首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Population characteristics of pallid sturgeon Scaphirhynchus albus in the lower Missouri River are relatively unknown. Therefore, data collected from the Nebraska Game and Parks Commission Pallid Sturgeon Population Assessment Program was synthesized to (i) document the population structure of pallid sturgeon by origin (hatchery‐reared or wild), gender, and reproductive readiness, (ii) document the minimum size and age‐at‐maturity by gender, and (iii) document the fecundity rates of the fish that were successfully spawned in the hatchery. During this 4‐year study (2008–2011), relative abundance for wild and hatchery‐reared pallid sturgeon collected with gill nets did not significantly change whereas relative abundance for wild fish using trot lines declined significantly. The proportion of hatchery‐reared pallid sturgeon increased annually, with the population being composed primarily of hatchery‐reared fish. The proportion of reproductively ready females to non‐reproductively ready females was 1 : 2.0, compared to male ratios at 1 : 0.9. Minimum fork length‐at‐maturity was estimated for females at 788 mm and for males at 798 mm. Minimum age‐at‐maturity for hatchery‐reared released fish was age‐9 for females and age‐7 for males. Highest relative fecundity, based on the ovosomatic index, was 10% with an overall mean of 7%. The number of eggs per ml (egg size) was not correlated with fork length (P = 0.0615) or weight (P = 0.0957). Relative condition factor (Kn) for females was significantly different by reproductive condition (P = 0.0014) and Kn for males did not differ between reproductive conditions (P = 0.2634). Detecting shifts in population characteristics are essential not only to understand population dynamics since hatchery inputs and natural perturbations continue to change the population structure but also to assess species recovery efforts to ensure long‐term species sustainability.  相似文献   

2.
3.
Habitat selection has been quantified for age‐0 and adult pallid sturgeon Scaphirhynchus albus Bull. Illinois State Lab. Nat. Hist., 7, 1905, 37, but little is known regarding habitat use of the juvenile fish. The objective of this study was to quantify habitat use and selection of juvenile pallid sturgeon in the Missouri River, Nebraska, USA. Thirty‐seven age‐4 pallid sturgeon with transmitters were released in July of 2014, plus an additional 21 in September, with habitat monitored using biotelemetry. Age‐1 and age‐4 hatchery reared pallid sturgeon were found to avoid areas associated with the outside bend and thalweg habitats that were characterized by rapid water velocity (>1 ms?1), which accounted for 50% of the area in the channelized Missouri River. Age‐1 pallid sturgeon selected an off‐channel habitat and inside bend habitat while age‐4 pallid sturgeon selected an off‐channel and inside bend channel border habitat. Juvenile pallid sturgeon in unaltered rivers have been shown to associate with island tips and sand bars, habitat that is largely absent in the channelized Missouri River. This study indicates that juvenile pallid sturgeon in the Missouri River, Nebraska are selecting habitats with shallow water and slow water velocity, similar to those associated with island tips and sand bars in unaltered reaches.  相似文献   

4.
Pallid sturgeon Scaphirhynchus albus relative condition has been observed to be declining along the Nebraska reach (rkm 1212.6–801.3) of the Missouri River over the past several years; therefore, pallid sturgeon capture data was synthesized from the entire Missouri and Middle Mississippi rivers to document and compare how pallid sturgeon condition varies spatially and temporally throughout much of their current range. The study area was subdivided into four river reaches based on a priori statistical differences for pallid sturgeon catches from 2003 to 2015. Pallid sturgeon in the Middle Mississippi River (Alton Dam [rkm 321.9]) to the confluence of the Ohio River (rkm 0.0) were in the best condition while pallid sturgeon in the Middle Missouri River (Fort Randall Dam [rkm 1416.2]) to the Grand River confluence (rkm 402.3) were in the poorest condition. Furthermore, pallid sturgeon condition in the Upper Missouri River (Fort Peck Dam [rkm 2850.9] to the headwaters of Lake Sakakawea [rkm 2523.5] and lower Yellowstone River) and the Lower Missouri River (Grand River confluence to the Mississippi River confluence [rkm 0.0]) were significantly less than in the Middle Mississippi River but significantly higher than the Middle Missouri River. Temporally, pallid sturgeon condition was highly variable. Relative condition in the Middle Mississippi River was consistently above average (Kn = 1.1). Comparatively, Kn throughout the Missouri River rarely exceeded “normal” (Kn = 1.0), with Kn in the middle and lower reaches of the Missouri River having declined to the lowest observed. As pallid sturgeon recovery efforts continue, understanding the range‐wide differences and effects on condition could be critical, as poor condition may cause maturation delays, reproductive senescence or even mortality, which affects the likelihood of natural reproduction and recruitment.  相似文献   

5.
The recovery criterion for pallid sturgeon Scaphirhynchus albus consists of attaining a self‐sustaining genetically diverse population for two generations. The suppressed pallid sturgeon population is theorized as a potential factor limiting recovery; therefore, the Pallid Sturgeon Conservation and Augmentation Program (PSCAP) was implemented to proliferate the overall population. The pallid sturgeon population has been quantified in the lower basin of the Missouri River (Gavins Point Dam [rkm 1,305.2] to the confluence of the Missouri and Mississippi rivers [rkm 0.0]), but previous population estimates have only covered less than ten percent of the lower basin. Therefore, the objectives of this study were to quantify the annual pallid sturgeon population (2015–2017) in a novel, unquantified 30.1 rkm reach of the lower Missouri River basin and compare these results to previously published population estimates in the lower Missouri River basin. The study area included a six‐bend reach in the upper channelized Missouri River, approximately 226.3 rkm below the last main‐stem dam. Population estimates (Nsp) for the “super‐population” of pallid sturgeon within the 30.1 rkm study area varied from 593 (95% CI 471–716) in 2015 to 471 (373–569) in 2016 and 608 (482–734) in 2017. The population estimates (fish/rkm ± SE) ranged from 15.6 ± 1.0 to 20.2 ± 1.3 fish/rkm. This study aligned with a previously published estimate in the same proximal reach but was two or three times higher compared to an estimate reported from approximately 500 rkm downstream. Understanding the temporal and spatial variations of the pallid sturgeon population is critical as recovery efforts continue, especially to seed input parameters into population prediction models that provide management guidance.  相似文献   

6.
Hatchery augmentation has been used to mitigate declines in fish populations worldwide, especially for sturgeon species. Information regarding stocking success including survival, dispersal, and growth of sturgeon post‐stocking may refine sturgeon augmentation programs and facilitate recovery. Pallid sturgeon Scaphirhynchus albus populations have been supplemented by hatchery‐reared stocks for 25 years in the Missouri River, USA. We assessed survival, dispersal patterns, and growth characteristics of post‐stocked pallid sturgeon in the lower Missouri River. Hatchery‐reared pallid sturgeon stocked at age‐1 (4.1%) and > age‐1 (2.9%) were recaptured at a higher frequency than fish stocked at age‐0 (0.3%). Post‐stocking dispersal patterns suggested dispersal range increase as age increased, but individuals tended to remain in the same river segment as their stocking location. Growth rates varied by year class with younger year classes having truncated growth trajectories compared to older year classes. Post‐stock survival of pallid sturgeon varied by age‐at‐stocking and suggest age‐1 survival has declined through time. Augmentation of pallid sturgeon may benefit from considering dispersal from stocking location and by stocking older individuals which appear to have increased survival post‐stocking. A better understanding regarding environmental drivers of growth and specific habitat features used is needed to better predict optimal timing and location of future stockings.  相似文献   

7.
Movement and distribution of the endangered pallid sturgeon Scaphirhynchus albus has generally been documented using radio telemetry. However, because of the time and cost involved in tracking individual fish (i.e. small sample size), it is often difficult to evaluate spatial distribution of groups of fish over long time periods (> 3 years). Standardized sampling for pallid sturgeon, which relies on a variety of gear types, has been conducted on the Missouri River downstream of Fort Randall Dam annually since 2003. Using catch data from 2003 to 2006, the spatial distribution of juvenile pallid sturgeon was evaluated using spatial scan statistics. Presence/absence of pallid sturgeon was summarized from a variety of gear and distribution patterns were analyzed based on: (i) each gear per season, (ii) all gear pooled per season, (iii) each gear pooled across seasons, and (iv) pooled data from all gear and years combined. Three significant clusters of pallid sturgeon captures were identified when all gear and years were pooled. Distribution patterns identified using data from summer trammel nets agreed well with the overall pooled dataset and could be used to identify areas with a high probability of pallid sturgeon presence. This methodology can be used to identify areas where pallid sturgeon are likely to occur, thus improving sampling efficiency for monitoring vital statistics for this endangered species. Moreover, this approach could be applied to other reaches of the Missouri River using existing data from the Pallid Sturgeon Monitoring and Assessment Program. Once identified, these areas could then be evaluated to better understand the habitat requirements of pallid sturgeon.  相似文献   

8.
This study evaluated the effects of environmental parameters on the probability of capturing endangered pallid sturgeon (Scaphirhynchus albus) using trotlines in the lower Mississippi River. Pallid sturgeon were sampled by trotlines year round from 2008 to 2011. A logistic regression model indicated water temperature (T; P < 0.01) and depth (D; P = 0.03) had significant effects on capture probability (Y = ?1.75 ? 0.06T + 0.10D). Habitat type, surface current velocity, river stage, stage change and non‐sturgeon bycatch were not significant predictors (P = 0.26–0.63). Although pallid sturgeon were caught throughout the year, the model predicted that sampling should focus on times when the water temperature is less than 12°C and in deeper water to maximize capture probability; these water temperature conditions commonly occur during November to March in the lower Mississippi River. Further, the significant effect of water temperature which varies widely over time, as well as water depth indicate that any efforts to use the catch rate to infer population trends will require the consideration of temperature and depth in standardized sampling efforts or adjustment of estimates.  相似文献   

9.
As pallid sturgeon, Scaphirhynchus albus (Forbes & Richardson, 1905), natural reproduction and recruitment remains very minimal in the lower Missouri River from Gavins Point Dam (river kilometer [rkm] 1305.2) to the confluence with the Mississippi River (rkm 0.0), hatchery supplementation and river‐wide monitoring efforts have continued. Annual survival estimates of hatchery‐reared pallid sturgeon stocked in the lower Missouri River were previously estimated during 1994–2008. Low recapture rates prior to 2006 limited the data available to estimate survival, which resulted in considerable uncertainty for the estimate of annual survival of age‐1 fish. Therefore, the objective was to provide more precise estimates of annual survival of pallid sturgeon using five additional years of stocking and sampling. The Cormack‐Jolly‐Seber model structure provided in program MARK was used to estimate the age‐specific survival estimates. Over 135 000 hatchery‐reared pallid sturgeon were released during 1994–2011 and recaptured at a rate of 1.9%, whereby estimates for the annual survival of age‐0 (Ø = 0.048) and >age‐1 (Ø = 0.931) were similar to those previously reported, but the age‐1 (Ø = 0.403) survival estimate was 52% lower. Post hoc analysis using time‐specific survival estimates indicated lower survival for age‐1 fish post‐2003 year classes, relative to the pre‐2002 year classes. An analysis confirms that hatchery‐reared pallid sturgeon continue to survive in the wild. However, low survival during the first 2 years of life is a management concern as efforts are aimed at maximizing genetic diversity and population growth. A follow‐up analysis also demonstrated the variability of capture rates and survival over time, which reinforces the need to continue to monitor and evaluate mark‐recapture data. The mark‐recapture efforts have provided demographic parameter estimates that remain a critical component for species recovery as these data are incorporated into population models.  相似文献   

10.
11.
We quantified the bycatch of pallid sturgeon Scaphirhynchus albus in Tennessee's shovelnose sturgeon ( Scaphirhynchus platorynchus) fishery by accompanying commercial fishers and monitoring their catch on five dates in spring 2007. Fishers were free to keep or discard any sturgeon they collected in their gillnets and trotlines and we were afforded the opportunity to collect meristic and morphometric data and tissue samples from discarded and harvested specimens. Fishers removed 327 live sturgeon from their gear in our presence, of which 93 were harvested; we also obtained the carcasses of 20 sturgeon that a fisher harvested out of our sight while we were on the water with another fisher. Two of the 113 harvested sturgeon were confirmed pallid sturgeon based on microsatellite DNA analyses. Additionally, fishers gave us five, live pallid sturgeon that they had removed from their gear. If the incidental harvest rate of pallid sturgeon (1.8% of all sturgeon harvested) was similar in the previous two commercial seasons, at least 169 adult pallid sturgeon were harvested by commercial fishers in the Tennessee waters of the Mississippi River in 2005–2007. If fishers altered their behavior because of our presence (i.e. if they were more conservative in what they harvested), the pallid sturgeon take was probably higher when they fished unaccompanied by observers. While retrieving a gill net set the previous day, a fisher we were accompanying retrieved a gillnet lost 2 days earlier; this ghost net caught 53 sturgeon whereby one fish was harvested but most fish were dead, including one confirmed pallid sturgeon.  相似文献   

12.
Several population viability models were constructed to aid recovery in endangered Scaphirhynchus albus, but these models are dependent upon accurate and precise input parameters that are not provided with standard catch per unit effort (CPUE) indices. Nine years of sampling efforts, under the robust design framework, provided 1223 unique captures with an 18·3% recapture rate. The annual population estimates varied from 4·0–7·3 fish rkm?1 for wild and 8·4–18·4 fish rkm?1 for hatchery‐reared S. albus. The relationship between abundance (N) and annual trot‐line CPUE indices (x = 70.726y + 2·533, R2 = 0·91, P < 0·001) was used to predict an abundance of 13 616 ± 7142 s.e. S. albus in the lower Missouri River. The use of small‐scale intensive sampling to develop a relationship with relative abundance indices reported here, may provide a framework for other fisheries management applications where large‐scale intensive sampling is not feasible, but catch data are available.  相似文献   

13.
An extant stock of wild pallid sturgeon Scaphirhynchus albus persists in the fragmented upper Missouri River basin of Montana and North Dakota. Although successful spawning and hatch of embryos has been verified, long‐term catch records suggest that recruitment has not occurred for several decades as the extant stock lacks juvenile size classes and is comprised exclusively of large, presumably old individuals. Ages of 11 deceased (death years 1997–2007) wild S. albus (136–166 cm fork length) were estimated based on pectoral fin spines, sagittal otoliths and bomb radiocarbon (14C) assays of otoliths to test the hypothesis that members of this stock are old and to provide inferences on recruitment years that produced the extant stock. Age estimations based on counts of presumed annuli were about 2 years greater for otoliths (mean = 51 years, range = 43–57 years) than spines (mean = 49 years, range = 37–59 years). Based on 14C assays, confirmed birth years for all individuals occurred prior to 1957, thus establishing known longevity of at least 50 years. Estimated age based on presumed otolith annuli for one S. albus was validated to at least age 49. Although 14C assays confirmed pre‐1957 birth years for all S. albus, only 56% of estimated ages from spines and 91% of estimated ages from otoliths depicted pre‐1957 birth years. Both ageing structures were subject to under‐ageing error (up to 15 years). Lack of or severe curtailment of S. albus recruitment in the upper Missouri River basin since the mid‐1950s closely parallels the 1953–1957 timeframe when a mainstem reservoir was constructed and started to fill. This reservoir may function as a system‐wide stressor to diminish recruitment success of S. albus in the upper Missouri River basin.  相似文献   

14.
The thermal response of pallid sturgeon Scaphirhynchus albus and shovelnose sturgeon S. platorynchus embryos was determined at incubation temperatures from 8 to 26°C and 8 to 28°C, respectively. The upper and lower temperatures with 100% (LT100) embryo mortality were 8 and 26°C for pallid sturgeon and 8 and 28°C for shovelnose sturgeon. It was concluded that 12–24°C is the approximate thermal niche for embryos of both species. Generalized additive and additive‐mixed models were used to analyze survival, developmental rate and dry weight data, and predict an optimal temperature for embryo incubation. Pallid sturgeon and shovelnose sturgeon embryo survival rates were different in intermediate and extreme temperatures. The estimated optimal temperature for embryo survival was 17–18°C for both species. A significant interaction between rate of development and temperature was found in each species. No evidence was found for a difference in timing of blastopore, neural tube closure, or formation of an S‐shaped heart between species at similar temperatures. The estimated effects of temperature on developmental rate ranged from linear to exponential shapes. The relationship for rate of development to temperature was relatively linear from 12°C to 20°C and increasingly curvilinear at temperatures exceeding 20°C, suggesting an optimal temperature near 20°C. Though significant differences in mean dry weights between species were observed, both predicted maximum weights occurred at approximately 18°C, suggesting a temperature optimum near 18°C for metabolic processes. Using thermal optimums and tolerances of embryos as a proxy to estimate spawning distributions of adults in a river with a naturally vernalized thermal regime, it is predicted that pallid sturgeon and shovelnose sturgeon spawn in the wild from 12°C to 24°C, with mass spawning likely occurring from 16°C to 20°C and with fewer individuals spawning from 12 to 15°C and 21 to 24°C. Hypolimnetic releases from Missouri River dams were examined; it was concluded that the cooler water has the potential to inhibit and delay sturgeon spawning and impede embryo incubation in areas downstream of the dams. Further investigations into this area, including potential mitigative solutions, are warranted.  相似文献   

15.
Demographic models for the shovelnose (Scaphirhynchus platorynchus) and pallid (S. albus) sturgeons in the Lower Missouri River were developed to conduct sensitivity analyses for both populations. Potential effects of increased fishing mortality on the shovelnose sturgeon were also evaluated. Populations of shovelnose and pallid sturgeon were most sensitive to age‐0 mortality rates as well as mortality rates of juveniles and young adults. Overall, fecundity was a less sensitive parameter. However, increased fecundity effectively balanced higher mortality among sensitive age classes in both populations. Management that increases population‐level fecundity and improves survival of age‐0, juveniles, and young adults should most effectively benefit both populations. Evaluation of reproductive values indicated that populations of pallid sturgeon dominated by ages ≥35 could rapidly lose their potential for growth, particularly if recruitment remains low. Under the initial parameter values portraying current conditions the population of shovelnose sturgeon was predicted to decline by 1.65% annually, causing the commercial yield to also decline. Modeling indicated that the commercial yield could increase substantially if exploitation of females in ages ≤12 was highly restricted.  相似文献   

16.
Environmental Biology of Fishes - We released nearly 1.0 million 1-day post-hatch (dph) and 5-dph pallid sturgeon (Scaphirhynchus albus) free embryos in the Missouri River on 1 July 2019 and...  相似文献   

17.
The pallid sturgeon (Scaphirhynchus albus) was not described until 1905, when it was commonly caught by commercial fishers. This species began to decline in the early 1900s presumably because of overharvest and habitat degradation. The U.S. Fish and Wildlife Service listed S. albus as an endangered species in 1990. Because S. albus live in deep, turbid rivers that are difficult to sample, very little is known about its reproductive timing and spawning habitat. The act of spawning has never been observed in nature. Captures of wild young S. albus verifying natural reproduction are rare, the last being a 4‐year‐old fish taken in 1978. In this paper, we describe the first collection of a larval S. albus from the wild and subsequent larval collections in the Mississippi River from 1998 to 2000 using a modified slingshot balloon trawl (the Missouri Trawl) designed to capture small fishes in deep, turbulent rivers. We captured larval Scaphirhynchus spp., including verified S. albus, in association with island habitats often in heavy detritus, especially at downstream tips. We postulate that Scaphirhynchus spp. spawned at the heads of islands upstream from where we collected larvae, but we cannot be certain. The capture of larval S. albus verifies reproduction possibly from the lower Missouri River to the upper and lower Mississippi River. However, we found no evidence of recruitment of S. albus from 1998 to 2000 as we were unable to capture juveniles after 374 trawl hauls that captured over 21 735 fish.  相似文献   

18.
Prior to anthropogenic modifications, the historic Missouri River provided ecological conditions suitable for reproduction, growth, and survival of pallid sturgeon Scaphirhynchus albus. However, little information is available to discern whether altered conditions in the contemporary Missouri River are suitable for feeding, growth and survival of endangered pallid sturgeon during the early life stages. In 2004 and 2007, nearly 600 000 pallid sturgeon free embryos and larvae were released in the upper Missouri River and survivors from these releases were collected during 2004–2010 to quantify natural growth rates and diet composition. Based on genetic analysis and known‐age at release (1–17 days post‐hatch, dph), age at capture (dph, years) could be determined for each survivor. Totals of 23 and 28 survivors from the 2004 and 2007 releases, respectively, were sampled. Growth of pallid sturgeon was rapid (1.91 mm day?1) during the initial 13–48 dph, then slowed as fish approached maximum length (120–140 mm) towards the end of the first growing season. The diet of young‐of‐year pallid sturgeon was comprised of Diptera larvae, Diptera pupae, and Ephemeroptera nymphs. Growth of pallid sturgeon from ages 1–6 years was about 48.0 mm year?1. This study provides the first assessment of natural growth and diet of young pallid sturgeon in the wild. Results depict pallid sturgeon growth trajectories that may be expected for naturally produced wild stocks under contemporary habitat conditions in the Missouri River and Yellowstone River.  相似文献   

19.
Fragmentation of the Yellowstone River is hypothesized to preclude recruitment of endangered Scaphirhynchus albus (pallid sturgeon) by impeding upstream spawning migrations and access to upstream spawning areas, thereby limiting the length of free‐flowing river required for survival of early life stages. Building on this hypothesis, the reach of the Yellowstone River affected by Intake Diversion Dam (IDD) is targeted for modification. Structures including a rock ramp and by‐pass channel have been proposed as restoration alternatives to facilitate passage. Limited information on migrations and swimming capabilities of pallid sturgeon is available to guide engineering design specifications for the proposed structures. Migration behavior, pathways (channel routes used during migrations), and swimming capabilities of free‐ranging wild adult pallid sturgeon were examined using radiotelemetry, and complemented with hydraulic data obtained along the migration pathways. Migrations of 12–26% of the telemetered pallid sturgeon population persisted to IDD, but upstream passage over the dam was not detected. Observed migration pathways occurred primarily through main channel habitats; however, migrations through side channels up to 3.9 km in length were documented. The majority of pallid sturgeon used depths of 2.2–3.4 m and mean water velocities of 0.89–1.83 m/s while migrating. Results provide inferences on depths, velocities, and habitat heterogeneity of reaches successfully negotiated by pallid sturgeon that may be used to guide designs for structures facilitating passage at IDD. Passage will provide connectivity to potential upstream spawning areas on the Yellowstone River, thereby increasing the likelihood of recruitment for this endangered species.  相似文献   

20.
Acipenseriformes (sturgeons and paddlefish) globally have declined throughout their range due to river fragmentation, habitat loss, overfishing, and degradation of water quality. In North America, pallid sturgeon (Scaphirhynchus albus) populations have experienced poor to no recruitment, or substantial levels of hybridization with the closely related shovelnose sturgeon (S. platorynchus). The Lower Missouri River is the only portion of the species’ range where successful reproduction and recruitment of genetically pure pallid sturgeon have been documented. This paper documents spawning habitat and behavior on the Lower Missouri River, which comprises over 1,300 km of unfragmented river habitat. The objective of this study was to determine spawning locations and describe habitat characteristics and environmental conditions (depth, water velocity, substrate, discharge, temperature, and turbidity) on the Lower Missouri River. We measured habitat characteristics for spawning events of ten telemetry-tagged female pallid sturgeon from 2008–2013 that occurred in discrete reaches distributed over hundreds of kilometers. These results show pallid sturgeon select deep and fast areas in or near the navigation channel along outside revetted banks for spawning. These habitats are deeper and faster than nearby river habitats within the surrounding river reach. Spawning patches have a mean depth of 6.6 m and a mean depth-averaged water-column velocity of 1.4 m per second. Substrates in spawning patches consist of coarse bank revetment, gravel, sand, and bedrock. Results indicate habitat used by pallid sturgeon for spawning is more common and widespread in the present-day channelized Lower Missouri River relative to the sparse and disperse coarse substrates available prior to channelization. Understanding the spawning habitats currently utilized on the Lower Missouri River and if they are functioning properly is important for improving habitat remediation measures aimed at increasing reproductive success. Recovery efforts for pallid sturgeon on the Missouri River, if successful, can provide guidance to sturgeon recovery on other river systems; particularly large, regulated, and channelized rivers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号