisms that influence phenotypic variation is heritable variation and environmental‐induced variation (e.g., plasticity). While genetic variation is responsible for most heritable phenotypic variation, part of this is also caused by nongenetic inheritance. Epigenetic processes may be one of the underlying mechanisms of plasticity and nongenetic inheritance and can therefore possibly contribute to heritable differences through drift and selection. Epigenetic variation may be influenced directly by the environment, and part of this variation can be transmitted to next generations. Field screenings combined with common garden experiments will add valuable insights into epigenetic differentiation, epigenetic memory and can help to reveal part of the relative importance of epigenetics in explaining trait variation. We explored both genetic and epigenetic diversity, structure and differentiation in the field and a common garden for five British and five French Scabiosa columbaria populations. Genetic and epigenetic variation was subsequently correlated with trait variation. Populations showed significant epigenetic differentiation between populations and countries in the field, but also when grown in a common garden. By comparing the epigenetic variation between field and common garden‐grown plants, we showed that a considerable part of the epigenetic memory differed from the field‐grown plants and was presumably environmentally induced. The memory component can consist of heritable variation in methylation that is not sensitive to environments and possibly genetically based, or environmentally induced variation that is heritable, or a combination of both. Additionally, random epimutations might be responsible for some differences as well. By comparing epigenetic variation in both the field and common environment, our study provides useful insight into the environmental and genetic components of epigenetic variation.  相似文献   

14.
Among most species of birds, survival from hatching throughout the first year of life is generally lower than subsequent survival rates. Survival of young birds during their first year may depend on a combination of selection, learning, unpredictable resources, and environmental events (i.e., post‐fledging factors). However, knowledge about post‐fledging development in long‐lived species is usually limited due to a lengthy immature stage when individuals are generally unobservable. Therefore, pre‐fledging characteristics are often used to predict the survival of young birds. We assessed effects of nestling growth rates, hatching date, hatching asynchrony, brood size and rank order after brood reduction, and sex on first‐year survival of 137 fledglings using a mark‐resighting analysis. We found that the survival probability (Φ1yr = 0.39) of first‐year Herring Gulls (Larus argentatus) in our study colony located at the outer port of Zeebrugge (Belgium) was lower than that of older individuals (Φ>1yr = 0.75). All 10 models best supported by our data included nestling growth rate, suggesting that variability in first‐year survival may be linked primarily to individual variation in growth. First‐year survival was negatively correlated with hatching date and rank order after brood reduction. Hence, carry‐over effects of breeding season events such as timing of breeding, early development, and social status had an influence on survival of Herring Gulls after fledging. Furthermore, we found sex‐biased mortality in first‐year Herring Gulls, with females (Φ1yr = 0.45) surviving better than males (Φ1yr = 0.38). Although adult survival is generally regarded as the key parameter driving population trajectories in long‐lived species, juvenile survival has recently been acknowledged as an important source of variability in population growth rates. Thus, increasing our knowledge of factors affecting age‐specific survival rates is necessary to improve our understanding of population dynamics and ultimately life‐history variation.  相似文献   

15.
A thorough understanding of the life cycles underlying the demography of wild species is limited by the difficulty of observing hidden life‐history traits, such as embryonic development. Major aspects of embryonic development, such as the rate and timing of development, and maternal–fetal interactions can be critical features of early‐life fitness and may impact population trends via effects on individual survival. While information on development in wild snakes and lizards is particularly limited, the repeated evolution of viviparity and diversity of reproductive mode in this clade make it a valuable subject of study. We used field‐portable ultrasonography to investigate embryonic development in two sympatric garter snake species, Thamnophis sirtalis and Thamnophis elegans in the Sierra Nevada mountains of California. This approach allowed us to examine previously hidden reproductive traits including the timing and annual variation in development and differences in parental investment in young. Both species are viviparous, occupy similar ecological niches, and experience the same annual environmental conditions. We found that T. sirtalis embryos were more developmentally advanced than T. elegans embryos during June of three consecutive years. We also found that eggs increased in volume more substantially across developmental stages in T. elegans than in T. sirtalis, indicating differences in maternal provisioning of embryos via placental transfer of water. These findings shed light on interspecific differences in parental investment and timing of development within the same environmental context and demonstrate the value of field ultrasonography for pursuing questions relating to the evolution of reproductive modes, and the ecology of development.  相似文献   

16.
Ecological conditions can influence not only the expression of a phenotype, but also the heritability of a trait. As such, heritable variation for a trait needs to be studied across environments. We have investigated how pathogen challenge affects the expression of MHC genes in embryos of the lake whitefish Coregonus palaea. In order to experimentally separate paternal (i.e. genetic) from maternal and environmental effects, and determine whether and how stress affects the heritable variation for MHC expression, embryos were produced in full‐factorial in vitro fertilizations, reared singly, and exposed at 208 degree days (late‐eyed stage) to either one of two strains of Pseudomonas fluorescens that differ in their virulence characteristics (one increased mortality, while both delayed hatching time). Gene expression was assessed 48 h postinoculation, and virulence effects of the bacterial infection were monitored until hatching. We found no evidence of MHC class II expression at this stage of development. MHC class I expression was markedly down‐regulated in reaction to both pseudomonads. While MHC expression could not be linked to embryo survival, the less the gene was expressed, the earlier the embryos hatched within each treatment group, possibly due to trade‐offs between immune function and developmental rate or further factors that affect both hatching timing and MHC expression. We found significant additive genetic variance for MHC class I expression in some treatments. That is, changes in pathogen pressures could induce rapid evolution in MHC class I expression. However, we found no additive genetic variance in reaction norms in our study population.  相似文献   

17.
Sibling cannibalism—the killing and consumption of conspecifics within broods—carries a high risk of direct and inclusive fitness loss for parents and offspring. We reported previously that a unique vibrational behavior shown by the mother of the subsocial burrower bug, Adomerus rotundus (Heteroptera: Cydnidae), induced synchronous hatching. Maternal regulation may be one of the most effective mechanisms for preventing or limiting sibling cannibalism. Here, we tested the hypothesis that synchronous hatching induced by maternal vibration in A. rotundus prevents sibling cannibalism. Mothers and their mature egg masses were allocated to three groups: synchronous hatching by maternal vibration (SHmv), synchronous hatching by artificial vibration (SHav), and asynchronous hatching (AH). We then investigated the influence of each hatching strategy on the occurrence of sibling cannibalism of eggs and early‐instar nymphs in the laboratory. No difference in the proportion of eggs cannibalized was observed among the three groups. However, the proportion of nymphs cannibalized was higher in the AH group than in the SHmv group. The difference in the number of days to first molting within clutch was significantly higher in the AH group than in the SHmv group. Junior nymphs were sometimes eaten by senior nymphs. However, immediately after molting, senior nymphs were at a high risk of being eaten by junior nymphs. Our results indicate that synchronous hatching of Arotundus is necessary to mitigate the risk of sibling cannibalism.  相似文献   

18.
Antipredator strategies increase the chances of survival of prey species but are subject to trade‐offs and always come at a cost, one specific category being the “missed opportunity.” Some animals that can modulate the timing of life‐cycle events can also desynchronize this timing with the occurrence of a predator. In an unpredictable environment, such a modification may result in a mismatch with prevailing conditions, consequently leading to reproductive failure. In eastern Africa, temporary pools existing only during the rainy season are inhabited by annual fish of the genus Nothobranchius. We examined (i) the capability of multiple Nothobranchius populations and species to cease hatching when exposed to chemical cues from native fish predators and adult conspecifics and (ii) the ability of N. furzeri to modulate their growth rate in the presence of a gape‐limited fish predator. As the tested Nothobranchius spp. originate from regions with extreme environmental fluctuations where the cost of a missed opportunity can be serious, we predicted an inability to cease hatching as well as lack of growth acceleration as both the predator's gape limitation and the environment select for the same adaptation. Our results showed no biologically relevant influence of kairomone on hatching and no influence on growth rate. This suggests that, in an unpredictable environment, the costs of a missed opportunity are substantial enough to prevent the evolution of some antipredator defense strategies.  相似文献   

19.
In ephemeral habitats, the same genotypes cope with unpredictable environmental conditions, favouring the evolution of developmental plasticity and alternative life‐history strategies (ALHS). We tested the existence of intrapopulation ALHS in an annual killifish, Nothobranchius furzeri, inhabiting temporary pools. The pools are either primary (persisting throughout the whole rainy season) or secondary (refilled after desiccation of the initial pool), representing alternative niches. The unpredictable conditions led to the evolution of reproductive bet‐hedging with asynchronous embryonic development. We used a common garden experiment to test whether the duration of embryonic period is associated with post‐embryonic life‐history traits. Fish with rapid embryonic development (secondary pool strategy, high risk of desiccation) produced phenotypes with more rapid life‐history traits than fish with slow embryonic development (primary pool strategy). The fast fish were smaller at hatching but had larger yolk sac reserves. Their post‐hatching growth was more rapid, and they matured earlier. Further, fast fish grew to a smaller body size and died earlier than slow fish. No differences in fecundity, propensity to mate or physiological ageing were found, demonstrating a combination of plastic responses and constraints. Such developmentally related within‐population plasticity in life history is exceptional among vertebrates.  相似文献   

20.
Colonization of the land by multicellular green plants was a fundamental step in the evolution of life on earth. Land plants evolved from fresh‐water aquatic algae, and the transition to a terrestrial environment required the acquisition of developmental plasticity appropriate to the conditions of water availability, ranging from drought to flood. Here we show that extant bryophytes exhibit submergence‐induced developmental plasticity, suggesting that submergence responses evolved relatively early in the evolution of land plants. We also show that a major component of the bryophyte submergence response is controlled by the phytohormone ethylene, using a perception mechanism that has subsequently been conserved throughout the evolution of land plants. Thus a plant environmental response mechanism with major ecological and agricultural importance probably had its origins in the very earliest stages of the colonization of the land.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号