首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although endocytosis involves the fission pore, a transient structure that produces the scission between vesicle and plasma membranes, the dimensions and dynamics of fission pores remain unclear. Here we report that the pore resistance changes proceed in three distinct phases: an initial phase where the resistance increases at 31.7 ± 2.9 GΩ/second, a slower linear phase with an overall slope of 11.7 ± 1.9 GΩ/second and a final increase in resistance more steeply (1189 ± 136 GΩ/second). The kinetics of these changes was calcium dependent. These sequential stages of the fission pore may be interpreted in terms of pore geometry as changes, first in pore diameter and then in pore length, according to which, before fission, the pore diameter consistently decreased to a value near 4 nm, whereas the pore length ranged between 20 and 300 nm. Dynamin, a mechanochemical GTPase, plays an important role in accelerating the fission event, preferentially in endocytotic vesicles of regular size, by increasing the rates of pore closure during the first and second phases of the fission pore, but hardly affected larger and longer‐lived endocytotic events. These results suggest that fission pores are dynamic structures that form thin and long membrane necks regulated by intracellular calcium. Between calcium mediators, dynamin functions as a catalyst to increase the speed of single vesicle endocytosis.  相似文献   

2.
Dynamin is a 96‐kDa protein that has multiple oligomerization states that influence its GTPase activity. A number of different dynamin effectors, including lipids, actin filaments, and SH3‐domain‐containing proteins, have been implicated in the regulation of dynamin oligomerization, though their roles in influencing dynamin oligomerization have been studied predominantly in vitro using recombinant proteins. Here, we identify higher order dynamin oligomers such as rings and helices in vitro and in live cells using fluorescence lifetime imaging microscopy (FLIM). FLIM detected GTP‐ and actin‐dependent dynamin oligomerization at distinct cellular sites, including the cell membrane and transition zones where cortical actin transitions into stress fibers. Our study identifies a major role for direct dynamin–actin interactions and dynamin's GTPase activity in the regulation of dynamin oligomerization in cells.   相似文献   

3.
The GTPase dynamin is essential for receptor-mediated endocytosis, but its function remains controversial. A domain of dynamin, termed the GTPase effector domain (GED), controls dynamin's high stimulated rates of GTP hydrolysis by functioning as an assembly-dependent GAP. Dyn(K694A) and dyn(R725A) carry point mutations within GED resulting in reduced assembly stimulated GTPase activity. Biotinylated transferrin is more rapidly sequestered from avidin in cells transiently overexpressing either of these two activating mutants (Sever, S., A.B. Muhlberg, and S.L. Schmid. 1999. Nature. 398:481-486), suggesting that early events in receptor-mediated endocytosis are accelerated. Using stage-specific assays and morphological analyses of stably transformed cells, we have identified which events in clathrin-coated vesicle formation are accelerated by the overexpression of dyn(K694A) and dyn(R725A). Both mutants accelerate the formation of constricted coated pits, which we identify as the rate limiting step in endocytosis. Surprisingly, overexpression of dyn(R725A), whose primary defect is in stimulated GTP hydrolysis, but not dyn(K694A), whose primary defect is in self-assembly, inhibited membrane fission leading to coated vesicle release. Together, our data support a model in which dynamin functions like a classical GTPase as a key regulator of clathrin-mediated endocytosis.  相似文献   

4.
Regulating actin dynamics at membranes: a focus on dynamin   总被引:9,自引:0,他引:9  
Dynamin, the large guanosine triphosphatase, is generally considered to have a key role in deforming membranes to create tubules or vesicles. Dynamin, particularly dynamin2 isoforms, also are localized with actin filaments, often at locations where cellular membranes undergo remodeling. Perturbing dynamin function interferes with endocytic traffic and actin function. Thus, dynamin may regulate actin filaments coordinately with its activities that remodel membranes. This review will highlight recent observations that provide clues to mechanisms whereby dynamin might coordinate membrane remodeling and actin filament dynamics during endocytic traffic, cell morphogenesis and cell migration.  相似文献   

5.
6.
Cortactin, an actin-binding protein and a substrate of Src, is encoded by the EMS 1 oncogene. Cortactin is known to activate Arp2/3 complex-mediated actin polymerization and interact with dynamin, a large GTPase and proline rich domain-containing protein. Transferrin endocytosis was significantly reduced in cells by knock-down of cortactin expression as well as in vivo introduction of cortactin immunoreagents. Cortactin-dynamin interaction displayed morphologically dynamic co-distribution with a change in the endocytosis level in cells treated with an actin depolymerization reagent, cytochalasin D. In an in vitro beads assay, a branched actin network was recruited onto dynamin-coated beads in a cortactin Src homology domain 3 (SH3)-dependent manner. In addition, cortactin was found to function in the late stage of clathrin coated vesicle formation. Taken together, cortactin is required for optimal clathrin mediated endocytosis in a dynamin directed manner.  相似文献   

7.
The large GTPase dynamin has an important membrane scission function in receptor‐mediated endocytosis and other cellular processes. Self‐assembly on phosphoinositide‐containing membranes stimulates dynamin GTPase activity, which is crucial for its function. Although the pleckstrin‐homology (PH) domain is known to mediate phosphoinositide binding by dynamin, it remains unclear how this promotes activation. Here, we describe studies of dynamin PH domain mutations found in centronuclear myopathy (CNM) that increase dynamin's GTPase activity without altering phosphoinositide binding. CNM mutations in the PH domain C‐terminal α‐helix appear to cause conformational changes in dynamin that alter control of the GTP hydrolysis cycle. These mutations either ‘sensitize’ dynamin to lipid stimulation or elevate basal GTPase rates by promoting self‐assembly and thus rendering dynamin no longer lipid responsive. We also describe a low‐resolution structure of dimeric dynamin from small‐angle X‐ray scattering that reveals conformational changes induced by CNM mutations, and defines requirements for domain rearrangement upon dynamin self‐assembly at membrane surfaces. Our data suggest that changes in the PH domain may couple lipid binding to dynamin GTPase activation at sites of vesicle invagination.  相似文献   

8.
Dynamin GTPase activity increases when it oligomerizes either into helices in the presence of lipid templates or into rings in the presence of SH3 domain proteins. Dynasore is a dynamin inhibitor of moderate potency (IC50 ? 15 μM in vitro). We show that dynasore binds stoichiometrically to detergents used for in vitro drug screening, drastically reducing its potency (IC50 = 479 μM) and research tool utility. We synthesized a focused set of dihydroxyl and trihydroxyl dynasore analogs called the Dyngo? compounds, five of which had improved potency, reduced detergent binding and reduced cytotoxicity, conferred by changes in the position and/or number of hydroxyl substituents. The Dyngo compound 4a was the most potent compound, exhibiting a 37‐fold improvement in potency over dynasore for liposome‐stimulated helical dynamin activity. In contrast, while dynasore about equally inhibited dynamin assembled in its helical or ring states, 4a and 6a exhibited >36‐fold reduced activity against rings, suggesting that they can discriminate between helical or ring oligomerization states. 4a and 6a inhibited dynamin‐dependent endocytosis of transferrin in multiple cell types (IC50 of 5.7 and 5.8 μM, respectively), at least sixfold more potently than dynasore, but had no effect on dynamin‐independent endocytosis of cholera toxin. 4a also reduced synaptic vesicle endocytosis and activity‐dependent bulk endocytosis in cultured neurons and synaptosomes. Overall, 4a and 6a are improved and versatile helical dynamin and endocytosis inhibitors in terms of potency, non‐specific binding and cytotoxicity. The data further suggest that the ring oligomerization state of dynamin is not required for clathrin‐mediated endocytosis .  相似文献   

9.
10.
Membrane budding and fission are the key stages of ubiquitous processes of formation of intracellular transport vesicles. We present a theoretical consideration of one of the most important types of fission machinery, which is mediated by GTPase dynamin and controlled by lipid composition of the membrane. We suggest a mechanism for collapse of a membrane neck driven by interplay between the dynamin collar and the bending elastic energy of the neck membrane. The collar plays a role of a rigid external skeleton, which imposes mechanical constraints on the neck. We show that in certain conditions the membrane of the neck loses its stability and collapses. Collapse can result from: (i) shifting of the spontaneous curvature of the neck membrane towards negative values, (ii) stretching of the dynamin collar, (iii) tightening of the dynamin collar. The three factors can act separately or concertedly. The suggested model accounts for the major experimental knowledge on membrane fission mediated by dynamin. It includes the elements of all previous models of dynamin action based on different sets of experimental results [Sever et al., Traffic 2000; 1: 385-392]. It reconciles, at least partially, the apparent contradictions between the existing alternative views on biomembrane fission machinery.  相似文献   

11.
The Euresco/EMBL sponsored meeting on 'Membrane Dynamics in Endocytosis' took place on 6–11 October in Tomar, Portugal. Here we report on the 5 full days of exciting talks and active poster sessions that covered topics ranging from the mechanisms of clathrin-mediated endocytosis, the regulation of phagocytosis, caveolae dynamics and function, the role of lipids in regulating endocytic transport, the formation of and sorting into and out of multivesicular bodies, new links between the actin cytoskeleton and vesicular transport, and emerging roles for endocytic trafficking in signal transduction and development.  相似文献   

12.
Recently, Gao et al. and Chappie et al. elucidated the crystal structures of the polytetrameric stalk domain of the dynamin-like virus resistance protein, MxA, and of the G-domain dimer of the large, membrane-deforming GTPase, dynamin, respectively. Combined, they provide a hypothetical oligomeric structure for the complete dynamin protein. Here, it is discussed how the oligomers are expected to form and how they participate in dynamin mediated vesicle fission during the process of endocytosis. The proposed oligomeric structure is compared with the novel mechanochemical model of dynamin function recently proposed by Bashkirov et al. and Pucadyil and Schmid. In conclusion, the new model of the dynamin oligomer has the potential to explain how short self-limiting fissogenic dynamin assemblies are formed and how concerted GTP hydrolysis is achieved. The oligomerisation of two other dynamin superfamily proteins, the guanylate binding proteins (GBPs) and the immunity-related GTPases (IRGs), is addressed briefly.  相似文献   

13.
Clathrin-mediated endocytosis is required to recycle synaptic vesicles for fast and efficient neurotransmission. Amphiphysins are thought to be multiprotein adaptors that may contribute to this process by bringing together many of the proteins required for endocytosis. Their in vivo function, however, has yet to be determined. Here, we show that the Drosophila genome encodes a single amphiphysin gene that is broadly expressed during development. We also show that, unlike its vertebrate counterparts, Drosophila Amphiphysin is enriched postsynaptically at the larval neuromuscular junction. To determine the role of Drosophila Amphiphysin, we also generated null mutants which are viable but give rise to larvae and adults with pronounced locomotory defects. Surprisingly, the locomotory defects cannot be accounted for by alterations in the morphology or physiology of the neuromuscular junction. Moreover, using stimulus protocols designed to test endocytosis under moderate and extreme vesicle cycling, we could not detect any defect in the neuromuscular junction of the amphiphysin mutant. Taken together, our findings suggest that Amphiphysin is not required for viability, nor is it absolutely required for clathrin-mediated endocytosis. However, Drosophila Amphiphysin function is required in both larvae and adults for normal locomotion.  相似文献   

14.
The exocyst complex tethers post‐Golgi secretory vesicles to the plasma membrane prior to docking and fusion. In this study, we identify Sec3, the missing component of the Schizosaccharomyces pombe exocyst complex (SpSec3). SpSec3 shares many properties with its orthologs, and its mutants are rescued by human Sec3/EXOC1. Although involved in exocytosis, SpSec3 does not appear to mark the site of exocyst complex assembly at the plasma membrane. It does, however, mark the sites of actin cytoskeleton recruitment and controls the organization of all three yeast actin structures: the actin cables, endocytic actin patches and actomyosin ring. Specifically, SpSec3 physically interacts with For3 and sec3 mutants have no actin cables as a result of a failure to polarize this nucleating formin. SpSec3 also interacts with actin patch components and sec3 mutants have depolarized actin patches of reduced endocytic capacity. Finally, the constriction and disassembly of the cytokinetic actomyosin ring is compromised in these sec3 mutant cells. We propose that a role of SpSec3 is to spatially couple actin machineries and their independently polarized regulators. As a consequence of its dual role in secretion and actin organization, Sec3 appears as a major co‐ordinator of cell morphology in fission yeast .  相似文献   

15.
Dynamin and cytokinesis   总被引:5,自引:0,他引:5  
Animal and plant cytokineses appear morphologically distinct. Recent studies, however, have revealed that these cellular processes have many things in common, including the requirement of co-ordinated membrane trafficking and cytoskeletal dynamics. At the intersection of these two processes are the members of the dynamin family of ubiquitous eukaryotic GTPases. In this review, we highlight the conserved contribution of classical dynamin and dynamin-related proteins during cytokinesis in both animal and plant systems.  相似文献   

16.
The role of actin, class I myosins and dynamin in endocytic uptake processes is well characterized, but their role during endo-phagosomal membrane trafficking and maturation is less clear. In Dictyostelium, knockout of myosin IB (myoB) leads to a defect in membrane protein recycling from endosomes back to the plasma membrane. Here, we show that actin plays a central role in the morphology and function of the endocytic pathway. Indeed, latrunculin B (LatB) induces endosome tubulation, a phenotype also observed in dynamin A (dymA)-null cells. Knockout of dymA impairs phagosome acidification, whereas knockout of myoB delays reneutralization, a phenotype mimicked by a low dose of LatB. As a read out for actin-dependent processes during maturation, we monitored the capacity of purified phagosomes to bind F-actin in vitro, and correlated this with the presence of actin-binding and membrane-trafficking proteins. Phagosomes isolated from myoB-null cells showed an increased binding to F-actin, especially late phagosomes. In contrast, early phagosomes from dymA-null cells showed reduced binding to F-actin while late phagosomes were unaffected. We provide evidence that Abp1 is the main F-actin-binding protein in this assay and is central for the interplay between DymA and MyoB during phagosome maturation.  相似文献   

17.
The actin cytoskeleton has been implicated in endocytosis, yet few molecular links to the endocytic machinery have been established. Here we show that the mammalian F-actin-binding protein Abp1 (SH3P7/HIP-55) can functionally link the actin cytoskeleton to dynamin, a GTPase that functions in endocytosis. Abp1 binds directly to dynamin in vitro through its SH3 domain. Coimmunoprecipitation and colocalization studies demonstrated the in vivo relevance of this interaction. In neurons, mammalian Abp1 and dynamin colocalized at actin-rich sites proximal to the cell body during synaptogenesis. In fibroblasts, mAbp1 appeared at dynamin-rich sites of endocytosis upon growth factor stimulation. To test whether Abp1 functions in endocytosis, we overexpressed several Abp1 constructs in Cos-7 cells and assayed receptor-mediated endocytosis. While overexpression of Abp1's actin-binding modules did not interfere with endocytosis, overexpression of the SH3 domain led to a potent block of transferrin uptake. This implicates the Abp1/dynamin interaction in endocytic function. The endocytosis block was rescued by cooverexpression of dynamin. Since the addition of the actin-binding modules of Abp1 to the SH3 domain construct also fully restored endocytosis, Abp1 may support endocytosis by combining its SH3 domain interactions with cytoskeletal functions in response to signaling cascades converging on this linker protein.  相似文献   

18.
Dynamics of membrane clathrin-coated structures during cytokinesis   总被引:1,自引:0,他引:1  
Remodeling of cell membranes takes place during motile processes such as cell migration and cell division. Defects of proteins involved in membrane dynamics, including clathrin and dynamin, disrupt cytokinesis. To understand the function of clathrin-containing structures (CCS) in cytokinesis, we have expressed a green fluorescent protein (GFP) fusion protein of clathrin light chain a (GFP-clathrin) in NRK epithelial cells and recorded images of dividing cells near the ventral surface with a spinning disk confocal microscope. Punctate GFP-CCS underwent dynamic appearance and disappearance throughout the ventral surface. Following anaphase onset, GFP-CCS between separated chromosomes migrated toward the equator and subsequently disappeared in the equatorial region. Movements outside separating chromosomes were mostly random, similar to what was observed in interphase cells. Directional movements toward the furrow were dependent on both actin filaments and microtubules, while the appearance/disappearance of CCS was dependent on actin filaments but not on microtubules. These results suggest that CCS are involved in remodeling the plasma membrane along the equator during cytokinesis. Clathrin-containing structures may also play a role in transporting signaling or structural components into the cleavage furrow.  相似文献   

19.
Eukaryotic cells with specialized functions often use and adapt common molecular machineries. Recent findings have highlighted that actin polymerization, contractile activity and membrane remodelling with exocytosis of internal compartments are required both for successful phagocytosis, the internalization of particulate material and for cytokinesis, the last step of cell division. Phagocytosis is induced by the triggering of specific cell surface receptors, which leads to membrane deformation, pseudopod extension and contraction to engulf particles. Cytokinesis relies on intense contractile activity and eventually leads to the physical scission of sister cells. In this review, shared features of signalling, cytoskeletal reorganization and vesicular trafficking used in both phagocytosis and cytokinesis will be described, but non‐common mechanisms and questions that remain open in these dynamic areas of research are also highlighted .   相似文献   

20.
The HIV viral entry co‐receptors CCR5 and CXCR4 function physiologically as typical chemokine receptors. Activation leads to cytosolic signal transduction that results in a variety of cellular responses such as cytoskeletal rearrangement and chemotaxis (CTX). Our aim was to investigate the signalling pathways involved in CC and CXC receptor‐mediated cell migration. Inhibition of dynamin I and II GTPase with dynasore completely inhibited CCL3‐stimulated CTX in THP‐1 cells, whereas the dynasore analogue Dyngo‐4a, which is a more potent inhibitor, showed reduced ability to inhibit CC chemokine‐induced CTX. In contrast, dynasore was not able to block cell migration via CXCR4. The same activation/inhibition pattern was verified in activated T lymphocytes for different CC and CXC chemokines. Cell migration induced by CC and CXC receptors does not rely on active internalization processes driven by dynamin because the blockade of internalization does not affect migration, but it might rely on dynamin interaction with the cytoskeleton. We identify here a functional difference in how CC and CXC receptor migration is controlled, suggesting that specific signalling networks are being employed for different receptor classes and potentially specific therapeutic targets to prevent receptor migration can be identified. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号