首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Locusts respond to the images of approaching (looming) objects with responses that include gliding while in flight and jumping while standing. For both of these responses there is good evidence that the DCMD neuron (descending contralateral movement detector), which carries spike trains from the brain to the thoracic ganglia, is involved. Sudden glides during flight, which cause a rapid loss of height, are last-chance manoeuvres without prior preparation. Jumps from standing require preparation over several tens of milliseconds because of the need to store muscle-derived energy in a catapult-like mechanism. Locusts’ DCMD neurons respond selectively to looming stimuli, and make connections with some motor neurons and interneurons known to be involved in flying and jumping. For glides, a burst of high-frequency DCMD spikes is a key trigger. For jumping, a similar burst can influence timing, but neither the DCMD nor any other single interneuron has been shown to be essential for triggering any stage in preparation or take-off. Responses by the DCMD to looming stimuli can alter in different behavioural contexts: in a flying locust, arousal ensures a high level of both DCMD responsiveness and glide occurrence; and there are significant differences in DCMD activity between locusts in the gregarious and the solitarious phase.  相似文献   

2.
Summary Pursuit responses that are probably involved in chasing behavior can be evoked and quantitatively measured in male houseflies under conditions of tethered flight (Figs. 2, 3, 5). Pursuit responses of females are significantly different from those of males (Table 1).Characteristics of the pursuit response are compared with those of the optomotor response to show that they are mediated by different neural subsystems that are in parallel. A slow system mediates the optomotor response, while a much faster system mediates the pursuit response (Table 1).The interaction between the pursuit response and the optomotor response is one of switching. The optomotor stimulus, when presented alone, evokes the optomotor response. When the pursuit stimulus is superposed, the fly switches from the optomotor system to the pursuit system, and ignores the optomotor stimulus. When the pursuit stimulus is removed, the animal switches back to the optomotor system (Fig. 8).We wish to thank Dr. M.F. Land for his valuable suggestion for measuring the optomotor response. This work was supported by NEI grants EY 01140 and EY 00785.  相似文献   

3.
Summary The transmitter content of identified inhibitory interneurons in the flight system of the locust, Locusta migratoria, has been characterized using antibodies raised against protein-conjugated gamma aminobutyric acid. Identified flight neurons were filled with the fluorescent dye, Lucifer Yellow. Serial sections of dye-filled neurons were incubated with an antibody to gamma aminobutyric acid which was subsequently tagged with a fluorescent marker. Excitatory motoneurons to wing muscles and 13 flight interneurons (3 excitatory, 7 inhibitory, and 3 with unknown synaptic effect) were examined. Neither the moto-neurons nor any of the 3 excitatory interneurons contained immunoreactive material. Six of the 7 inhibitory interneurons did contain immunoreactive material. All the neurons which contained immunoreactive material and whose synaptic effect is known were inhibitory. We conclude that most of the inhibitory flight interneurons which have been described use gamma aminobutyric acid as their transmitter. Interestingly, at least 1 set of interneurons known to be inhibitory does not use gamma aminobutyric acid. We predict that the 2 interneurons which do contain immunoreactive material and whose synaptic effect is not yet known will be found to have inhibitory roles in the operation of the flight circuitry.  相似文献   

4.
Tachykinin-related peptides in invertebrates: a review   总被引:9,自引:0,他引:9  
Nässel DR 《Peptides》1999,20(1):141-158
Peptides with sequence similarities to members of the tachykinin family have been identified in a number of invertebrates belonging to the mollusca, echiuridea, insecta and crustacea. These peptides have been designated tachykinin-related peptides (TRPs) and are characterized by the preserved C-terminal pentapeptide FX1GX2Ramide (X1 and X2 are variable residues). All invertebrate TRPs are myostimulatory on insect hindgut muscle, but also have a variety of additional actions: they can induce contractions in cockroach foregut and oviduct and in moth heart muscle, trigger a motor rhythm in the crab stomatogastric ganglion, depolarize or hyperpolarize identified interneurons of locust and the snail Helix and induce release of adipokinetic hormone from the locust corpora cardiaca. Two putative TRP receptors have been cloned from Drosophila; both are G-protein coupled and expressed in the nervous system. The invertebrate TRPs are distributed in interneurons of the CNS of Limulus, crustaceans and insects. In the latter two groups TRPs are also present in the stomatogastric nervous system and in insects endocrine cells of the midgut display TRP-immunoreactivity. In arthropods the distribution of TRPs in neuronal processes of the brain displays similar patterns. Also in coelenterates, flatworms and molluscs TRPs have been demonstrated in neurons. The activity of different TRPs has been explored in several assays and it appears that an amidated C-terminal hexapeptide (or longer) is required for bioactivity. In many invertebrate assays the first generation substance P antagonist spantide I is a potent antagonist of invertebrate TRPs and substance P. Locustatachykinins stimulate adenylate cyclase in locust interneurons and glandular cells of the corpora cardiaca, but in other tissues the putative second messenger systems have not yet been identified. The heterologously expressed Drosophila TRP receptors coupled to the phospholipase C pathway and could induce elevations of inositol triphosphate. The structures, distributions and actions of TRPs in various invertebrates are compared and it is concluded that the TRPs are multifunctional peptides with targets both in the central and peripheral nervous system and other tissues, similar to vertebrate tachykinins. Invertebrate TRPs may also be involved in developmental processes.  相似文献   

5.
Abstract The optomotor yaw response of the desert locust, Schistocerca gregaria (Forsk.), was investigated under open- and closed-loop conditions. When flying tethered in the centre of a vertically striped hollow sphere, the polarity of response of the locust was always the same as the stimulus. The response, therefore, appears suitable to stabilize body posture against passive rotations around the yaw-axis in free flight. Responses were induced by contrast frequencies up to 150 Hz with a maximum of amplitude at about 20 Hz. The characteristic curve, measured between 0.3 and 160 Hz, is widened up towards higher frequencies as compared with those of bees and flies.
Variability was the most striking feature in the locust's yaw response. The amplitude of modulation not only varied greatly between individuals but also changed with the same visual stimulus in the course of an experiment. We therefore suppose that the locust's turning behaviour is subject to gain control mechanisms and that spontaneous gain modulations are responsible for the observed variability in the stimulus-response conversion.  相似文献   

6.
Tethered flying desert locusts, Schistocerca gregaria, generate yaw-torque in response to rotation of a radial grating located beneath them. By screening parts of the pattern, rotation of the unscreened grating turned out to induce a compensatory steering (by pattern motion within transversally oriented 90° wide sectors) as well as an upwind/downwind turning response (by pattern motion within the anterior ventral 90° wide sector). The strength and polarity of responses upon the unscreened grating results from a linear superposition of these two response components. The results are discussed with regard to a functional specialization of eye regions.In a typical experiment, 3 consecutive flight-phases, assumed to mirror start, long-range flight, and landing of a free-flying locust, were distinguished. They may result from a time dependent variation of the polarity and relative strength of upwind/downwind turning and compensatory steering responses. Starting and landing phases were under strong optomotor control and were dominated by the high-gain compensatory steering. In contrast, the phase of long-range flight was under weak optomotor control resulting from a low gain in both of the two response components. The biological significance of this variable strength of optomotor control on free flight orientation of swarming locusts is discussed.  相似文献   

7.
Summary The relationship between synaptic function and structure was examined for 32 spiking interneurons (13 inhibitory and 19 excitatory) in the meso- and metathoracic ganglia of the locust, Locusta migratoria. In no instance was the structure of an excitatory interneuron similar to that of an inhibitory interneuron. However, 12 of the 13 inhibitory interneurons shared a number of structural features, namely a ventromedially located soma, axon(s) projecting into contralateral connective(s), and a laterally bowed primary neurite. Structurally the excitatory interneurons formed a more heterogeneous group. Even so, 12 of the 19 had a combination of structural features in common, namely laterally located somata and axon(s) projecting into contralateral connective(s). The clear differences in structure of the two main groups of inhibitory and excitatory interneurons suggest that other neurons with structures similar to members of these two groups can be classified as inhibitory and excitatory, respectively. Thus we propose that structure predicts synaptic function for two distinct groups of interneurons in the thoracic ganglia of locusts. Present address: Department of Biology, McGill University, Montreal, Qubeck, Canada  相似文献   

8.
Flies evaluate movement within their visual field in order to control the course of flight and to elicit landing manoeuvres. Although the motor output of the two types of responses is quite different, both systems can be compared with respect to the underlying movement detection systems. For a quantitative comparison, both responses were measured during tethered flight under identical conditions. The stimulus was a sinusoidal periodic pattern of vertical stripes presented bilaterally in the fronto-lateral eye region of the fly. To release the landing response, the pattern was moved on either side from front to back. The latency of the response depends on the stimulus conditions and was measured by means of an infrared light-beam that was interrupted whenever the fly lifted its forelegs to assume a preprogrammed landing posture (Borst and Bahde 1986). As an optomotor stimulus the pattern moved on one side from front to back and on the other side in the opposite direction. The induced turning tendency was measured by a torque meter (Götz 1964). The response values which will be compared are the inverse latencies of the landing response and the amplitude of the yaw torque.
  1. Optomotor course-control is more sensitive to pattern movement at small spatial wavelengths (10° and 20°) than the landing response (Fig. 1a and b). This suggests that elementary movement detectors (EMDs, Buchner 1976) with large detection base (the distance between interacting visual elements) contribute more strongly to the landing than to the optomotor system.
  2. The optimum contrast frequencies of the different responses obtained at a comparatively high pattern contrast of about 0.6 was found to be between 1 and 10 Hz for the optomotor response, and around 20 Hz for the landing response (Fig. 2a and b). This discrepancy can be explained by the fact that the optomotor response was tested under stationary conditions (several seconds of stimulation) while for the landing response transient response characteristics of the movement detectors have to be taken into account (landing occurs under these conditions within less than 100 ms after onset of the movement stimulus). To test the landing system under more stationary conditions, the pattern contrast had to be reduced to low values. This led to latencies of several seconds. Then the optimum of the landing response is around 4 Hz. This is in the optimum range of the optomotor course-control response. The result suggests the same filter time constants for the movement detectors of both systems.
  3. The dependence of both responses on the position and the size of the pattern was examined. The landing response has its optimum sensitivity more ventrally than the optomotor response (Fig. 3a and b). Both response amplitudes increase with the size of the pattern in a similar progression (Fig. 3c and d).
In first approximation, the present results are compatible with the assumption of a common set of movement detectors for both the optomotor course-control and the landing system. Movement detectors with different sampling bases and at different positions in the visual field seem to contribute with different gain to both responses. Accordingly, the control systems underlying both behaviors are likely to be independent already at the level of spatial integration of the detector output.  相似文献   

9.
The hypothesis that local nonspiking interneurons are unique and identifiable has been tested rigorously for a neuron in the mesothoracic ganglion of the locust. Neurons were physiologically characterized and subsequently stained with cobalt ions. The resulting preparations were examined in whole mounts and serial sections. It is concluded that at least three neurons are unique, based upon a combination of their function, gross morphology, and the location and size of their main processes relative to other neurons. It is strongly suggested that there are other local nonspiking interneurons that are unique and identifiable. A classification system for local nonspiking interneurons is proposed. The implications of this finding for future neuroethological studies are discussed.  相似文献   

10.
Locust phase polymorphism is an extreme example of behavioral plasticity; in response to changes in population density, locusts dramatically alter their behavior. These changes in behavior facilitate the appearance of various morphological and physiological phase characteristics. One of the principal behavioral changes is the more intense flight behavior and improved flight performance of gregarious locusts compared to solitary ones. Surprisingly, the neurophysiological basis of the behavioral phase characteristics has received little attention. Here we present density-dependent differences in flight-related sensory and central neural elements in the desert locust. Using techniques already established for gregarious locusts, we compared the response of locusts of both phases to controlled wind stimuli. Gregarious locusts demonstrated a lower threshold for wind-induced flight initiation. Wind-induced spiking activity in the locust tritocerebral commissure giants (TCG, a pair of identified interneurons that relay input from head hair receptors to thoracic motor centers) was found to be weaker in solitary locusts compared to gregarious ones. The solitary locusts' TCG also demonstrated much stronger spike frequency adaptation in response to wind stimuli. Although the number of forehead wind sensitive hairs was found to be larger in solitary locusts, the stimuli conveyed to their flight motor centers were weaker. The tritocerebral commissure dwarf (TCD) is an inhibitory flight-related interneuron in the locust that responds to light stimuli. An increase in TCD spontaneous activity in dark conditions was significantly stronger in gregarious locusts than in solitary ones. Thus, phase-dependent differences in the activity of flight-related interneurons reflect behavioral phase characteristics.  相似文献   

11.
As a first step towards unravelling some of the complexity of the signalling and modulatory mechanisms in the antennal lobe (AL) of the desert locust Schistocerca gregaria, I analysed the immunocytochemical identity of AL interneurons. Antibodies against serotonin, histamine, locustatachykinin, leucokinin and FMRFamide were used to reveal the morphology of interneurons ramifying in the AL. In addition, double-labelling experiments were performed in order to demonstrate colocalisation of GABA and locustatachykinin and to investigate the ramification patterns of immunolabelled interneurons and physiologically characterised olfactory projection neurons (PNs) injected with Lucifer yellow. Immunoreactivity to these antibodies revealed six different types of interneurons with different patterns of ramification within the glomerular neuropil: (1, 2) Centrifugal interneurons displaying serotonin immunoreactivity, which arborised extensively within the AL and extended varicose fibres into the microglomerular core where close associations with dendrites of AL PNs could be distinguished. (3) Histamine-immunoreactive centrifugal interneurons with arborisations in the protocerebrum and the dorsal non-glomerular regions of the AL and the lobus glomerulatus (LG). (4) Locustatachykinin-immunoreactive local interneurons, colocalising GABA, arborising throughout the AL and extending varicose fibres throughout the glomerular neuropil where close associations with dendrites of AL PNs could be distinguished. (5) Leucokinin-immunoreactive descending neurons connecting the protocerebrum, the AL, the LG and all ganglia of the ventral nerve cord. These neurons displayed sparse innervation of the AL and extended varicose fibres into the interglomerular space. (6) FMRF-amide-immunoreactive centrifugal interneurons, connecting the lateral protocerebrum with the AL and the LG, which arborised sparsely within these neuropils and displayed similar innervation of the microglomeruli as (1) and (2).  相似文献   

12.
Rosner R  Warzecha AK 《PloS one》2011,6(10):e26886
Behavioral responses of an animal vary even when they are elicited by the same stimulus. This variability is due to stochastic processes within the nervous system and to the changing internal states of the animal. To what extent does the variability of neuronal responses account for the overall variability at the behavioral level? To address this question we evaluate the neuronal variability at the output stage of the blowfly''s (Calliphora vicina) visual system by recording from motion-sensitive interneurons mediating head optomotor responses. By means of a simple modelling approach representing the sensory-motor transformation, we predict head movements on the basis of the recorded responses of motion-sensitive neurons and compare the variability of the predicted head movements with that of the observed ones. Large gain changes of optomotor head movements have previously been shown to go along with changes in the animals'' activity state. Our modelling approach substantiates that these gain changes are imposed downstream of the motion-sensitive neurons of the visual system. Moreover, since predicted head movements are clearly more reliable than those actually observed, we conclude that substantial variability is introduced downstream of the visual system.  相似文献   

13.
ABSTRACT. The optomotor head-turning response of the honeybee ( Apis mellifera ) to a horizontally moving stripe pattern was analysed after occlusion of specific regions of the compound eye. The dorsal half of the eye and the medial region appear to be irrelevant to this behavioural reflex. Occlusion of the ventrolateral portion of the eye, however, even with the remainder of the eye unoccluded, rendered the optomotor system blind. The optomotor response was found to be mediated by an area roughly equal to one-fifth of the total eye surface with some redundancy in the system, since occlusion of at least half of the zone did not significantly impair the response. These results support the hypothesis of physically separate visual subsystems in the bee eye which are adapted for different functions.  相似文献   

14.
Sensory responses of various descending brain neurons, their modulation during standing or walking, and the correlation of such modulations with stimulus category were investigated. Stimuli involving (1) static or moving grating, artificial calling songs with (2) the conspecific and (3) an ultrasound frequency, or (4) air puffs to the cerci were presented to crickets walking in an open loop paradigm. The morphology of different descending interneurons in the brain and thoracic ganglia is described, together with their respective response properties. Some cells were excited, others inhibited by, and only some were directionally sensitive to the optomotor stimulus. Responses to artificial calling songs with conspecific and ultrasound frequency differed in the way the syllables of the sounds were coded and in the representation of ipsi- and contralateral stimuli. The majority of cells tested responded to air puffs. Stimulus representation differed among individuals of morphological types, but was very similar among individual interneurons of the morphologically homogenous i5 group. Stimuli approximating predators (air puffs, ultrasound) were usually represented during walking and standing; however, most neurons only responded to the other stimuli only during walking. These results indicate that the same neurons show different responses, and may have different functions, under different behavioral conditions.  相似文献   

15.
ABSTRACT. Males of Gomphocerus rufus L. perform a courtship song consisting of repetitive units, each of which is composed of three subunits (S1, S2, S3). S1 is characterized mainly by slow and fast head rolling; S2 and S3 are distinguished by different types of leg-stridulation. These movements and the associated sounds were recorded during presentation of visual stimuli, either linear displacement of a living female or optomotor stimuli generated by a striped drum. Females moved artificially through the binocular visual field of a courting male with a velocity of 1 cm/s or more are mounted by the male from any subunit S1, S2 or S3, although under natural conditions mounting occurs only from S2. Thus above a critical velocity the courtship programme can be modified. Rotation of a striped drum about the yaw axis of the male during the slow S1 induces asymmetrical leg position, following movements of the head, and prolongation of S1. During S2 the male is especially sensitive to optomotor stimuli and responds with marked changes in body position. In S3 the intensity of the song is reduced, and its duration shortened. Fast drum movements interrupt the courtship programme. Rotation of the drum about the roll axis elicits optomotor head turning that interferes with the head rolling of S1. The fast phase of S1 and the frequency of head-rolling during S1 cannot be modified by optomotor stimulation. The results can be interpreted by assuming certain interactions between three central nervous elements: a calling-song generator, a head-rolling generator, and an optomotor centre.  相似文献   

16.
Locust phase polymorphism is an extreme example of behavioral plasticity; in response to changes in population density, locusts dramatically alter their behavior. These changes in behavior facilitate the appearance of various morphological and physiological phase characteristics. One of the principal behavioral changes is the more intense flight behavior and improved flight performance of gregarious locusts compared to solitary ones. Surprisingly, the neurophysiological basis of the behavioral phase characteristics has received little attention. Here we present density‐dependent differences in flight‐related sensory and central neural elements in the desert locust. Using techniques already established for gregarious locusts, we compared the response of locusts of both phases to controlled wind stimuli. Gregarious locusts demonstrated a lower threshold for wind‐induced flight initiation. Wind‐induced spiking activity in the locust tritocerebral commissure giants (TCG, a pair of identified interneurons that relay input from head hair receptors to thoracic motor centers) was found to be weaker in solitary locusts compared to gregarious ones. The solitary locusts' TCG also demonstrated much stronger spike frequency adaptation in response to wind stimuli. Although the number of forehead wind sensitive hairs was found to be larger in solitary locusts, the stimuli conveyed to their flight motor centers were weaker. The tritocerebral commissure dwarf (TCD) is an inhibitory flight‐related interneuron in the locust that responds to light stimuli. An increase in TCD spontaneous activity in dark conditions was significantly stronger in gregarious locusts than in solitary ones. Thus, phase‐dependent differences in the activity of flight‐related interneurons reflect behavioral phase characteristics. © 2003 Wiley Periodicals, Inc. J Neurobiol 57: 152–162, 2003  相似文献   

17.
The fruit fly Drosophila melanogaster has a sophisticated visual system and exhibits complex visual behaviors. Visual responses, vision processing and higher cognitive processes in Drosophila have been studied extensively. However, little is known about whether the retinal location of visual stimuli can affect fruit fly performance in various visual tasks. We tested the response of wild-type Berlin flies to visual stimuli at several vertical locations. Three paradigms were used in our study: visual operant conditioning, visual object fixation and optomotor response. We observed an acute zone for visual feature memorization in the upper visual field when visual patterns were presented with a black background. However, when a white background was used, the acute zone was in the lower visual field. Similar to visual feature memorization, the best locations for visual object fixation and optomotor response to a single moving stripe were in the lower visual field with a white background and the upper visual field with a black background. The preferred location for the optomotor response to moving gratings was around the equator of the visual field. Our results suggest that different visual processing pathways are involved in different visual tasks and that there is a certain degree of overlap between the pathways for visual feature memorization, visual object fixation and optomotor response.  相似文献   

18.
Summary The minor branch of the tritocerebral commissure of the locust,Locusta migratoria, contains only two axons which are from interneurons in the brain descending to the ventral cord ganglia. The smaller of these two neurons, the tritocerebral commissure dwarf (TCD), is immunoreactive to GABA, suggesting that it may be an inhibitory interneuron. We have exploited the accessibility of its axon in the commissure, first, to fill it with cobalt to define its morphology, and second, to record its input characteristics. It has a cell body and arborization of fine branches in the deutocerebrum of the brain, its axon passes contralateral through the tritocerebral commissure and it forms bilateral arborizations in the suboesophageal and three thoracic ganglia. It receives mechanosensory input from many regions of the ipsilateral body and head, and it is sensitive to illumination levels, generally showing greater spontaneous activity in the dark.It is one of the largest GABA-immunoreactive descending interneurons in the locust, suggesting it plays a prominent role in behaviour. Since it is easily accessible for physiological recording, its roles in circuits for particular components of behaviour should be amenable to investigation.  相似文献   

19.
Intracellular responses of motion-sensitive visual interneurons were recorded from the lobula complex of the mantis, Tenodera aridifolia. The interneurons were divided into four classes according to the response polarity, spatial tuning, and directional selectivity. Neurons of the first class had small, medium, or large receptive fields and showed a strong excitation in response to a small-field motion such as a small square moving in any direction (SF neurons). The second class neurons showed non-directionally selective responses: an excitation to a large-field motion of gratings in any direction (ND neurons). Most ND neurons had small or medium-size receptive fields. Neurons of the third class had large receptive fields and exhibited directionally selective responses: an excitation to a large-field motion of gratings in preferred direction and an inhibition to a motion in opposite, null direction (DS neurons). The last class neurons had small receptive fields and showed inhibitory responses to a moving square and gratings (I neurons). The functional roles of these neurons in prey recognition and optomotor response were discussed.  相似文献   

20.
Histamine serves a neurotransmitter role in arthropod photoreceptor neurons, but is also present in a small number of interneurons throughout the nervous system. In search of a suitable model system for the analysis of histaminergic neurotransmission in insects, we mapped the distribution of histamine in the brain of the desert locust Schistocerca gregaria by immunocytochemistry. In the optic lobe, apparently all photoreceptor cells of the compound eye with projections to the lamina and medulla showed intense immunostaining. Photoreceptors of the dorsal rim area of the eye had particularly large fiber diameters and gave rise to uniform varicose immunostaining throughout dorsal rim areas of the lamina and medulla. In the locust midbrain 21 bilateral pairs of histamine-immunoreactive interneurons were found, and 13 of these were reconstructed in detail. While most neuropil areas contained a dense meshwork of immunoreactive processes, immunostaining in the antennal lobe and in the calyces of the mushroom body was sparse and no staining occurred in the pedunculus and lobes of the mushroom body, in the protocerebral bridge, and in the lower division of the central body. A prominent group of four immunostained neurons had large cell bodies near the median ocellar nerve root and descending axonal fibers. These neurons are probably identical to previously identified primary commissure pioneer neurons of the locust brain. The apparent lack in the desert locust of certain histamine-immunoreactive neurons which were reported in the migratory locust may be responsible for differences in the physiological role of histamine between both species.The study was supported by the Deutsche Forschungsgemeinschaft, grants Ho 950/13 and 950/14  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号