共查询到20条相似文献,搜索用时 15 毫秒
1.
The hermaphroditic nematode Pristionchus pacificus is a model organism with a range of fully developed genetic tools. The species is globally widespread and highly diverse genetically, consisting of four major independent lineages (lineages A, B, C, and D). Despite its young age (~2.1 Ma), volcanic La Réunion Island harbors all four lineages. Ecological and population genetic research studies suggest that this diversity is due to repeated independent island colonizations by P. pacificus. Here, we use model‐based statistical methods to rigorously test hypotheses regarding the evolutionary history of P. pacificus. First, we employ divergence analyses to date diversification events among the four “world” lineages. Next, we examine demographic properties of a subset of four populations (“a”, “b”, “c”, and “d”), present on La Réunion Island. Finally, we use the results of the divergence and demographic analyses to inform a modeling‐based approximate Bayesian computation (ABC) approach, where we test hypotheses about the order and timing of establishment of the Réunion populations. Our dating estimates place the recent common ancestor of P. pacificus lineages at nearly 500,000 generations past. Our demographic analysis supports recent (<150,000 generations) spatial expansion for the island populations, and our ABC approach supports c>a>b>d as the most likely colonization order of the island populations. Collectively, our study comprehensively improves previous inferences about the evolutionary history of P. pacificus. 相似文献
2.
Jessica Y. Kwan Reid Griggs Betsabel Chicana Caitlin Miller Andrea Swei 《Molecular ecology》2017,26(23):6578-6589
Vector‐borne pathogens are increasingly found to interact with the vector's microbiome, influencing disease transmission dynamics. However, the processes that regulate the formation and development of the microbiome are largely unexplored for most tick species, an emerging group of disease vectors. It is not known how much of the tick microbiome is acquired through vertical transmission vs. horizontally from the environment or interactions with bloodmeal sources. Using 16S rRNA sequencing, we examined the microbiome of Ixodes pacificus, the vector of Lyme disease in the western USA, across life stages and infection status. We also characterized microbiome diversity in field and laboratory‐collected nymphal ticks to determine how the surrounding environment affects microbiome diversity. We found a decrease in both species richness and evenness as the tick matures from larva to adult. When the dominant Rickettsial endosymbiont was computationally removed from the tick microbial community, we found that infected nymphs had lower species evenness than uninfected ticks, suggesting that lower microbiome diversity is associated with pathogen transmission in wild‐type ticks. Furthermore, laboratory‐reared nymph microbiome diversity was found to be compositionally distinct and significantly depauperate relative to field‐collected nymphs. These results highlight unique patterns in the microbial community of I. pacificus that is distinct from other tick species. We provide strong evidence that ticks acquire a significant portion of their microbiome through exposure to their environment despite a loss of overall diversity through life stages. We provide evidence that loss of microbial diversity is at least in part due to elimination of microbial diversity with bloodmeal feeding but other factors may also play a role. 相似文献
3.
The unique organism project was designed as a culminating assessment for a biological classification unit in a middle school setting. Students developed a model to represent their unique organism. Using the model, students were required to demonstrate how their unique organism interacts with its environment, and how its internal and external structure and organization allowed it to carry out those interactions. The NGSS Cross Cutting Concepts of structure and function, systems, and system models along with the Science & Engineering Practice of constructing models were integrated and emphasized throughout the unit. 相似文献
4.
Meredith Pochardt Jennifer M. Allen Ted Hart Sophie D. L. Miller Douglas W. Yu Taal Levi 《Molecular ecology resources》2020,20(2):457-467
Although environmental DNA shed from an organism is now widely used for species detection in a wide variety of contexts, mobilizing environmental DNA for management requires estimation of population size and trends in addition to assessing presence or absence. However, the efficacy of environmental‐DNA‐based indices of abundance for long‐term population monitoring have not yet been assessed. Here we report on the relationship between six years of mark‐recapture population estimates for eulachon (Thaleichthys pacificus) and “eDNA rates” which are calculated from the product of stream flow and DNA concentration. Eulachon are a culturally and biologically important anadromous fish that have significantly declined in the southern part of their range but were historically rendered into oil and traded. Both the peak eDNA rate and the area under the curve of the daily eDNA rate were highly predictive of the mark‐recapture population estimate, explaining 84.96% and 92.53% of the deviance, respectively. Even in the absence of flow correction, the peak of the daily eDNA concentration explained an astonishing 89.53% while the area under the curve explained 90.74% of the deviance. These results support the use of eDNA to monitor eulachon population trends and represent a >80% cost savings over mark‐recapture, which could be further increased with automated water sampling, reduced replication, and focused temporal sampling. Due to its logistical ease and affordability, eDNA sampling can facilitate monitoring a larger number of rivers and in remote locations where mark‐recapture is infeasible. 相似文献
5.
生命科学研究中常用模式生物 总被引:3,自引:0,他引:3
模式生物是生命科学研究的重要材料,目前公认的用于生命科学研究的常见模式生物有噬菌体、大肠杆菌、酵母、线虫、果蝇、斑马鱼、小鼠、拟南芥等.这8种常用模式生物对生命现象的揭密和人类疾病治疗的探索等都所做出了重大贡献,对其在生命科学研究中的历史轨迹、各自优势、技术手段、热点研究、发展前景等系统而又简要的了解,有助于具体而又生动地体察到模式生物在今天生命科学发展中的重要地位和推动生命科学及医学进步的不可替代的巨大潜力. 相似文献
6.
Jonathon O. Pritchard Alice H.M. Porter David J.S. Montagnes 《The Journal of eukaryotic microbiology》2016,63(5):552-557
We planned to develop predator–prey models using Paramecium and yeast, but they have not been empirically examined since work by Gause in the 1930s. Therefore, we evaluated if Paramecium aurelia ingests and grows on eight yeasts. Recognising that it ingested yeasts but could not grow, we assessed if it might grow on other yeasts, by empirically parameterising a predator–prey model that relies on ingestion, not growth. Simulations were compared to P. aurelia‐yeast time‐series data, from Gause. We hypothesised that if the model simulated predator–prey dynamics that mimicked the original data, then possibly P. aurelia could grow on yeast; simulations did not mimic the original data. Reviewing works by Gause exposed two issues: experiments were undoubtedly contaminated with bacteria, allowing growth on bacteria, not yeast; and the population cycle data cannot be considered a self‐sustaining time series, as they were manipulated by adding yeast and ciliates. We conclude that past and future work should not rely on this system, for either empirical or theoretical evaluations. Finally, although we show that P. aurelia, P. caudatum, Euplotes patella, and Blepharisma sp. cannot grow on yeast, Tetrahymena pyriformis and Colpidium striatum can; these may provide models to explore predator–prey dynamics. 相似文献
7.
Julian A T Dow 《Briefings in Functional Genomics and Prot》2003,2(2):121-127
Functional genomics (the elucidation of gene function in the context of a sequenced genome) depends critically on functional biology. Genetic model organisms have hitherto not attracted much physiological input, however. This skills mismatch, termed the phenotype gap, can be quantified by analysis of the annotations of sequenced genomes. This is illustrated in the context of Drosophila. In this case, it seems as if a shift from developmental biology to transport physiology and metabolism will be required to provide a more balanced skills base for post-genomics. 相似文献
8.
Vanilloideae comprises 15 genera distributed worldwide, among which are Vanilla and Epistephium (tribe Vanilleae). Based on field and laboratory investigations, the pollination biology of V. dubia and E. sclerophyllum was analysed. The former was surveyed in a semi‐deciduous mesophytic forest at the biological reserve of Serra do Japi and in a marshy forest at the city of Pradópolis, southeastern Brazil. The latter was examined in rocky outcrop vegetation in the Chapada Diamantina, northeastern Brazil. In the studied populations, the tubular flowers of V. dubia and E. sclerophyllum were pollinated by bees. Pollen was deposited on either their scutellum (V. dubia) or scutum (E. sclerophyllum). The mentum region of V. dubia is dry, whereas that of E. sclerophyllum presents a small quantity of dilute nectar. Flowers of E. sclerophyllum are scentless, while those of V. dubia are odoriferous. Although V. dubia is self‐compatible, it needs a pollinator to produce fruit. In contrast, E. sclerophyllum sets fruit through spontaneous self‐pollination, but biotic pollination also occurs. Both species are primarily adapted to pollination by euglossine bees. Pollination by Euglossina seems to have occurred at least twice during the evolution of Vanilleae. Furthermore, shifts between rewarding and reward‐free flowers and between autogamous and allogamous species have been reported among vanillas. 相似文献
9.
Antje Hundertmark Sara L. Goodacre John F. Y. Brookfield 《Journal of evolutionary biology》2020,33(5):653-667
In many arthropods, intracellular bacteria, such as those of the genus Wolbachia, may spread through host populations as a result of cytoplasmic incompatibility (CI). Here, there is sterility or reduced fertility in crosses between infected males and uninfected females. As the bacterium is maternally inherited, the reduced fertility of uninfected females increases the frequency of the infection. If the transmission fidelity of the bacterium is less than 100%, the bacterium cannot invade from a low frequency, but if its frequency exceeds a threshold, it increases to a high, stable, equilibrium frequency. We explore the expected evolutionary dynamics of mutant alleles that cause their male bearers to avoid mating with uninfected females. For alleles which create this avoidance behaviour conditional upon the male being infected, there is a wide zone of parameter space that allows the preference allele to drive Wolbachia from the population when it would otherwise stably persist. There is also a wide zone of parameter space that allows a joint stable equilibrium for the Wolbachia and a polymorphism for the preference allele. When the male's avoidance of uninfected females is unconditional, the preference allele's effect on Wolbachia frequency is reduced, but there is a narrow range of values for the transmission rate and CI fertility that allow an unconditional preference allele to drive Wolbachia from the population, in a process driven by positive linkage disequilibrium between Wolbachia and the preference allele. The possibility of the evolution of preference could hamper attempts to manipulate wild populations through Wolbachia introductions. 相似文献
10.
Andreas Mühlhausen Teresa Lenser Klaus Mummenhoff Günter Theißen 《The Plant journal : for cell and molecular biology》2013,73(5):824-835
In the Brassicaceae, indehiscent fruits evolved from dehiscent fruits several times independently. Here we use closely related wild species of the genus Lepidium as a model system to analyse the underlying developmental genetic mechanisms in a candidate gene approach. ALCATRAZ (ALC), INDEHISCENT (IND), SHATTERPROOF1 (SHP1) and SHATTERPROOF2 (SHP2) are known fruit developmental genes of Arabidopsis thaliana that are expressed in the fruit valve margin governing dehiscence zone formation. Comparative expression analysis by quantitative RT‐PCR, Northern blot and in situ hybridization show that their orthologues from Lepidium campestre (dehiscent fruits) are similarly expressed at valve margins. In sharp contrast, expression of the respective orthologues is abolished in the corresponding tissue of indehiscent Lepidium appelianum fruits, indicating that changes in the genetic pathway identified in A. thaliana caused the transition from dehiscent to indehiscent fruits in the investigated species. As parallel mutations in different genes are quite unlikely, we conclude that the changes in gene expression patterns are probably caused by changes in upstream regulators of ALC, IND and SHP1/2, possible candidates from A. thaliana being FRUITFULL (FUL), REPLUMLESS (RPL) and APETALA2 (AP2). However, neither expression analyses nor functional tests in transgenic plants provided any evidence that the FUL or RPL orthologues of Lepidium were involved in evolution of fruit indehiscence in Lepidium. In contrast, stronger expression of AP2 in indehiscent compared to dehiscent fruits identifies AP2 as a candidate gene that deserves further investigation. 相似文献
11.
Marc Lecuit 《Cellular microbiology》2020,22(4)
Listeria monocytogenes causes listeriosis, a systemic infection which manifests as bacteremia, often complicated by meningoencephalitis in immunocompromised individuals and the elderly, and fetal‐placental infection in pregnant women. It has emerged over the past decades as a major foodborne pathogen, responsible for numerous outbreaks in Western countries, and more recently in Africa. L. monocytogenes' pathogenic properties have been studied in detail, thanks to concomitant advances in biological sciences, in particular molecular biology, cell biology and immunology. L. monocytogenes has also been instrumental to basic advances in life sciences. L. monocytogenes therefore stands both a tool to understand biology and a model in infection biology. This review briefly summarises the clinical and some of the pathophysiological features of listeriosis. In the context of this special issue, it highlights some of the major discoveries made by Pascale Cossart in the fields of molecular and cellular microbiology since the mid‐eighties regarding the identification and characterisation of multiple bacterial and host factors critical to L. monocytogenes pathogenicity. It also briefly summarises some of the key findings from our laboratory on this topic over the past years. 相似文献
12.
Natalí Hurtado Guillermo D'Elía 《Journal of Zoological Systematics and Evolutionary Research》2019,57(1):127-144
The genus Oligoryzomys, distributed from southern South America to southern North America, is the most diverse of the tribe Oryzomyini of sigmodontine rodents. Even when 22 species are currently recognized, species boundaries are unclear for several forms. The species Oligoryzomys destructor is one of the least studied species of the genus and is the one with the largest distribution along the Andes (from southern Colombia to northern Bolivia). The species was described without the selection of a holotype and indication of its type locality. In addition, several taxa are regarded as synonyms of O. destructor. These facts are relevant because previous analysis of DNA sequences has shown that O. destructor represents a species complex. Herein, in addition to test the phylogenetic position of O. destructor within the genus Oligoryzomys, we assess patterns of morphological and molecular variation of O. destructor and its associated nominal forms aimed to assess the boundaries of the species. As part of the study, we selected neotypes for Hesperomys destructor and H. melanostoma. At the light of our results, we recognized O. destructor as a species with two subspecies, O. d. destructor and O. d. spodiurus. Also, we discuss the role of Andean rivers, and their different permeability, as allopatric barriers molding the structure of O. destructor. 相似文献
13.
Features of DNA fragments obtained by random amplified polymorphic DNA (RAPD) assays 总被引:3,自引:0,他引:3
Random amplified polymorphic DNA (RAPD) fragments were prepared from samples of Calonectris diomedea (Cory's shearwater, Aves) and Haemonchus contortus (Nematoda) DNA by polymerase chain reaction (PCR) using decamers containing two restriction enzyme sites as primers. Six of 19 studied RAPD fragments probably originated from traces of commensal microorganisms. Many rearranged fragments, absent in the original genomic DNA, were synthesized and amplified during the processing of all the DNA samples, indicating that interactions occur within and between strands during the annealing step of PCR. The model of interactions between molecular species during DNA amplification with a single arbitrary oligonucleotide primer was modified to include nested primer annealing and interactions within and between strands. The presence of these artefacts in the final RAPD have a major effect on the interpretation of polymorphism studies. 相似文献
14.
15.
Xiaoli Guo John Smeda Xiaohong Wang Melissa G. Mitchum 《Plant biotechnology journal》2015,13(6):801-810
CLE peptides are small extracellular proteins important in regulating plant meristematic activity through the CLE‐receptor kinase‐WOX signalling module. Stem cell pools in the SAM (shoot apical meristem), RAM (root apical meristem) and vascular cambium are controlled by CLE signalling pathways. Interestingly, plant‐parasitic cyst nematodes secrete CLE‐like effector proteins, which act as ligand mimics of plant CLE peptides and are required for successful parasitism. Recently, we demonstrated that Arabidopsis CLE receptors CLAVATA1 (CLV1), the CLAVATA2 (CLV2)/CORYNE (CRN) heterodimer receptor complex and RECEPTOR‐LIKE PROTEIN KINASE 2 (RPK2), which transmit the CLV3 signal in the SAM, are required for perception of beet cyst nematode Heterodera schachtii CLEs. Reduction in nematode infection was observed in clv1, clv2, crn, rpk2 and combined double and triple mutants. In an effort to develop nematode resistance in an agriculturally important crop, orthologues of Arabidopsis receptors including CLV1, CLV2, CRN and RPK2 were identified from soybean, a host for the soybean cyst nematode Heterodera glycines. For each of the receptors, there are at least two paralogues in the soybean genome. Localization studies showed that most receptors are expressed in the root, but vary in their level of expression and spatial expression patterns. Expression in nematode‐induced feeding cells was also confirmed. In vitro direct binding of the soybean receptors with the HgCLE peptide was analysed. Knock‐down of the receptors in soybean hairy roots showed enhanced resistance to SCN. Our findings suggest that targeted disruption of nematode CLE signalling may be a potential means to engineer nematode resistance in crop plants. 相似文献
16.
Mitochondria have many different functions, the most important one of which is oxidative phosphorylation. They originated from an endosymbiotic event between a bacterium and an archaeal host cell. It was the evolution of a protein import system that marked the boundary between the endosymbiotic ancestor of the mitochondrion and a true organelle that is under the control of the nucleus. In present day mitochondria more than 95% of all proteins are imported from the cytosol in a proces mediated by hetero‐oligomeric protein complexes in the outer and inner mitochondrial membranes. In this review we compare mitochondrial protein import in the best studied model system yeast and the parasitic protozoan Trypanosoma brucei. The 2 organisms are phylogenetically only remotely related. Despite the fact that mitochondrial protein import has the same function in both species, only very few subunits of their import machineries are conserved. Moreover, while yeast has 2 inner membrane protein translocases, one specialized for presequence‐containing and one for mitochondrial carrier proteins, T. brucei has a single inner membrane translocase only, that mediates import of both types of substrates. The evolutionary implications of these findings are discussed. 相似文献
17.
Gaël P. J. Denys Henri Persat Agnès Dettai Matthias F. Geiger Jörg Freyhof Justine Fesquet Philippe Keith 《Journal of Zoological Systematics and Evolutionary Research》2018,56(1):77-101
The taxonomy of French ninespined sticklebacks (Pungitius spp.) has long been controversial. To clarify the taxonomy in this group, we use mitochondrial (COI) and nuclear (RNF213) sequence markers, as well as morphological data. In France, both genetic markers discriminate three evolutionary lineages. Morphological analysis on fresh and type specimens supports the different lineages and the existence of three species in France. Pungitius pungitius, occurring in the North of France and Rhone basin, is characterized by specimens longer than 35 mm SL, by a flat head with a straight or slightly concave snout, typically 9–10 dorsal spines, 10–11 dorsal soft rays, 9–10 anal soft rays, 0–12 scutes on the caudal peduncle with a keel reaching the last anal‐fin ray, longer pelvic fin, post‐dorsal and caudal peduncle lengths, and a slim caudal peduncle (caudal peduncle depth/length 11.8%–21.9%). Pungitius laevis, occurring in France, in the English Channel basins and Loire drainage, differs from the other species by a head rounded with concave snout in specimens longer than 35 mm SL, accentuating the impression of fleshy lips, 0–4 scutes on the caudal peduncle and a higher caudal peduncle depth/length ratio (15.7%–34.5%). Finally, Pungitius vulgaris, endemic to the Vienne River and rivers of south‐western France as far north as the Garonne estuary, is differentiated by a rounded head with a straight or slightly convex snout, the absence of scutes on the caudal peduncle and by having 11 pectoral‐fin rays. Our data confirm the existence of a hybridization zone in the North of France between P. pungitius and P. laevis. As a result, Pungitius lotharingus is invalid, as it was described based on hybrid specimens. A lectotype for P. laevis was designated because the syntypes included hybrids. This revision provides new perspectives for evolutionary biology studies and will have consequences for Pungitius conservation in France. 相似文献
18.
Nicrophorusvespilloides is a social beetle that rears its offspring on decomposing carrion. Wild beetles are frequently associated with two types of macrobial symbionts, mites, and nematodes. Although these organisms are believed to be phoretic commensals that harmlessly use beetles as a means of transfer between carcasses, the role of these symbionts on N. vespilloides fitness is poorly understood. Here, we show that nematodes have significant negative effects on beetle fitness across a range of worm densities and also quantify the density‐dependent transmission of worms between mating individuals and from parents to offspring. Using field‐caught beetles, we provide the first report of a new nematode symbiont in N. vespilloides, most closely related to Rhabditoides regina, and show that worm densities are highly variable across individuals isolated from nature but do not differ between males and females. Next, by inoculating mating females with increasing densities of nematodes, we show that worm infections significantly reduce brood size, larval survival, and larval mass, and also eliminate the trade‐off between brood size and larval mass. Finally, we show that nematodes are efficiently transmitted between mating individuals and from mothers to larvae, directly and indirectly via the carcass, and that worms persist through pupation. These results show that the phoretic nematode R. regina can be highly parasitic to burying beetles but can nevertheless persist because of efficient mechanisms of intersexual and intergenerational transmission. Phoretic species are exceptionally common and may cause significant harm to their hosts, even though they rely on these larger species for transmission to new resources. However, this harm may be inevitable and unavoidable if transmission of phoretic symbionts requires nematode proliferation. It will be important to determine the generality of our results for other phoretic associates of animals. It will equally be important to assess the fitness effects of phoretic species under changing resource conditions and in the field where diverse interspecific interactions may exacerbate or reduce the negative effects of phoresy. 相似文献
19.
The genera Elliptochloris and Pseudochlorella were erected for Chlorella‐like green algae producing two types of autospores and cell packages, respectively. Both genera are widely distributed in different soil habitats, either as free living or as photobionts of lichens. The species of these genera are often difficult to identify because of the high phenotypic plasticity and occasional lack of characteristic features. The taxonomic and nomenclatural status of these species, therefore, remains unclear. In this study, 34 strains were investigated using an integrative approach. Phylogenetic analyses demonstrated that the isolates belong to two independent lineages of the Trebouxiophyceae (Elliptochloris and Prasiola clades) and confirmed that the genera are not closely related. The comparison of morphology, molecular phylogeny, and analyses of secondary structures of SSU and ITS rDNA sequences revealed that all of the strains belong to three genera: Elliptochloris, Pseudochlorella, and Edaphochlorella. As a consequence of the taxonomic revisions, we propose two new combinations (Elliptochloris antarctica and Pseudochlorella signiensis) and validate Elliptochloris reniformis, which is invalidly described according to the International Code for Nomenclature (ICN), by designating a holotype. To reflect the high phenotypic plasticity of P. signiensis, two new varieties were described: P. signiensis var. magna and P. signiensis var. communis. Chlorella mirabilis was not closely related to any of these genera and was, therefore, transferred to the new genus Edaphochlorella. All of the taxonomic changes were highly supported by all phylogenetic analyses and were confirmed by the ITS‐2 Barcodes using the ITS‐2/CBC approach. 相似文献
20.
Wusheng Liu Mitra Mazarei Yanhui Peng Michael H. Fethe Mary R. Rudis Jingyu Lin Reginald J. Millwood Prakash R. Arelli Charles Neal Stewart Jr. 《Plant biotechnology journal》2014,12(8):1015-1026
Computational methods offer great hope but limited accuracy in the prediction of functional cis‐regulatory elements; improvements are needed to enable synthetic promoter design. We applied an ensemble strategy for de novo soybean cyst nematode (SCN)‐inducible motif discovery among promoters of 18 co‐expressed soybean genes that were selected from six reported microarray studies involving a compatible soybean–SCN interaction. A total of 116 overlapping motif regions (OMRs) were discovered bioinformatically that were identified by at least four out of seven bioinformatic tools. Using synthetic promoters, the inducibility of each OMR or motif itself was evaluated by co‐localization of gain of function of an orange fluorescent protein reporter and the presence of SCN in transgenic soybean hairy roots. Among 16 OMRs detected from two experimentally confirmed SCN‐inducible promoters, 11 OMRs (i.e. 68.75%) were experimentally confirmed to be SCN‐inducible, leading to the discovery of 23 core motifs of 5‐ to 7‐bp length, of which 14 are novel in plants. We found that a combination of the three best tools (i.e. SCOPE, W‐AlignACE and Weeder) could detect all 23 core motifs. Thus, this strategy is a high‐throughput approach for de novo motif discovery in soybean and offers great potential for novel motif discovery and synthetic promoter engineering for any plant and trait in crop biotechnology. 相似文献