首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Caveolin‐1 (Cav1) is the primary scaffolding protein of caveolae, flask‐shaped invaginations of the plasma membrane thought to function in endocytosis, mechanotransduction, signaling and lipid homeostasis. A significant amount of our current knowledge about caveolins and caveolae is derived from studies of transiently overexpressed, C‐terminally tagged caveolin proteins. However, how different tags affect the behavior of ectopically expressed Cav1 is still largely unknown. To address this question, we performed a comparative analysis of the subcellular distribution, oligomerization state and detergent resistance of transiently overexpressed Cav1 labeled with three different C‐terminal tags (EGFP, mCherry and myc). We show that addition of fluorescent protein tags enhances the aggregation and/or degradation of both wild‐type Cav1 and an oligomerization defective P132L mutant. Strikingly, complexes formed by overexpressed Cav1 fusion proteins excluded endogenous Cav1 and Cav2, and the properties of native caveolins were largely preserved even when abnormal aggregates were present in cells. These findings suggest that differences in tagging strategies may be a source of variation in previously published studies of Cav1 and that overexpressed Cav1 may exert functional effects outside of caveolae. They also highlight the need for a critical re‐evaluation of current knowledge based on transient overexpression of tagged Cav1.   相似文献   

2.
Caveolae are non‐clathrin invaginations of the plasma membrane in most cell types; they are involved in signalling functions and molecule trafficking, thus modulating several biological functions, including cell growth, apoptosis and angiogenesis. The major structural protein in caveolae is caveolin‐1, which is known to act as a key regulator in cancer onset and progression through its role as a tumour suppressor. Caveolin‐1 can also promote cell proliferation, survival and metastasis as well as chemo‐ and radioresistance. Here, we discuss recent findings and novel concepts that support a role for caveolin‐1 in cancer development and its distant spreading. We also address the potential application of caveolin‐1 in tumour therapy and diagnosis.  相似文献   

3.
4.
5.
Congenital generalized lipodystrophy (CGL) and pulmonary arterial hypertension (PAH) have recently been associated with mutations in the caveolin‐1 ( CAV1 ) gene, which encodes the primary structural protein of caveolae. However, little is currently known about how these CAV1 mutations impact caveolae formation or contribute to the development of disease. Here, we identify a heterozygous F160X CAV1 mutation predicted to generate a C‐terminally truncated mutant protein in a patient with both PAH and CGL using whole exome sequencing, and characterize the properties of CAV1 , caveolae‐associated proteins and caveolae in skin fibroblasts isolated from the patient. We show that morphologically defined caveolae are present in patient fibroblasts and that they function in mechanoprotection. However, they exhibited several notable defects, including enhanced accessibility of the C‐terminus of wild‐type CAV1 in caveolae, reduced colocalization of cavin‐1 with CAV1 and decreased stability of both 8S and 70S oligomeric CAV1 complexes that are necessary for caveolae formation. These results were verified independently in reconstituted CAV1 ?/? mouse embryonic fibroblasts. These findings identify defects in caveolae that may serve as contributing factors to the development of PAH and CGL and broaden our knowledge of CAV1 mutations associated with human disease.   相似文献   

6.
7.
We isolated and characterized a green fluorescent protein (GFP) from the sea cactus Cavernularia obesa. This GFP exists as a dimer and has absorption maxima at 388 and 498 nm. Excitation at 388 nm leads to blue fluorescence (456 nm maximum) at pH 5 and below, and green fluorescence (507 nm maximum) at pH 7 and above, and the GFP is remarkably stable at pH 4. Excitation at 498 nm leads to green fluorescence (507 nm maximum) from pH 5 to pH 9. We introduced five amino acid substitutions so that this GFP formed monomers rather than dimers and then used this monomeric form to visualize intracellular pH change during the phagocytosis of living cells by use of fluorescence microscopy. The intracellular pH change is visualized by use of a simple long‐pass emission filter with single‐wavelength excitation, which is technically easier to use than dual‐emission fluorescent proteins that require dual‐wavelength excitation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Triple‐negative breast cancer (TNBC) is a highly aggressive tumour that lacks marker for targeted diagnosis. Recently, it was reported that toll‐like receptor 5 (TLR5) was associated with some kind of tumours, especially in TNBC, but whether it could be used as a non‐invasive monitoring target is not fully understood. Here, we established TLR5? 4T1 cell line with lentivirus‐shRNA‐TLR5 knock‐down transfection (with tag GFP, green fluorescent protein, TLR5? 4T1) and control TLR5+ 4T1 cell line with negative control lentivirus transfection. The effect of TLR5 down‐regulation was detected with qPCR and Western blot. 125I‐anti‐TLR5 mAb and control isotype 125I‐IgG were prepared and injected to TLR5+/? 4T1‐bearing mice models, respectively. Whole‐body phosphor‐autoradiography, fluorescence imaging and biodistribution were performed. Furthermore, ex vivo tumour TLR5 expression was proved through immunohistochemistry staining. We found that 125I‐anti‐TLR5 mAb could bind to TLR5+ 4T1 with high affinity and specificity. Whole‐body phosphor‐autoradiography after 125I‐anti‐TLR5 mAb injection showed TLR5+ 4T1 tumour images in 24 hours, more clearly in 48 hours. Radioactivities in tumour tissues were positively related with TLR5 expression. Biodistribution assay showed that 125I‐anti‐TLR5 mAb was mainly metabolized through the liver and kidney, and 125I‐anti‐TLR5 mAb was much more accumulated in TLR5+ 4T1 tumour than TLR5? 4T1. In vivo fluorescence imaging successfully showed tumour tissues clearly both in TLR5+ and TLR5? 4T1 mice compared with lentivirus untreated 4T1 tumour. Immunohistochemistry staining showed that TLR5 expression in tumours was indeed down‐regulated in TLR5? 4T1 mice. Our results indicated that 125I‐antiTLR5 mAb was an ideal agent for non‐invasive imaging of TLR5+ tumours; TLR5 may be as a novel molecular target for TNBC non‐invasive diagnosis.  相似文献   

9.
DNA methylation is an important biological regulatory mechanism that changes gene expression without altering the DNA sequence. Increasing studies have revealed that DNA methylation data play a vital role in the field of oncology. However, the methylation site signature in triple‐negative breast cancer (TNBC) remains unknown. In our research, we analysed 158 TNBC samples and 98 noncancerous samples from The Cancer Genome Atlas (TCGA) in three phases. In the discovery phase, 86 CpGs were identified by univariate Cox proportional hazards regression (CPHR) analyses to be significantly correlated with overall survival (P < 0.01). In the training phase, these candidate CpGs were further narrowed down to a 15‐CpG‐based signature by conducting least absolute shrinkage and selector operator (LASSO) Cox regression in the training set. In the validation phase, the 15‐CpG‐based signature was verified using two different internal sets and one external validation set. Furthermore, a nomogram comprising the CpG‐based signature and TNM stage was generated to predict the 1‐, 3‐ and 5‐year overall survival in the primary set, and it showed excellent performance in the three validation sets (concordance indexes: 0.924, 0.974 and 0.637). This study showed that our nomogram has a precise predictive effect on the prognosis of TNBC and can potentially be implemented for clinical treatment and diagnosis.  相似文献   

10.
Triple‐negative breast cancer (TNBC) is a highly aggressive breast cancer subtype that lacks effective targeted therapies. The epithelial‐to‐mesenchymal transition (EMT) is a key contributor in the metastatic process. In this study, we found that miR‐655 was down‐regulated in TNBC, and its expression levels were associated with molecular‐based classification and lymph node metastasis in breast cancer. These findings led us to hypothesize that miR‐655 overexpression may inhibit EMT and its associated traits of TNBC. Ectopic expression of miR‐655 not only induced the up‐regulation of cytokeratin and decreased vimentin expression but also suppressed migration and invasion of mesenchymal‐like cancer cells accompanied by a morphological shift towards the epithelial phenotype. In addition, we found that miR‐655 was negatively correlated with Prrx1 in cell lines and clinical samples. Overexpression of miR‐655 significantly suppressed Prrx1, as demonstrated by Prrx1 3′‐untranslated region luciferase report assay. Our study demonstrated that miR‐655 inhibits the acquisition of the EMT phenotype in TNBC by down‐regulating Prrx1, thereby inhibiting cell migration and invasion during cancer progression.  相似文献   

11.
12.
13.
Endocrine therapy resistance in breast cancer is a major obstacle in the treatment of patients with estrogen receptor‐positive (ER+) tumors. Herein, we demonstrate the feasibility of longitudinal, noninvasive and semiquantitative in vivo molecular imaging of resistance to three endocrine therapies by using an inducible fluorescence‐labeled short hairpin RNA (shRNA) system in orthotopic mice xenograft tumors. We employed a dual fluorescent doxycycline (Dox)‐regulated lentiviral inducer system to transfect ER+ MCF7L breast cancer cells, with green fluorescent protein (GFP) expression as a marker of transfection and red fluorescent protein (RFP) expression as a surrogate marker of Dox‐induced tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) knockdown. Xenografted MCF7L tumor‐bearing nude mice were randomized to therapies comprising estrogen deprivation, tamoxifen or an ER degrader (fulvestrant) and an estrogen‐treated control group. Longitudinal imaging was performed by a home‐built multispectral imaging system based on a cooled image intensified charge coupled device camera. The GFP signal, which corresponds to number of viable tumor cells, exhibited excellent correlation to caliper‐measured tumor size (P << .05). RFP expression was substantially higher in mice exhibiting therapy resistance and strongly and significantly (P < 1e‐7) correlated with the tumor size progression for the mice with shRNA‐induced PTEN knockdown. PTEN loss was strongly correlated with resistance to estrogen deprivation, tamoxifen and fulvestrant therapies.   相似文献   

14.
Triple‐negative breast cancer (TNBC) is a subtype of breast cancer with poor clinical outcome and currently no effective targeted therapies are available. Alantolactone (ATL), a sesquiterpene lactone, has been shown to have potential anti‐tumour activity against various cancer cells. However, the underlying mechanism and therapeutic effect of ATL in the TNBC are largely unknown. In the present study, we found that ATL suppresses TNBC cell viability by reactive oxygen species (ROS) accumulation and subsequent ROS‐dependent endoplasmic reticulum (ER) stress both in vitro and in vivo. Thioredoxin reductase 1 (TrxR1) expression and activity of were significantly up‐regulated in the TNBC tissue specimens compare to the normal adjacent tissues. Further analyses showed that ATL inhibits the activity of TrxR1 both in vitro and in vivo in TNBC and knockdown of TrxR1 in TNBC cells sensitized ATL‐induced cell apoptosis and ROS increase. These results will provide pre‐clinical evidences that ATL could be a potential therapeutic agent against TNBC by promoting ROS‐ER stress‐mediated apoptosis through partly targeting TrxR1.  相似文献   

15.
16.
17.
Caveolin‐1 has an atypical membrane‐spanning domain comprising of 34 residues. Caveolin‐1 targets to lipid droplets under certain conditions, where they are involved in signaling and cholesterol balance. In the present study, membrane association of synthetic peptides corresponding to the membrane‐spanning domain of caveolin‐1 has been investigated to obtain an insight into the topology of transmembrane region in the lipid bilayer and the effect of truncations in this sequence, as observed in the targeting to lipid droplets, by using model membranes. Fluorescence studies revealed strong association of the peptide corresponding to the membrane‐spanning domain of caveolin‐1 with anionic lipids as compared with zwitterionic lipids, which is consistent with the location of this domain in the cytoplasmic side of the plasma membrane. Association of a short 9 residue peptide corresponding to the C‐terminus of caveolin‐1 membrane‐spanning domain with lipid vesicles revealed the importance of this region for association with model membranes. Our investigations indicate that the peptide corresponding to the membrane‐spanning domain of caveolin‐1 does not span the lipid bilayer. We propose that both caveolin scaffolding domain and transmembrane segment of caveolin‐1 contribute to the strong association with the plasma membrane rendering the protein highly detergent resistant. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
Retroviruses incorporate specific host cell RNAs into virions. In particular, the host noncoding 7SL RNA is highly abundant in all examined retroviruses compared with its cellular levels or relative to common mRNAs such as actin. Using live cell imaging techniques, we have determined that the 7SL RNA does not arrive with the HIV‐1 RNA genome. Instead, it is recruited contemporaneously with assembly of the protein HIV‐1 Gag at the plasma membrane. Further, we demonstrate that complexes of 7SL RNA and Gag can be immunoprecipitated from both cytosolic and plasma membrane fractions. This indicates that 7SL RNAs likely interact with Gag prior to high‐order Gag multimerization at the plasma membrane. Thus, the interactions between Gag and the host RNA 7SL occur independent of the interactions between Gag and the host endosomal sorting complex required for transport (ESCRT) proteins, which are recruited temporarily at late stages of assembly. The interactions of 7SL and Gag are also independent of interactions of Gag and the HIV‐1 genome which are seen on the plasma membrane prior to assembly of Gag.   相似文献   

19.
20.
mRNA profiles of circulating tumour cells (CTCs) were analysed in patients with triple‐negative breast cancer (TNBC) (pts) before (BT) and after therapy (AT) to identify additional treatment options. 2 × 5 mL blood of 51 TNBC pts and 24 non‐TNBC pts (HR+/HER2?; HR?/HER2+) was analysed for CTCs using the AdnaTest EMT‐2/Stem Cell Select?, followed by mRNA isolation and cDNA analysis for 17 genes by qPCR PIK3CA, AKT2, MTOR and the resistance marker AURKA and ERCC1 were predominantly expressed in all breast cancer subtypes, the latter ones especially AT. In TNBC pts, ERBB3, EGFR, SRC, NOTCH, ALK and AR were uniquely present and ERBB2+/ERBB3 + CTCs were found BT and AT in about 20% of cases. EGFR+/ERBB2+/ERBB3 + CTCs BT and ERBB2+/ERBB3 + CTCs AT significantly correlated with a shorter progression‐free survival (PFS; P = 0.01 and P = 0.02). Platinum‐based therapy resulted in a reduced PFS (P = 0.02) and an induction of PIK3CA expression in CTCs AT. In non‐TNBC pts, BT, the expression pattern in CTCs was similar. AURKA+/ERCC1 + CTCs were found in 40% of HR?/HER2 + pts BT and AT. In the latter group, NOTCH, PARP1 and SRC1 were only present AT and ERBB2 + CTCs completely disappeared AT. These findings might help to predict personalized therapy for TNBC pts in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号