共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Escherichia coli dnaB replication protein is a DNA helicase 总被引:55,自引:0,他引:55
Genetic and biochemical analyses indicate that the Escherichia coli dnaB replication protein functions in the propagation of replication forks in the bacterial chromosome. We have found that the dnaB protein is a DNA helicase that is capable of unwinding extensive stretches of double-stranded DNA. We constructed a partially duplex DNA substrate, containing two preformed forks of single-stranded DNA, which was used to characterize this helicase activity. The dnaB helicase depends on the presence of a hydrolyzable ribonucleoside triphosphate, is maximally stimulated by a combination of E. coli single-stranded DNA-binding protein and E. coli primase, is inhibited by antibody directed against dnaB protein, and is inhibited by prior coating of the single-stranded regions of the helicase substrate with the E. coli single-stranded DNA-binding protein. It was determined that the dnaB protein moves 5' to 3' along single-stranded DNA, apparently in a processive fashion. To invade the duplex portion of the helicase substrate, the dnaB protein requires a 3'-terminal extension of single-stranded DNA in the strand to which it is not bound. Under optimal conditions at 30 degrees C, greater than 1 kilobase pair of duplex DNA can be unwound within 30 s. Based on these findings and other available data, we propose that the dnaB protein is the primary replicative helicase of E. coli and that it actively and processively migrates along the lagging strand template, serving both to unwind the DNA duplex in advance of the leading strand and to potentiate synthesis by the bacterial primase of RNA primers for the nascent (Okazaki) fragments of the lagging strand. 相似文献
3.
Summary A mutant of Escherichia coli with a temperature sensitive defect in DNA replication is sensitive to X-irradiation but not to UV-irradiation. After UV-irradiation, dark-repair processes—dimer excision, DNA breakdown, repair synthesis and DNA strand joining—appear normal at the restrictive temperature. After X-irradiation, DNA degradation exceeds that in the wild type, and irradiation-dependent DNA synthesis does not occur. Single-strand breaks introduced into the DNA by the irradiation are nor repaired. The data indicate that the mutation results in a defect in repair of X-ray induced single-strand breaks as well as a defect in DNA replication. They provide evidence for the existence of a repair pathway for X-irradiated DNA similar to, but at least partially independent from, that postulated for the dark-repair of UV-irradiated DNA, viz., degradation at the site of the lesion, resynthesis of the degraded DNA complement and ligation of the DNA strand.This material has been published as an abstract in Genetics 64, p. 18 (1970). 相似文献
4.
Conditional change of DNA replication control in an RNA polymerase mutant of Escherichia coli 总被引:3,自引:5,他引:3 下载免费PDF全文
K V Rasmussen T Atlung G Kerszman G E Hansen F G Hansen 《Journal of bacteriology》1983,154(1):443-451
The infectivity of the soybean symbiont Rhizobium japonicum changed two- to fivefold with culture age for strains 110 ARS, 138 Str Spc, and 123 Spc, whereas culture age had relatively little effect on the infectivity of strains 83 Str and 61A76 Str. Infectivity was measured by determining the number of nodules which developed on soybean primary roots in the zone which contained developing and preemergent root hairs at the time of inoculation. Root cells in this region of the host root are susceptible to Rhizobium infection, but this susceptibility is lost during acropetal development and maturation of the root cells within a period of 4 to 6 h (T. V. Bhuvaneswari, B. G. Turgeon, and W. D. Bauer, Plant Physiol. 66:1027-1031, 1980). Profiles of nodulation frequency at different locations on the root were not affected by the age of the R. japonicum cultures, indicating that culture age affected the efficiency of Rhizobium infection rather than how soon infections were initiated after inoculation. Inoculum dose-response experiments also indicated that culture age affected the efficiency of infection. Two strains, 61A76 Str and 83 Str, were relatively inefficient at all culture ages, particularly at low inoculum doses. Changes in infectivity with culture age were reasonably well correlated with changes in the proportion of cells in a culture capable of binding soybean lectin. Suspensions of R. japonicum in water were found to retain their viability and infectivity. 相似文献
5.
Summary Preincubation at 42o, before infection at permissive temperature by phage , of an Escherichia coli dnaB mutant, provokes a significant increase in survival and mutagenesis of ultraviolet irradiated phage as well as mutagenesis of untreated phage. Similarly to UV irradiation and many chemical mutagens, the inhibition of DNA synthesis by temperature shift of this dnaB mutant induces SOS repair. This work shows that replication blockage in bacterial DNA is not only mutagenic for bacterial DNA itself (Witkin, 1975) but also for normally replicating DNA, probably due to induction of diffusible products. 相似文献
6.
The interference of dnaB mutations of Escherichia coli with thymineless death is described. All the isogenic Thy- dnaB mutants of E. coli we have tested show a remarkable immunity towards cell death induced by thymine deprivation at the nonpermissive temperature. We have also constructed and tested an isogenic double dnaB dnaG mutant. It loses its viability in the absence of thymine at both permissive and nonpermissive temperatures. The role of the dnaB gene product is discussed. 相似文献
7.
Genetic evidence indicates that Oxys-6, an oxygen-sensitive mutant of Escherichia coli AB1157, is defective in the region of the hemB locus. Oxys-6 is capable of growth under aerobic conditions only if cultures are initiated at low-inoculum levels. Aerobic liquid cultures are limited to a cell density of 10(7) cells per ml by the accumulation of a metabolically produced, low-molecular-weight, heat-stable material in complex organic media. Both Oxys-6 and AB1157 cells produce the material, but only aerobic cultures of the mutant are inhibited by it. The material is produced by both intact cells and cell extracts in complex media. This reaction also occurs when the amino acid L-lysine is substituted for complex media. 相似文献
8.
9.
Regulation of dnaB function in DNA replication in Escherichia coli by dnaC and lambda P gene products 总被引:7,自引:0,他引:7
The dnaB protein of Escherichia coli, a multifunctional DNA-dependent ribonucleotide triphosphatase and dATPase, cross-links to ATP on ultraviolet irradiation under conditions that support rNTPase and dATPase activities of dnaB protein. The covalent cross-linking to ATP is specifically inhibited by ribonucleotides and dATP. Tryptic peptide mapping demonstrates that ATP cross-links to only the 33-kDa tryptic fragment (Fragment II) of dnaB protein. The presence of single-stranded DNA alters the covalent labeling of dnaB protein by ATP, suggesting a possible role of DNA on the mode of nucleotide binding by dnaB protein. Present studies demonstrate that the dnaC gene product binds ribonucleotides independent of dnaB protein. On dnaB-dnaC protein complex formation, covalent incorporation of ATP to dnaB protein decreases approximately 70% with a concomitant increase of ATP incorporation to dnaC protein by approximately 3-fold. The mechanism of this phenomenon has been analyzed in detail by titrating dnaB protein with increasing amounts of dnaC protein. The binding of dnaC protein to dnaB protein appears to be a noncooperative process. The lambda P protein, which interacts with dnaB protein in the bacteriophage lambda DNA replication, does not bind ATP in the presence or absence of dnaB protein. However, lambda P protein enhances the covalent incorporation of ATP to dnaB protein approximately 4-fold, suggesting a direct physical interaction between lambda P and dnaB proteins with a probable change in the modes of nucleotide binding to dnaB protein. The lambda P protein likely forms a lambda P-dnaB-ATP dead-end ternary complex. The implications of these results in the E. coli and bacteriophage lambda chromosomal DNA replication are discussed. 相似文献
10.
11.
12.
Mechanism of dnaB protein action. I. Crystallization and properties of dnaB protein, an essential replication protein in Escherichia coli 总被引:18,自引:0,他引:18
Purification and crystallization of dnaB protein from Escherichia coli was performed on a large scale by a simple procedure. From 1.5 kg of cells, 520 mg of dnaB protein were obtained in a 58% yield with a purity greater than 99%. The E. coli cells harbor a high copy-number plasmid carrying the dnaB gene and overproduce the enzyme over 200-fold. The subunit molecular weight determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis is 50,000. Based on a native Mr = 290,000 and cross-linking studies that yielded six bands, dnaB protein is judged to be a hexamer, confirming the results of Reha-Krantz, L. J., and Hurwitz, J. (1978) J. Biol. Chem. 253, 4043-4050. 相似文献
13.
The DNA produced by several dnaB mutants has been examined both in vivo and in vitro. The alleles chosen for study had previously been shown to differ over a wide range in the apparent severity of their effects on DNA replication.Comparison of DNA replication between dnaB heteroallelic diploids and the constituent haploid strains indicates interaction between the dnaB products in the heteroallelic diploids. The data are consistent with a functional multimeric aggregate of dnaB gene products that is at least a tetramer.Alkaline sucrose gradient profiles of pulse-labeled DNA, synthesized by some of the mutants in vivo and by mutant lysates in vitro, exhibit a peak at about 4 S. The 4 S DNA is most apparent in those mutants in which replication is most severely restricted by temperature.This 4 S material can be chased in vitro into DNA larger than Okazaki pieces, and density transfer experiments indicate that these pieces are formed at the replication fork. Conversion of the 4 S material to large DNA is not altered by inhibition of polynucleotide ligase either by the presence of the lig-4 polA1 mutations in vivo or by the addition of nicotinamide mononucleotide in vitro. The in vitro observations suggest that 4 S pieces are formed on only one side of the replication fork. 相似文献
14.
Temperature-sensitive initiation of DNA replication in a mutant of Escherichia coli K12 总被引:16,自引:0,他引:16
Detmar Beyersmann Marianne Schlicht Heinz Schuster 《Molecular & general genetics : MGG》1971,111(2):145-158
Summary A mutant of E. coli K12 appears to be temperature-sensitive in the process of initiation of DNA replication. After a temperature shift from 33 to 42°C, the amount of residual DNA synthesis (Fig. 1) and the number of residual cell divisions (Figs. 2,4) indicate that rounds of DNA replication in process are completed, but new rounds cannot be initiated. Following the alignment of chromosomal DNA by amino acid starvation at 33° C no residual DNA synthesis at 42°C takes place (Fig. 5). When the temperature is lowered to 33°C after a period of inhibition at 42°C, the following observations are made: 1. DNA replication resumes and proceeds synchroneously, (Figs. 7, 8a), 2. cells start to divide again only after a lag period of about 1 hour 3. a temporary increase in cell volume is correlated with the frequency of initiation of DNA synthesis (Fig. 8a, b). In a lysogenic mutant strain prophage is inducible; with all bacteriophages tested, replication of phage DNA is not inhibited at 42°C. 相似文献
15.
A short incubation at the non-permissive temperature, 10 to 15 minutes at 40 °C, suffices to induce chromosome reinitiation in CRT 266, a thermosensitive DNA mutant of Escherichia coli. In order to acquire the potentiality to reinitiate chromosome replication, protein synthesis is necessary, both during the 40 °C incubation and also during the first 15 minutes after returning to 30 °C. 相似文献
16.
17.
dnaB protein of Escherichia coli is an essential replication protein. A missense mutant has been obtained which results in replacement of an arginine residue with cysteine at position 231 of the protein (P. Shrimankar, L. Shortle, and R. Maurer, unpublished data). This mutant displays a dominant-lethal phenotype in strains that are heterodiploid for dnaB. Biochemical analysis of the altered form of dnaB protein revealed that it was inactive in replication in several purified enzyme systems which involve specific and nonspecific primer formation on single-stranded DNAs, and in replication of plasmids containing the E. coli chromosomal origin. Inactivity in replication appeared to be due to its inability to bind to single-stranded DNA. The altered dnaB protein was inhibitory to the activity of wild type dnaB protein in replication by sequestering dnaC protein which is also required for replication. By contrast, it was not inhibitory to dnaB protein in priming of single-stranded DNA by primase in the absence of single-stranded DNA binding protein. Sequestering of dnaC protein into inactive complexes may relate to the dominant-lethal phenotype of this dnaB mutant. 相似文献
18.
19.
NOVEL Escherichia coli dnaB mutant: direct involvement of the dnaB252 gene product in the synthesis of an origin-ribonucleic acid species during initiaion of a round of deoxyribonucleic acid replication. 总被引:4,自引:1,他引:4 下载免费PDF全文
The initiation process of deoxyribonucleic acid (DNA) replication in Escherichia coli has been studied using the thermoreversible dna initiation mutant E. coli HfrHl65/120/6 dna-252. This dna mutation was incorrectly classed as a dnaA mutation. Biochemical and genetic evidence suggests that the dna-252 mutant is a novel dnaB mutant, possessing phenotypic properties which distinguish it from other dnaB mutants. Sensitivity of reinitiation in the dna-252 mutant to specific inhibitors of protein, ribonucleic acid (RNA), and DNA synthesis was studied. Reinitiation is shown to be sensitive to rifampin and streptolydigin but not to cholramphenicol. Thus, the dna-252 gene product appears to be required during the initiation process for a step occurring either before or during synthesis of an RNA species (origin-RNA). Using reversible inhibition of RNA synthesis by streptolydigin of a streptolydigin-sensitive derivative of the dna-252 mutant, the dna-252 gene product is shown to be directly involved in the synthesis of an orgin-RNA species. These results are included in a schematic model presented in the accompanying paper of the temporal sequence of events occurring during the initiation process. 相似文献