首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nuclear DNA of rye (Secale cereale), a plant species with a relatively large genome (i.e., 18 pg diploid), has been characterized by determination of its content in repetitive sequences, buoyant density, and thermal denaturation properties. The reassociation kinetics of rye DNA reveals the presence of 70 to 75% repeated nucleotide sequences which are grouped into highly (Cot 1) and intermediately repetitive (Cot 1–100) fractions. On sedimentation in neutral CsCl gradients, native, high molecular weight DNA forms an almost symmetrical band of density 1.702 g/cm3. The highly repetitive DNA (Cot 1), on the other hand, is separated into two distinct peaks; the minor component has a density of 1.703 g/cm3 corresponding to that of a very rapidly reassociating fraction (Cot 0.01) which comprises 10 to 12% of the rye genome. The latter DNA contains segments which are repeated 6×105 to 6×106 times. The major peak of the Cot 1 fraction shows a density of 1.707 g/cm3 and consists of fragments repeated about 3.7×104 times. The intermediately repetitive DNA is much more heterogeneous than the Cot 1 fraction and has a low degree of repetition of the order of 8.5×102. The melting behavior of the Cot 1 fraction reveals the presence of a high degree of base pairing (i.e., 7% mismatching). When native rye DNA is resolved into fractions differing in GC content by hydroxyapatite thermal column chromatography and these fractions are analyzed for the presence of repetitive sequences, it is observed that the highly redundant DNA (Cot 1) is mostly located in the fraction denaturing between 80° and 90°C. This result suggests that highly repetitive rye DNA occurs in a portion of the genome which is neither very rich in AT nor in GC.  相似文献   

2.
The chloroplast DNA of Chlamydomonas reinhardii has been examined by restriction endonuclease analysis. EcoRI, BamHI and BglII produce 30, 17 and 12 fragments, respectively, whose sites have been determined by electron microscopy and by comparative gel electrophoresis. These fragments have been ordered into a circular map which corresponds to a genome size of Mr = 126 × 106. The map was established by comparing the double digests of individual restriction fragments and by hybridizing purified labelled fragments to restriction enzyme digests of chloroplast DNA. The restriction fragments were isolated by molecular cloning or by preparative agarose gel electrophoresis.The two sets of chloroplast ribosomal RNA genes are contained within two inverted repeats of 13 × 106 molecular weight, which are located nearly at opposite sides of the map. In addition, the mapping studies have revealed the presence of short repeated base sequences which are interspersed throughout the chloroplast genome.  相似文献   

3.
The composition of the genome set of ribosomal DNA cistrons in Calliphora erythrocephala (a Dipteran fly) has been analyzed. In contrast to previously cloned fragments of the rDNA (see Beckingham & White, 1980), the great majority of the rDNA cistrons do not contain introns in the 28 S β coding region. In the strain of flies studied, however, most cistrons fall into two discrete length classes that are present in approximately equal amounts in the genome. These results from distinct size variants of the non-transcribed spacer in the cistron population.The major genome class of intron-containing (intron+) rDNA cistrons was found to constitute approximately 5% of all cistrons and to contain introns of 6·1 × 103 base-pairs. Interestingly, the intron+ cistrons were shown to be clustered within the rDNA and to contain a different population of non-transcribed spacer/external transcribed spacer (NTS + ETS) regions to that seen amongst the intron? cistrons. The implications of these findings in relation to the mechanisms that maintain homogeneity within tandemly repeated gene sets are discussed.Some evidence for the existence of intron sequence DNA outside the rDNA is presented.  相似文献   

4.
In the chicken genome there are middle repetitive DNA sequences with a clustered organization. Each cluster is composed of members of different families of repeated DNA sequences and usually contains only one member of each family. Many clusters have the same assortment of repeated sequences but they are in scrambled order from cluster to cluster. These clusters usually exceed 20 × 103 bases in length and comprise at least 10% of the repeated DNA of the chicken. The repeated sequences that are cluster components are extensively methylated. Methylation was detected by comparing HpaII and MspI digests of total DNA, where the occurrence of the sequence C-m5C-G-G is indicated when HpaII (cleaves C-C-G-G) fragments are larger than those generated by MspI (cleaves C-m5C-G-G or C-C-G-G). In hybridization experiments with Southern (1975) blots of total DNA digested with either HpaII or MspI, the cloned probes representing clustered repeated sequences showed a dramatic difference in the lengths of restriction fragments detected in the two digests. Many of the sequences that comprise these clusters are methylated in most of their genomic occurrences. There are patterns of methylation that are reproduced faithfully from copy to copy. The overall distribution of methylation within clusters seems to be regional, with long methylated DNA segments interrupted by specific undermethylated regions.  相似文献   

5.
《Experimental mycology》1990,14(4):299-309
The size and organization of the genome of Bremia lactucae, a highly specialized fungal pathogen of lettuce, has been characterized using dot blot genomic reconstructions, reverse genomic blots, and genomic DNA reassociation kinetics. The haploid genome contains 5 × 107 bp of DNA and 65% of the nuclear DNA is repeated. Low copy sequences are interspersed with repeated sequences in a short-period interspersion pattern. This pattern of genome organization is different to that described for other fungi. Although most fungi have been shown to contain some form of repetitive DNA other than the ribosomal repeat, the high percentage of repetitive DNA and the interspersion of low copy and repeated sequences are atypical of fungi characterized previously.  相似文献   

6.
DNA isolated from purified nuclei of Polytoma obtusum has a buoyant density of 1.711 g/ml in CsCl, a Tm of 91.3° C in SSC, and a G + C content of 52.5% as determined by base composition analysis. Thermal dissociation and reassociation studies indicated that this nuclear DNA contains a considerable amount of heterogeneity. Under appropriate reannealing conditions for denatured DNA, about 15% of the DNA reannealed to form a satellite peak at a density of 1.711 g/ml within one hour. Native DNA fractions of different average buoyant densities, ranging from 1.723 to 1.708 g/ml were also obtained in a preparative CsCl gradient, indicating the presence of intermolecular heterogeneity at a molecular size of 8.5×106 daltons. The nuclear DNA reassociated as three distinct classes. The very fast species constituted about 20 % of the total hyperchromicity, the class of intermediate rate comprised roughly 10% of the nuclear DNA, while the remaining 70% consisted of unique sequences. The haploid genome set was estimated by renaturation kinetics studies to contain 5.0×1010 daltons of DNA or 7.5×107 nucleotide pairs. The analytical complexity of the total nuclear genome was found to be 9.35×1010 daltons, thus indicating that vegetative cells of P. obtusum are diploid.  相似文献   

7.
The overall arrangement of nucleotide sequences in the DNA of channel catfish virus has been studied by cleavage with four restriction endonucleases. Physical maps have been developed for the location of sites for EcoRI, HindIII, HpaI, and XbaI. The sum of the molecular weights of fragments generated by each restriction enzyme indicates a molecular weight of approximately 86 × 106 for the channel catfish virus genome. Fragments corresponding to the molecular ends of channel catfish virus DNA have been identified by their sensitivity to exonuclease treatment. The distribution of restriction sites in the genome shows that sequences included in a 12 × 106-molecular weight region at one end are repeated with direct polarity at the other end, and that the overall genomic sequence order is nonpermuted.  相似文献   

8.
Entomopoxvirus (EPV) occlusion bodies were isolated from virus infected nymphs of the grasshoppers Melanoplus sanguinipes, Arphia conspirsa, and Phoetaliotes nebrascensis. Separation of the viral structural proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis gave unique protein patterns for each of the three viruses. An occlusion body protein of approximately 100,000 MW was isolated from each virus. Cleavage of viral DNA with HinddIII and BamHI restriction endonucleases and separation of the fragments by agarose gel electrophoresis gave different DNA fragment patterns for each of the three entomopoxviruses. Molecular weight estimates of 120 × 106 for M. sanguinipes EPV DNA, 129 × 106 for A. conspirsa EPV DNA, and 125 × 106 for P. nebrascensis EPV DNA were calculated from the sizes of the viral DNA fragments. Approximately 55% base sequence homology was detected by Southern hybridization of α-32P-labeledM. sanguinipes EPV DNA with P. nebrascensis DNA. No base sequence homology was detected by Southern hybridization of labeled M. sanguinipes EPV DNA to Othnonius batesi EPV DNA (Coleoptera), Amsacta moorei EPV DNA (Lepidoptera), Euxoa auxiliaris EPV DNA (Lepidoptera), and vaccinia virus DNA fragments.  相似文献   

9.
The mitochondrial genome of wild-type yeast cells. IV. Genes and spacers   总被引:12,自引:0,他引:12  
The organization of the mitochondrial genome of wild-type Saccharomyces cerevisiae cells has been investigated further, by degrading mitochondrial DNA with micrococcal nuclease. Under the conditions used, this enzyme very strongly degrades the A + T-rich stretches (spacers) whereas it only inflicts a limited number of breaks into the G + C-rich stretches (genes). The macromolecular fragments derived from the “genes” have been separated from the oligonucleotides originating from the “spacers” by gel filtration, and both sorts of products have been investigated. It has been shown (a) that the spacers are very homogeneous in base composition and have a G + C content lower than 5% (mitochondrial DNA has a G + C content of 18%); (b) that the genes are very heterogeneous in base composition, the G + C content ranging from about 25% to 50%, when the average size of the fragments is 1·2 × 105; smaller fragments, molecular weight 4 × 104, having a G + C level as high as 65%, have been isolated in a yield of 10%; the average G + C content of genes is about 32%; (c) that genes and spacers are present in about equal amounts in the mitochondrial genome and that they have comparable average sizes.  相似文献   

10.
Microcloning of maize chromosome 9 by using a flow-sorting technique   总被引:1,自引:0,他引:1  
We constructed a chromosome 9 lambda DNA library from flow-sorted maize chromosomes. Approximately 3 million maize chromosome 9 were collected with high purity by flow cytometric sorting of chromosomes isolated from an oat-maize chromosome 9 addition line based on the cytogram of fluorescent pulse area versus fluorescent pulse width. Chromosome 9 DNA was partially digested withBamH I, dephosphorylated, and ligated with arms ofBamH I-digested lambda DASH vector (Stratagene). A total of 2.0×106 independent recombinants with an average insert size of 15 kb were obtained. For a 99% probability that every sequence of chromosome 9 is represented in at least one chimeric phage, 5.6×104 cloned fragments are needed. This library covers the entire maize chromosome 9. Hybridizing cloned fragments with labeled maize genomic DNA showed that the high, middle, or low copy number DNA sequences presented in the different phage clones. This individual chromosome library is useful in plant genome mapping and gene isolation.  相似文献   

11.
  • 1.1. The nDNA of carrion crow Corvus corone L., hooded crow C. cornix L., their hybrids, as well as magpie Pica pica L., were digested by the tetranucleotide recognizing restriction enzymes Sau3a, AluI, BspRI and then analysed using electrophoresis with microdensitometry.
  • 2.2. The distribution patterns of restriction DNA fragments proved to be nuclease- and taxon specific.
  • 3.3. The observed families of repeated sequences are characterized by different length (from 30 bp to 23 tbp), number of copies in genome (approximately 103 and 106) and supposedly different types of organization and evolutionary age.
  • 4.4. The total DNA amount identified in the form of discrete fragments is 16 and 19–21% for magpie and crows, respectively.
  • 5.5. The DNA restriction patterns of hybrid forms do not differ from the parental species.
  相似文献   

12.
A biochemical and limited morphological characterization of an entomopoxvirus infecting the lesser cornstalk borer, Elasmopalpus lignosellus, was made. The oval virions measure 270 × 200 nm and the spheroids average 1.5 μm in diameter. Sodium dodecyl sulfate polyacrylamide gel electrophoresis elucidated 32 structural polypeptides with molecular weights ranging from 13,000 to 145,000. The viral genome was examined with the restriction endonuclease EcoRI. Gel electrophoresis of the digested DNA yielded 26 bands and a total molecular weight of 140.8 × 106.  相似文献   

13.
Mitochondrial DNA (mtDNA) of Physarum polycephalum was isolated gently by CsCl centrifugation. The mtDNA was linear with molecular weights ranging from 25·106 to 45·106 and heterogeneous in size. Nevertheless, thermal transition profiles of the mtDNA suggested that this DNA fraction was more homogeneous than nuclear DNA. Exhaustive digestions of this DNA with restriction endonucleases yielded unique fragments, and then the total of their molecular weights of each digest was around 45·106. This value is equivalent to the maximum molecular weight estimated using electron microscopy and electrophoresis. Moreover, EcoRI digests of the mtDNA fractionated by the sucrose gradient showed unequimolar quantities of large fragments and a high background between bands. These results suggest that the mtDNA of Physarum has a homogeneous base sequence, and that the size heterogeneity of the mtDNA is attributable to degradation of the DNA under isolation procedures. The mtDNA was cleaved by EcoRI and XhoI to yield 16 and 7 fragments, respectively. A physical map of these fragments was constructed using the routine mapping procedures. The physical map showed that the mitochondrial genome of Physarum was linear with a molecular weight of 45·106. We concluded therefore that the mitochondrial nucleoid is a structure in which the homogeneous mtDNA is highly amplified.  相似文献   

14.
15.
The relationship between nuclear DNA and cytoplasmic membrane-associated DNA, extracted from a human lymphocyte cell line, was examined by DNA-DNA reannealing and by dissociation of renatured molecules. Up to 2% of the total cellular DNA is found in the cytoplasm as cytoplasmic membrane-associated DNA and of this 2%, approximately 70% is comprised of repeated sequences. These sequences are homologous to only about 4% of the repeated sequences of nuclear DNA. The repeat fraction of cytoplasmic membrane-associated DNA consists of sequences which are only moderately repeated. The number of copies in the average “family” could range from about 1500 copies to as few as 25 copies. A small rapidly reannealing portion of cytoplasmic membrane-associated DNA (C0t < 4 × 10?3) appears to consist of sequences derived from a single “family”.About 30% of cytoplasmic membrane-associated DNA reassociates slowly with a C0t12 value of 223 (unique cytoplasmic membrane-associated DNA). This fraction has homology with about 11% of the unique sequences of nuclear DNA. However, unique cytoplasmic membrane-associated DNA comprises only about 0·6% of the total cellular DNA. If it is assumed that each cell has the same amount of cytoplasmic membrane-associated DNA, homology with 11% of the unique sequences of nuclear DNA suggests that different cells may have different unique nucleotide sequences in the cytoplasm.  相似文献   

16.
17.
A method for generation of arbitrary peptide libraries using genomic DNA   总被引:1,自引:0,他引:1  
Random peptide libraries can be constructed either by in vitro synthesis of random peptides, or through translation of DNA sequences from synthetic random oligonucleotides. Here we describe an alternative way of making arbitrary peptide libraries with high diversity that can be used in screening as random peptide libraries. Genomic DNA digested with a frequent-cutting restriction enzyme recognizing four nucleotides will theoretically consist of small DNA pieces with average length of 256 nucleotides, and on average around 107 fragments can be generated from a genome of 3 × 109 bases. A peptide library translated from these fragments will have sufficient diversity for some protein interaction screening experiments. Moreover, the same genome digested with a different four-cutter enzyme or ligated into different reading frames will result in different nonoverlapping libraries. A series of such libraries could be generated with genomic DNAs from different species. In this study, human genomic DNA was digested with four-cutter restriction enzymes DpnII and Tsp509I, respectively, and cloned into yeast expression vector pGADT7 to generate arbitrary peptide libraries. These libraries were used in yeast two-hybrid assays to screen for binding motifs of the PDZ domain containing protein synectin. Our results showed that in addition to various native carboxy-terminal tails, synectin could also bind to many artificial ones, some of which contained a consensus sequence—(S/T)XC-COOH.  相似文献   

18.
19.
Electrophoresis on slab gels containing a linear gradient of polyacrylamide concentration has been used to separate DNA fragments obtained by restriction of viral DNAs. A simple method of preparing gradient gels using a sucrose density-gradient mixer and preexisting slab gel apparatus is described. DNA fragments of molecular weights 7 × 104–14 × 106 have been fractionated on gels of 3.5–7.5% and 2.5–7.5% acrylamide concentration. In addition to the wide range of fragment sizes which may be run on a single gel, a further advantage of the system is that much sharper bands are obtained compared to conventional constant concentration gels, thus improving resolution.In the molecular-weight range below 5 × 106, for bands whose terminal velocities in the polyacrylamide concentration gradient approach zero, an approximately linear relationship holds between the logarithms of the molecular weights of the fragments and the logarithms of the distances they have migrated in the gel. Thus, by choosing a suitable upper limit to the concentration gradient, the gel system provides a method for estimating approximate molecular weights of unknown DNA fragments, by comparing their mobilities to known standards.  相似文献   

20.
Twenty-eight Bam H 1 restriction fragments were isolated from normal mitochondrial DNA of maize by recombinant DNA techniques to investigate the organization of the mitochondrial genome. Each cloned fragment was tested by molecular hybridization against a Bam digest of total mitochondrial DNA. Using Southern transfers, we identified the normal fragment of origin for d each clone. Twenty-three of the tested clones hybridized only to the fragment from which the clone was derived. In five cases, labeling of an additional band indicated some sequence repetition in the mitochondrial genome. Four clones from normal mitochondrial DNA were found which share sequences with the plasmid-like DNAs, S-1 and S-2, found in S male sterile cytoplasm. The total sequence complexity of the clones tested is 121×106 d (daltons), which approximates two thirds of the total mitochondrial genome (estimated at 183×106 d). Most fragments do not share homology with other fragments, and the total length of unique fragments exceeds that of the largest circular molecules observed. Therefore, the different size classes of circular molecules most likely represent genetically discrete chromosomes in a complex organelle genome. The variable abundance of different mitochondrial chromosomes is of special interest because it represents an unusual mechanism for the control of gene expression by regulation of gene copy number. This mechanism may play an important role in metabolism or biogenesis of mitochondria in the development of higher plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号