首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 170 毫秒
1.
The study of zones of secondary contact provides insight into the maintenance of reproductive isolation. Tension zone theory supplies powerful tools for assessing how dispersal and selection shape hybrid zones. We present a multimodal analysis of phenotypic clines in conjunction with clines at molecular markers in a hybrid zone between Larus glaucescens and Larus occidentalis. We developed a new method to analyze simultaneously clines of quantitative traits and molecular data. Low linkage disequilibrium and the lack of coincidence between clines at six microsatellites, a mitochondrial DNA region, and two phenotypic traits indicated introgression. However, the hypothesis of neutral diffusion was rejected based on evidence that all of the clines were concordant and narrower than expected for neutral clines, indicating some indirect selection. The analysis of phenotypic variance gave evidence of restricted phenotypic introgression and together with the bimodal distribution of phenotypes suggested that disruptive selection is acting across the hybrid zone, especially on the coloration of bare parts. Multimodal analysis of phenotypic clines also highlighted a shift between the peak of intermediates and the cline center, left behind by hybrid zone motion. High-resolution analysis of phenotypes distribution thus proved useful for detecting hybrid zone movement even without temporal data.  相似文献   

2.
Two grasshopper species Stenobothrus rubicundus and S. clavatus were previously shown to meet in a narrow hybrid zone on Mount Tomaros in northern Greece. The species are remarkable for their complex courtship songs accompanied by conspicuous movements of antennae and wings. We analyzed variations in forewing morphology, antenna shape, and courtship song across the hybrid zone using a geographic information system, and we documented three contact zones on Mount Tomaros. All male traits and female wings show abrupt transitions across the contact zones, suggesting that these traits are driven by selection rather than by drift. Male clines in antennae are displaced toward S. clavatus, whereas all clines in wings are displaced toward S. rubicundus. We explain cline discordance as depending on sexual selection via female choice. The high covariance between wings and antennae found in the centers of all contact zones results from high levels of linkage disequilibria among the underlying loci, which in turn more likely results from assortative mating than from selection against hybrids. The covariance is found to be higher in clavatus‐like than rubicundus‐like populations, which implies asymmetric assortative mating in parental‐like sites of the hybrid zone and a movement of the hybrid zone in favor of S. clavatus.  相似文献   

3.
The study of natural hybrid zones can illuminate aspects of lineage divergence and speciation in morphologically cryptic taxa. We studied a hybrid zone between two highly divergent but morphologically similar lineages (south‐western and south‐eastern) of the Iberian endemic Bosca's newt (Lissotriton boscai) in SW Iberia with a multilocus dataset (microsatellites, nuclear and mitochondrial genes). STRUCTURE and NEWHYBRIDS analyses retrieved few admixed individuals, which classified as backcrosses involving parental individuals of the south‐western lineage. Our results show asymmetric introgression of mtDNA beyond the contact from this lineage into the south‐eastern lineage. Analysis of nongeographic introgression patterns revealed asymmetries in the direction of introgression, but except for mtDNA, we did not find evidence for nonconcordant introgression patterns across nuclear loci. Analysis of a 150‐km transect across the hybrid zone showed broadly coincident cline widths (ca. 3.2–27.9 km), and concordant cline centres across all markers, except for mtDNA that is displaced ca. 60 km northward. Results from ecological niche modelling show that the hybrid zone is in a climatically homogenous area with suitable habitat for the species, suggesting that contact between the two lineages is unlikely to occur further south as their distributions are currently separated by an extensive area of unfavourable habitat. Taken together, our findings suggest the genetic structure of this hybrid zone results from the interplay of historical (biogeographic) and population‐level processes. The narrowness and coincidence of genetic clines can be explained by weak selection against hybrids and reflect a degree of reproductive isolation that is consistent with cryptic speciation.  相似文献   

4.
Unravelling the form of selection acting on hybrids of ecotypes undergoing ecological speciation is essential to understand the mechanisms behind the evolution of reproductive isolation in the face of gene flow. Shell phenotype is known to be affected by natural selection and is involved in the fitness of the marine snail Littorina saxatilis. Here, we studied the association between shell traits and fitness in hybrids in order to determine the relative role of exogenous and endogenous selection in this hybrid zone of L. saxatilis. We show that directional selection is the predominant mode of selection among hybrids. We also show its heterogeneity, affecting different shell traits, within populations at the level of the microhabitat. Therefore, endogenous selection mechanisms are most probably lacking in this hybrid zone and exogenous barriers (pre‐ and post‐zygotic) are possibly one of the main forces behind the evolution of barriers to gene flow between these ecologically divergent ecotypes. This study shows how this barrier might represent an important type of reproductive isolation within ecological speciation, and this should be taken into account in future studies of speciation in hybrid zones. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 391–400.  相似文献   

5.
Hybrid zones provide a rare opportunity to explore the processes involved in reproductive isolation and speciation. The southern hybrid zone between the southeastern Australian tree frogs Litoria ewingii and L. paraewingi has been comprehensively studied over the last 40 years, primarily using reproductive compatibility experiments and male advertisement calls. We used mitochondrial DNA (mtDNA) and eight nuclear microsatellite markers to characterize this hybrid zone along a historically studied transect and to test various dispersal‐dependent and dispersal‐independent hybrid zone models. The species are genetically distinct and the level of hybridization within the contact zone is low, with the majority of admixed individuals representing later‐generation hybrids. Based on previous experimental genetic compatibility studies, we predicted that hybrids with L. paraewingi mtDNA would be more frequent than hybrids with L. ewingii mtDNA. Surprisingly, a greater proportion of the identified hybrids had L. ewingii mtDNA. Geographical cline analyses showed a sharp transition in allele frequencies across the transect, and both the mtDNA and microsatellite data showed concordant cline centres, but were best supported by a model that allowed width to vary. Overall, the L. ewingiiL. paraewingi hybrid zone is best characterized as a tension zone, due to the narrow cline width, concordant genetic clines and low levels of hybridization.  相似文献   

6.
The genetic structure and dynamics of hybrid zones provide crucial information for understanding the processes and mechanisms of evolutionary divergence and speciation. In general, higher levels of evolutionary divergence between taxa are more likely to be associated with reproductive isolation and may result in suppressed or strongly restricted hybridization. In this study, we examined two secondary contact zones between three deep evolutionary lineages in the common vole (Microtus arvalis). Differences in divergence times between the lineages can shed light on different stages of reproductive isolation and thus provide information on the ongoing speciation process in M. arvalis. We examined more than 800 individuals for mitochondrial (mtDNA), Y‐chromosome and autosomal markers and used assignment and cline analysis methods to characterize the extent and direction of gene flow in the contact zones. Introgression of both autosomal and mtDNA markers in a relatively broad area of admixture indicates selectively neutral hybridization between the least‐divergent lineages (Central and Eastern) without evidence for partial reproductive isolation. In contrast, a very narrow area of hybridization, shifts in marker clines and the quasi‐absence of Y‐chromosome introgression support a moving hybrid zone and unidirectional selection against male hybrids between the lineages with older divergence (Central and Western). Data from a replicate transect further support non‐neutral processes in this hybrid zone and also suggest a role for landscape history in the movement and shaping of geneflow profiles.  相似文献   

7.
Closely related grasshopper species of the Chorthippus albomarginatus group are notable for their extremely complex courtship songs, accompanied by a visual display. Two species of this group, Ch. albomarginatus and Ch. oschei, were previously shown to hybridize in a wide mosaic hybrid zone in Ukraine and Moldova. In this paper, variation in five courtship song characters, one character of visual display and the number of stridulatory pegs were analysed across the hybrid zone to estimate selection against hybrids and strength of assortative mating. Comparison of cline width and position across the hybrid zone showed concordant and coincident clines in four traits, such as three song characters and one morphological character, and discordant and non‐coincident clines in two other song characters and the character of visual display. Concordance of clines in different characters suggests an equal strength of selection acting on underlying loci. Increase of variance and covariance between phenotypic traits at the cline centre could more likely result from assortative mating than from selection against hybrids. Most pairwise cases showed the highest covariance for the oschei‐like, than for the albomarginatus‐like hybrid populations. This indicates that introgression of the oschei genes into the albomarginatus genome is stronger than vice versa, and may be evidence of the movement of the hybrid zone in favour of Ch. albomarginatus. Analysis of associations between phenotype and local vegetation showed that mosaic structure of the hybrid zone is explained to a great extent by habitat–phenotype associations. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 275–291.  相似文献   

8.
Speciation is the process by which reproductive isolation evolves between populations. Two general models of speciation have been proposed: ecological speciation, where reproductive barriers evolve due to ecologically based divergent selection, and mutation‐order speciation, where populations fix different mutations as they adapt to similar selection pressures. I evaluate these alternative models and determine the progress of speciation in a diverse group of land snails, genus Rhagada, inhabiting Rosemary Island. A recently derived keeled‐flat morphotype occupies two isolated rocky hills, while globose‐shelled snails inhabit the surrounding plains. The study of one hill reveals that they are separated by a narrow hybrid zone. As predicted by ecological speciation theory, there are local and landscape level associations between shell shape and habitat, and the morphological transition coincides with a narrow ecotone between the two distinct environments. Microsatellite DNA revealed a cline of hybrid index scores much wider than the morphological cline, further supporting the ecological maintenance of the morphotypes. The hybrid zone does not run through an area of low population density, as is expected for mutation‐order hybrid zones, and there is a unimodal distribution of phenotypes at the centre, suggesting that there is little or no prezygotic isolation. Instead, these data suggest that the ecotypes are maintained by ecologically dependent postzygotic isolation (i.e. ecological selection against hybrids). Mitochondrial and Microsatellite DNA indicate that the keeled‐flat form evolved recently, and without major historical disruptions to gene flow. The data also suggest that the two keeled‐flat populations, inhabiting similar rocky hills, have evolved in parallel. These snails provide a complex example of ecological speciation in its early stages.  相似文献   

9.
Hybrid zone movement may result in substantial unidirectional introgression of selectively neutral material from the local to the advancing species, leaving a genetic footprint. This genetic footprint is represented by a trail of asymmetric tails and displaced cline centres in the wake of the moving hybrid zone. A peak of admixture linkage disequilibrium is predicted to exist ahead of the centre of the moving hybrid zone. We test these predictions of the movement hypothesis in a hybrid zone between common (Bufo bufo) and spined toads (B. spinosus), using 31 nuclear and one mtDNA SNPs along a transect in the northwest of France. Average effective selection in Bufo hybrids is low and clines vary in shape and centre. A weak pattern of asymmetric introgression is inferred from cline discordance of seven nuclear markers. The dominant direction of gene flow is from B. spinosus to B. bufo and is in support of southward movement of the hybrid zone. Conversely, a peak of admixture linkage disequilibrium north of the hybrid zone suggests northward movement. These contrasting results can be explained by reproductive isolation of the B. spinosus and B. bufo gene pools at the southern (B. spinosus) side of the hybrid zone. The joint occurrence of asymmetric introgression and admixture linkage disequilibrium can also be explained by the combination of low dispersal and random genetic drift due to low effective population sizes.  相似文献   

10.
Although hybridization frequently occurs among plant species, hybrid zones of divergent lineages formed at species boundaries are less common and may not be apparent in later generations of hybrids with more parental‐like phenotypes, as a consequence of backcrossing. To determine the effects of dispersal and selection on species boundaries, we compared clines in leaf traits and molecular hybrid index along two hybrid zones on Yakushima Island, Japan, in which a temperate (Rubus palmatus) and subtropical (Rubus grayanus) species of wild raspberry are found. Leaf sinus depth in the two hybrid zones had narrower clines at 600 m a.s.l. than the molecular hybrid index and common garden tests confirmed that some leaf traits, including leaf sinus depth that is a major trait used in species identification, are genetically divergent between these closely related species. The sharp transition in leaf phenotypic traits compared to molecular markers indicated divergent selection pressure on the hybrid zone structure. We suggest that species boundaries based on neutral molecular data may differ from those based on observed morphological traits.  相似文献   

11.
Steep genetic clines resulting from recent secondary contact between previously isolated taxa can either gradually erode over time or be stabilized by factors such as ecological selection or selection against hybrids. We used patterns of variation in 30 nuclear and two mitochondrial SNPs to examine the factors that could be involved in stabilizing clines across a hybrid zone between two subspecies of the Atlantic killifish, Fundulus heteroclitus. Increased heterozygote deficit and cytonuclear disequilibrium in populations near the center of the mtDNA cline suggest that some form of reproductive isolation such as assortative mating or selection against hybrids may be acting in this hybrid zone. However, only a small number of loci exhibited these signatures, suggesting locus‐specific, rather than genomewide, factors. Fourteen of the 32 loci surveyed had cline widths inconsistent with neutral expectations, with two SNPs in the mitochondrial genome exhibiting the steepest clines. Seven of the 12 putatively non‐neutral nuclear clines were for SNPs in genes related to oxidative metabolism. Among these putatively non‐neutral nuclear clines, SNPs in two nuclear‐encoded mitochondrial genes (SLC25A3 and HDDC2), as well as SNPs in the myoglobin, 40S ribosomal protein S17, and actin‐binding LIM protein genes, had clines that were coincident and concordant with the mitochondrial clines. When hybrid index was calculated using this subset of loci, the frequency distribution of hybrid indices for a population located at the mtDNA cline center was non‐unimodal, suggesting selection against advanced‐generation hybrids, possibly due to effects on processes involved in oxidative metabolism.  相似文献   

12.
Maintenance of genetic distinction in the face of gene flow is an important aspect of the speciation process. Here, we provide a detailed spatial and genetic characterization of a hybrid zone between two subspecies of the European rabbit. We examined patterns of allele frequency change for 22 markers located on the autosomes, X‐chromosome, Y‐chromosome and mtDNA in 1078 individuals sampled across the hybrid zone. While some loci revealed extremely wide clines (≥ 300 km) relative to an estimated dispersal of 1.95–4.22 km/generation, others showed abrupt transitions ( 10 km), indicating localized genomic regions of strong selection against introgression. The subset of loci showing steep clines had largely coincident centers and stepped changes in allele frequency that did not co‐localize with any physical barrier or ecotone, suggesting that the rabbit hybrid zone is a tension zone. The steepest clines were for X‐ and Y‐chromosome markers. Our results are consistent with previous inference based on DNA sequence variation of individuals sampled in allopatry in suggesting that a large proportion of each genome has escaped the overall barrier to gene flow in the middle of the hybrid zone. These results imply an old history of hybridization and high effective gene flow and anticipate that isolation factors should often localize to small genomic regions.  相似文献   

13.
Ecological adaptation is the driving force during divergence with gene flow and generates reproductive isolation early in speciation. Although gene flow opposes divergence, local adaptation can be facilitated by factors that prevent the breakup of favorable allelic combinations. We investigated how selection, genetic architecture, and geography have contributed to the maintenance of floral trait divergence and pollinator isolation between parapatric ecotypes of Mimulus aurantiacus. Combining greenhouse, field, and genomic studies, we show that sharp clines in floral traits are maintained by spatially varying selection. Although adaptation breaks down where the ecotypes co‐occur, leading to the formation of a hybrid zone, the largely non‐overlapping distributions of the ecotypes shield them from immigrant genes, facilitating divergence across most of the range. In contrast to the sharp genetic discontinuities observed across most hybrid zones, we observed a gradual cline in genome‐wide divergence and a pattern of isolation by distance across the landscape. Thus, contrary to a long period of allopatry followed by recent re‐contact, our data suggest that floral trait divergence in M. aurantiacus may have evolved with locally restricted, but ongoing gene flow. Therefore, our study reveals how the geographic distribution of an organism can contribute to the evolution of premating isolation in the early stages of divergence with gene flow.  相似文献   

14.
Glaucous‐winged gulls Larus glaucescens and western gulls L. occidentalis hybridize extensively where their ranges overlap along the coasts of Washington and Oregon, producing a continuum of phenotypic intergrades between the two parental species. This zone often is considered an example of geographically bounded hybrid superiority, but studies of relative success among parental types and hybrids have not provided consistent support for this model. We tested the predictions of the dynamic‐equilibrium and geographically bounded hybrid superiority hypotheses by studying mate choice and reproductive success among gulls on Protection Island, Washington, the largest breeding colony of glaucous‐winged/western gulls within the hybrid zone. The dynamic‐equilibrium hypothesis posits that hybridization due to dispersal balances selection against less fit hybrids and assortative mating is adaptive. Geographically bounded hybrid superiority posits that hybrids are better fit than parental types within an ecotone between the environments to which the parental species are adapted, and a preference for hybrid mates is adaptive. Additionally, we investigated whether hatching success and nest site choice are correlated for Protection Island gulls. We assigned a hybrid index to each sample bird by examining plumage melanism and bare part coloration in the field. Sheltered nests contained larger clutches and exhibited increased hatching success, but choice of nest habitat was not associated with hybrid index. Western gull‐like pairs produced smaller third eggs; however, hybrid index was not correlated with clutch size or hatching success. Protection Island gulls did exhibit assortative mating. In short, we did not find strong support for either geographically bounded hybrid superiority or the dynamic‐equilibrium hypothesis.  相似文献   

15.
Hybrid zones are particularly valuable for understanding the evolution of partial reproductive isolation between differentiated populations. An increasing number of hybrid zones have been inferred to move over time, but in most such cases zone movement has not been tested with long‐term genomic data. The hybrid zone between Townsend's Warblers (Setophaga townsendi) and Hermit Warblers (S. occidentalis) in the Washington Cascades was previously inferred to be moving from northern S. townsendi southwards towards S. occidentalis, based on plumage and behavioural patterns as well as a 2000‐km genetic wake of hermit mitochondrial DNA (mtDNA) in coastal Townsend's Warblers. We directly tested whether hybrid zone position has changed over 2–3 decades by tracking plumage, mtDNA and nuclear genomic variation across the hybrid zone over two sampling periods (1987–94 and 2015–16). Surprisingly, there was no significant movement in genomic or plumage cline centres between the two time periods. Plumage cline widths were narrower than expected by neutral diffusion, consistent with a ‘tension zone’ model, in which selection against hybrids is balanced by movement of parental forms into the zone. Our results indicate that this hybrid zone is either stable in its location or moving at a rate that is not detectable over 2–3 decades. Despite considerable gene flow, the stable clines in multiple phenotypic and genotypic characters over decades suggest evolutionary stability of this young pair of sister species, allowing divergence to continue. We propose a novel biogeographic scenario to explain these patterns: rather than the hybrid zone having moved thousands of kilometres to its current position, inland Townsend's met coastal Hermit Warbler populations along a broad front of the British Columbia and Alaska coast and hybridization led to replacement of the Hermit Warbler plumage with Townsend's Warbler plumage patterns along this coastline. Hence, hybrid zones along British Columbia and Alaska moved only a short distance from the inland to the coast, whereas the Hermit Warbler phenotype appears stable in Washington and further south. This case provides an example of the complex biogeographic processes that have led to the distribution of current phenotypes within and among closely related species.  相似文献   

16.
Recently diverged species present particularly informative systems for studying speciation and maintenance of genetic divergence in the face of gene flow. We investigated speciation in two closely related Senecio species, S. aethnensis and S. chrysanthemifolius, which grow at high and low elevations, respectively, on Mount Etna, Sicily and form a hybrid zone at intermediate elevations. We used a newly generated genome‐wide single nucleotide polymorphism (SNP) dataset from 192 individuals collected over 18 localities along an elevational gradient to reconstruct the likely history of speciation, identify highly differentiated SNPs, and estimate the strength of divergent selection. We found that speciation in this system involved heterogeneous and bidirectional gene flow along the genome, and species experienced marked population size changes in the past. Furthermore, we identified highly‐differentiated SNPs between the species, some of which are located in genes potentially involved in ecological differences between species (such as photosynthesis and UV response). We analysed the shape of these SNPs’ allele frequency clines along the elevational gradient. These clines show significantly variable coincidence and concordance, indicative of the presence of multifarious selective forces. Selection against hybrids is estimated to be very strong (0.16–0.78) and one of the highest reported in literature. The combination of strong cumulative selection across the genome and previously identified intrinsic incompatibilities probably work together to maintain the genetic and phenotypic differentiation between these species – pointing to the importance of considering both intrinsic and extrinsic factors when studying divergence and speciation.  相似文献   

17.
We present a new software package (hzar ) that provides functions for fitting molecular genetic and morphological data from hybrid zones to classic equilibrium cline models using the Metropolis–Hastings Markov chain Monte Carlo (MCMC) algorithm. The software applies likelihood functions appropriate for different types of data, including diploid and haploid genetic markers and quantitative morphological traits. The modular design allows flexibility in fitting cline models of varying complexity. To facilitate hypothesis testing, an autofit function is included that allows automated model selection from a set of nested cline models. Cline parameter values, such as cline centre and cline width, are estimated and may be compared statistically across clines. The package is written in the R language and is available through the Comprehensive R Archive Network (CRAN; http://cran.r-project.org/ ). Here, we describe hzar and demonstrate its use with a sample data set from a well‐studied hybrid zone in western Panama between white‐collared (Manacus candei) and golden‐collared manakins (M. vitellinus). Comparisons of our results with previously published results for this hybrid zone validate the hzar software. We extend analysis of this hybrid zone by fitting additional models to molecular data where appropriate.  相似文献   

18.
Evidence is rapidly accumulating that hybridization generates adaptive variation. Transgressive segregation in hybrids could promote the colonization of new environments. Here, we use an assay to select hybrid genotypes that can proliferate in environmental conditions beyond the conditions tolerated by their parents, and we directly compete them against parental genotypes in habitats across environmental clines. We made 45 different hybrid swarms by crossing yeast strains (both Saccharomyces cerevisiae and S. paradoxus) with different genetic and phenotypic divergence. We compared the ability of hybrids and parents to colonize seven types of increasingly extreme environmental clines, representing both natural and novel challenges (mimicking pollution events). We found that a significant majority of hybrids had greater environmental ranges compared to the average of both their parents’ ranges (mid‐parent transgression), but only a minority of hybrids had ranges exceeding their best parent (best‐parent transgression). Transgression was affected by the specific strains involved in the cross and by the test environment. Genetic and phenotypic crossing distance predicted the extent of transgression in only two of the seven environments. We isolated a set of potentially transgressive hybrids selected at the extreme ends of the clines and found that many could directly outcompete their parents across whole clines and were between 1.5‐ and 3‐fold fitter on average. Saccharomyces yeast is a good model for quantitative and replicable experimental speciation studies, which may be useful in a world where hybridization is becoming increasingly common due to the relocation of plants and animals by humans.  相似文献   

19.
Hybrid zones between species provide natural systems for the study of processes involved in divergence, reproductive isolation and speciation. Townsend's Dendroica townsendi and black‐throated green D. virens warblers are phenotypically and genetically divergent groups that occur in western and eastern North America respectively, with potential for range contact in the Rocky Mountains of British Columbia, where other west–east avian pairs come into contact. Although one potential hybrid (a phenotypic Townsend's warbler with the black‐throated green mitochondrial DNA) has been previously reported, there have been no studies of interactions between the taxa in potential areas of sympatry. To determine whether interbreeding between these species is a regular occurrence we examined variation in individuals across the area of putative range overlap. Analysis of plumage, morphology, and mitochondrial (COI) and nuclear molecular markers (CHD1Z and numt‐Dco1) shows surprisingly extensive hybridization between these species, with at least 38% of individuals in the hybrid zone being either hybrids or backcrosses. Each of the traits displays a sigmoidal cline centred along the eastern slope of the Rocky Mountains (molecular cline centres averaging 50 km east of the crest of the Rockies, ranging from 41 to 56 km). The clines are narrow (average molecular cline width is 60 km, ranging from 40 to 87 km) relative to the dispersal distance of related warbler species, suggesting that selection is maintaining the hybrid zone; we discuss possible sources of selection. Given the narrowness of the zone we recommend the two forms should continue to be treated as separate taxonomic species. Townsend's warblers also form an extensively studied hybrid zone with their more closely related southern relative, the hermit warbler D. occidentalis. The combined system of three discrete forms separated by narrow hybrid zones provides an excellent system for the study of hybridization, reproductive isolation and speciation.  相似文献   

20.
Abstract A previous study of the hybrid zone in western Panama between white‐collared (Manacus candei) and golden‐collared manakins (M. vitellinus) documented the unidirectional introgression of vitellinus male secondary sexual traits across the zone. Here, we examine the hybrid zone in greater genetic and morphological detail. Statistical comparisons of clines are performed using maximum‐likelihood and nonparametric bootstrap methods. Our results demonstrate that an array of six molecular and two morphometric markers agree in cline position and width. Clines for male collar and belly color are similar in width to the first eight clines, but are shifted in position by at least five cline widths. The result is that birds in intervening populations are genetically and morphometrically very like parental candei, but males have the plumage color of parental vitellinus. Neither neutral diffusion nor nonlinearity of color scales appear to be viable explanations for the large cline shifts. Genetic dominance of vitellinus plumage traits is another potential explanation that will require breeding experiments to test. Sexual selection remains a plausible explanation for the observed introgression of vitellinus color traits in these highly dimorphic, polygynous, lek‐mating birds. Two other clines, including a nondiagnostic isozyme locus, are similar in position to the main cluster of clines, but are broader in width. Thus, introgression at some loci is greater than that detected with diagnostic markers. Assuming that narrow clines are maintained by selection, variation in cline width indicates that selection is not uniform throughout the genome and that diagnostic markers are under more intense selective pressure. The traditional focus on diagnostic markers in studies of hybrid zones may therefore lead to underestimates of average introgression. This effect may be more pronounced in organisms with low levels of genetic divergence between hybridizing taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号