首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Urban evolutionary biology is the study of rapid evolutionary change in response to humans and our uses of land to support city dwellers. Because cities are relatively modern additions to the natural world, research on urban evolution tends to focus on microevolutionary change that has happened across a few to many hundreds of generations. These questions still fall under the broad purview of evolutionary ecology. However, the severity, rapidity and replication of environmental changes that drive evolution in this context make it worthy of specific attention. Urban evolution provides the opportunity to study the earliest stages of evolution in a context that is scientifically interesting and societally important. The newness of urban populations and their proximity to natural populations also creates challenges when trying to detect population genetic change. In a From the Cover article in this issue of Molecular Ecology, Mueller et al. use whole genome resequencing data to address some of these challenges while exploring genetic changes associated with urbanization in three replicate urban‐rural burrowing owl (Athene cunicularia) populations. Combining multiple approaches across these sample sites Mueller et al. find evidence for selection on genes whose function is related to synapses, neuron projections, brain connectivity and cognitive function in general. That selection was parallel suggests that phenotypes related to brain processes were probably particularly important for urban adaptation.  相似文献   

2.
    
Nearly 25 years ago, Allan Wilson and colleagues isolated DNA sequences from museum specimens of kangaroo rats (Dipodomys panamintinus) and compared these sequences with those from freshly collected animals (Thomas et al. 1990 ). The museum specimens had been collected up to 78 years earlier, so the two samples provided a direct temporal comparison of patterns of genetic variation. This was not the first time DNA sequences had been isolated from preserved material, but it was the first time it had been carried out with a population sample. Population geneticists often try to make inferences about the influence of historical processes such as selection, drift, mutation and migration on patterns of genetic variation in the present. The work of Wilson and colleagues was important in part because it suggested a way in which population geneticists could actually study genetic change in natural populations through time, much the same way that experimentalists can do with artificial populations in the laboratory. Indeed, the work of Thomas et al. ( 1990 ) spawned dozens of studies in which museum specimens were used to compare historical and present‐day genetic diversity (reviewed in Wandeler et al. 2007 ). All of these studies, however, were limited by the same fundamental problem: old DNA is degraded into short fragments. As a consequence, these studies mostly involved PCR amplification of short templates, usually short stretches of mitochondrial DNA or microsatellites. In this issue, Bi et al. ( 2013 ) report a breakthrough that should open the door to studies of genomic variation in museum specimens. They used target enrichment (exon capture) and next‐generation (Illumina) sequencing to compare patterns of genetic variation in historic and present‐day population samples of alpine chipmunks (Tamias alpinus) (Fig. 1). The historic samples came from specimens collected in 1915, so the temporal span of this comparison is nearly 100 years.  相似文献   

3.
    
As humans cause the redistribution of species ranges, hybridization between previously allopatric species is on the rise. Such hybridization can have complex effects on overall fitness of native species as new allelic combinations are tested. Widespread species introductions provide a unique opportunity to study selection on introgressed alleles in independent, replicated populations. We examined selection on alleles that repeatedly introgressed from introduced rainbow trout (Oncorhynchus mykiss) into native westslope cutthroat trout (Oncorhynchus clarkii lewisi) populations in western Canada. We found that the degree of introgression of individual single nucleotide polymorphisms from the invasive species into the native is correlated between independent watersheds. A number of rainbow trout alleles have repeatedly swept to high frequency in native populations, suggesting parallel adaptive advantages. Using simulations, we estimated large selection coefficients up to 0.05 favoring several rainbow trout alleles in the native background. Although previous studies have found reduced hybrid fitness and genome‐wide resistance to introgression in westslope cutthroat trout, our results suggest that some introduced genomic regions are strongly favored by selection. Our study demonstrates the utility of replicated introductions as case studies for understanding parallel adaptation and the interactions between selection and introgression across the genome. We suggest that understanding this variation, including consideration of beneficial alleles, can inform management strategies for hybridizing species.  相似文献   

4.
    
Long‐term ecological experiments provide unique opportunities to observe the effects of natural selection. The Park Grass Experiment at Rothamsted Experiment Station in Hertfordshire, UK, is the longest running ecological experiment that incorporates fertilization treatments and has been ongoing since 1856. In the 1970s, local adaptation was observed in the grass Anthoxanthum odoratum to the elevated soil aluminium levels of the fertilized plots. Gould et al. ( 2014 ) have utilized this system to reevaluate the extent of local adaptation, first documented nearly 45 years ago (Snaydon 1970 ), and to use emerging molecular approaches to identify candidate genes for the adaptation. From their work, they identify several plausible candidate loci for aluminium tolerance. This work shows the power of long‐term field‐based trials in a scientific age concentrated on rapidly emerging molecular techniques often utilized in short, narrowly focused laboratory or controlled environment experiments. The current study clearly illustrates the benefits gained by combining these molecular approaches within long‐term monitoring experiments that can be regularly revisited in a changing world and used to address questions on evolutionary scales.  相似文献   

5.
    
Bergmann's rule predicts that individuals are larger in more poleward populations and that this size gradient has an adaptive basis. Hence, phenotypic divergence in size traits between populations (PST) is expected to exceed the level of divergence by drift alone (FST). We measured 16 skeletal traits, body mass and wing length in 409 male and 296 female house sparrows Passer domesticus sampled in 12 populations throughout Finland, where the species has its northernmost European distributional margin. Morphometric differentiation across populations (PST) was compared with differentiation in 13 microsatellites (FST). We find that twelve traits phenotypically diverged more than FST in both sexes, and an additional two traits diverged in males. The phenotypic divergence exceeded FST in several traits to such a degree that findings were robust also to strong between‐population environmental effects. Divergence was particularly strong in dimensions of the bill, making it a strong candidate for the study of adaptive molecular genetic divergence. Divergent traits increased in size in more northern populations. We conclude that house sparrows show evidence of an adaptive latitudinal size gradient consistent with Bergmann's rule on the modest spatial scale of ca. 600 km.  相似文献   

6.
    
The genetic architecture of phenotypic traits can affect the mode and tempo of trait evolution. Human-altered environments can impose strong natural selection, where successful evolutionary adaptation requires swift and large phenotypic shifts. In these scenarios, theory predicts that adaptation is due to a few adaptive variants of large effect, but empirical studies that have revealed the genetic architecture of rapidly evolved phenotypes are rare, especially for populations inhabiting polluted environments. Fundulus killifish have repeatedly evolved adaptive resistance to extreme pollution in urban estuaries. Prior studies, including genome scans for signatures of natural selection, have revealed some of the genes and pathways important for evolved pollution resistance, and provide context for the genotype–phenotype association studies reported here. We created multiple quantitative trait locus (QTL) mapping families using progenitors from four different resistant populations, and using RAD-seq genetically mapped variation in sensitivity (developmental perturbations) following embryonic exposure to a model toxicant PCB-126. We found that one to two large-effect QTL loci accounted for resistance to PCB-mediated developmental toxicity. QTLs harbored candidate genes that govern the regulation of aryl hydrocarbon receptor (AHR) signaling. One QTL locus was shared across all populations and another was shared across three populations. One QTL locus showed strong signatures of recent natural selection in the corresponding wild population but another QTL locus did not. Some candidate genes for PCB resistance inferred from genome scans in wild populations were identified as QTL, but some key candidate genes were not. We conclude that rapidly evolved resistance to the developmental defects normally caused by PCB-126 is governed by few genes of large effect. However, other aspects of resistance beyond developmental phenotypes may be governed by additional loci, such that comprehensive resistance to PCB-126, and to the mixtures of chemicals that distinguish urban estuaries more broadly, may be more genetically complex.  相似文献   

7.
    
A major aim of evolutionary biology is to understand why patterns of genomic diversity vary within taxa and space. Large-scale genomic studies of widespread species are useful for studying how environment and demography shape patterns of genomic divergence. Here, we describe one of the most geographically comprehensive surveys of genomic variation in a wild vertebrate to date; the great tit (Parus major) HapMap project. We screened ca 500,000 SNP markers across 647 individuals from 29 populations, spanning ~30 degrees of latitude and 40 degrees of longitude – almost the entire geographical range of the European subspecies. Genome-wide variation was consistent with a recent colonisation across Europe from a South-East European refugium, with bottlenecks and reduced genetic diversity in island populations. Differentiation across the genome was highly heterogeneous, with clear ‘islands of differentiation’, even among populations with very low levels of genome-wide differentiation. Low local recombination rates were a strong predictor of high local genomic differentiation (FST), especially in island and peripheral mainland populations, suggesting that the interplay between genetic drift and recombination causes highly heterogeneous differentiation landscapes. We also detected genomic outlier regions that were confined to one or more peripheral great tit populations, probably as a result of recent directional selection at the species' range edges. Haplotype-based measures of selection were related to recombination rate, albeit less strongly, and highlighted population-specific sweeps that likely resulted from positive selection. Our study highlights how comprehensive screens of genomic variation in wild organisms can provide unique insights into spatio-temporal evolutionary dynamics.  相似文献   

8.
    
Adaptive evolution can facilitate species' range expansions across environmentally heterogeneous landscapes. However, serial founder effects can limit the efficacy of selection, and the evolution of increased dispersal during range expansions may result in gene flow swamping local adaptation. Here, we study how genetic drift, gene flow and selection interact during the cane toad's (Rhinella marina) invasion across the heterogeneous landscape of Australia. Following its introduction in 1935, the cane toad colonised eastern Australia and established several stable range edges. The ongoing, more rapid range expansion in north-central Australia has occurred concomitant with an evolved increase in dispersal capacity. Using reduced representation genomic data of Australian cane toads from the expansion front and from two areas of their established range, we test the hypothesis that high gene flow constrains local adaptation at the expansion front relative to established areas. Genetic analyses indicate the three study areas are genetically distinct but show similar levels of allelic richness, heterozygosity and inbreeding. Markedly higher gene flow or recency of colonisation at the expansion front have likely hindered local adaptation at the time of sampling, as indicated by reduced slopes of genetic-environment associations (GEAs) estimated using a novel application of geographically weighted regression that accounts for allele surfing; GEA slopes are significantly steeper in established parts of the range. Our work bolsters evidence supporting adaptation of invasive species post-introduction and adds novel evidence for differing strengths of evolutionary forces among geographic areas with different invasion histories.  相似文献   

9.
    
Widespread invasion by Bromus tectorum (cheatgrass) in the Intermountain West has drastically altered native plant communities. We investigated whether Elymus multisetus (big squirreltail) is evolving in response to invasion and what traits contribute to increased performance. Seedlings from invaded areas exhibited significantly greater tolerance to B. tectorum competition and a greater ability to suppress B. tectorum biomass than seedlings from adjacent uninvaded areas. To identify potentially adaptive traits, we examined which phenological and phenotypic traits were correlated with seedling performance within the uninvaded area, determined their genetic variation by measuring sibling resemblance, and asked whether trait distribution had shifted in invaded areas. Increased tolerance to competition was correlated with early seedling root to shoot ratio, root fork number, and fine root length. Root forks differed among families, but none of these traits differed significantly across invasion status. Additionally, we surveyed more broadly for traits that varied between invaded and uninvaded areas. Elymus multisetus plants collected from invaded areas were smaller, allocated more biomass to roots, and produced a higher percentage of fine roots than plants from uninvaded areas. The ability of native populations to evolve in response to invasion has significant implications for the management and restoration of B. tectorum‐invaded communities.  相似文献   

10.
    
  相似文献   

11.
    
In recent years, amid growing concerns that changing climate is affecting species distributions and ecosystems, predicting responses to rapid environmental change has become a major goal. In this issue, Franks and colleagues take a first step towards this objective (Franks et al. 2016). They examine genomewide signatures of selection in populations of Brassica rapa after a severe multiyear drought. Together with other authors, Franks had previously shown that flowering time was reduced after this particular drought and that the reduction was genetically encoded. Now, the authors have sequenced previously stored samples to compare allele frequencies before and after the drought and identify the loci with the most extreme shifts in frequencies. The loci they identify largely differ between populations, suggesting that different genetic variants may be responsible for reduction in flowering time in the two populations.  相似文献   

12.
    
Exactly 50 years ago, a revolution in empirical population genetics began with the introduction of methods for detecting allelic variation using protein electrophoresis (Throckmorton 1962; Hubby 1963; Lewontin & Hubby 1966). These pioneering scientists showed that populations are chock‐full of genetic variation. This variation was a surprise that required a re‐thinking of evolutionary genetic heuristics. Understanding the causes for the maintenance of this variation became and remains a major area of research. In the process of addressing the causes, this same group of scientists documented geographical genetic structure (Prakash et al. 1969), spawning the continued accumulation of what is now a huge case study catalogue of geographical differentiation (e.g. Loveless & Hamrick 1984; Linhart & Grant 1996). Geographical differentiation is clearly quite common. Yet, a truly general understanding of the patterns in and causes of spatial genetic structure across the genome remains elusive. To what extent is spatial structure driven by drift and phylogeography vs. geographical differences in environmental sources of selection? What proportion of the genome participates? A general understanding requires range‐wide data on spatial patterning of variation across the entire genome. In this issue of Molecular Ecology, Lasky et al. (2012) make important strides towards addressing these issues, taking advantage of three contemporary revolutions in evolutionary biology. Two are technological: high‐throughput sequencing and burgeoning computational power. One is cultural: open access to data from the community of scientists and especially data sets that result from large collaborative efforts. Together, these developments may at last put answers within reach.  相似文献   

13.
    
It has long been known that adaptive evolution can occur through genetic mutations in DNA sequence, but it is unclear whether adaptive evolution can occur through analogous epigenetic mechanisms, such as through DNA methylation. If epigenetic variation contributes directly to evolution, species under threat of disease, invasive competition, climate change or other stresses would have greater stores of variation from which to draw. We looked for evidence of natural selection acting on variably methylated DNA sites using population genomic analysis across three climatologically distinct populations of valley oaks. We found patterns of genetic and epigenetic differentiations that indicate local adaptation is operating on large portions of the oak genome. While CHG methyl polymorphisms are not playing a significant role and would make poor targets for natural selection, our findings suggest that CpG methyl polymorphisms as a whole are involved in local adaptation, either directly or through linkage to regions under selection.  相似文献   

14.
    
Jon Slate 《Molecular ecology》2017,26(6):1453-1455
  相似文献   

15.
Unravelling the mechanisms underlying variation in life history traits is of fundamental importance for our understanding of adaptation by natural selection. While progress has been made in mapping fitness-related phenotypes to genotypes, mainly in a handful of model organisms, functional genomic studies of life history adaptations are still in their infancy. In particular, despite a few notable exceptions, the genomic basis of life history variation in natural populations remains poorly understood. This is especially true for the genetic underpinnings of life history phenotypes subject to diversifying selection driven by ecological dynamics in patchy environments--as opposed to adaptations involving strong directional selection owing to major environmental changes, such as latitudinal gradients, extreme climatic events or transitions from salt to freshwater. In this issue of Molecular Ecology,Wheat et al. (2011) now make a significant leap forward by applying the tools of functional genomics to dispersal-related life history variation in a butterfly metapopulation. Using a combination of microarrays, quantitative PCR and physiological measurements, the authors uncover several metabolic and endocrine factors that likely contribute to the observed life history phenotypes. By identifying molecular candidate mechanisms of fitness variation maintained by dispersal dynamics in a heterogeneous environment,they also begin to address fascinating interactions between the levels of physiology, ecology and evolution.  相似文献   

16.
    
Here, I suggest that colour polymorphic study systems have been underutilized to answer general questions about evolutionary processes, such as morph frequency dynamics between generations and population divergence in morph frequencies. Colour polymorphisms can be used to study fundamental evolutionary processes like frequency‐dependent selection, gene flow, recombination and correlational selection for adaptive character combinations. However, many previous studies of colour polymorphism often suffer from weak connections to population genetic theory. I argue that too much focus has been directed towards noticeable visual traits (colour) at the expense of understanding the evolutionary processes shaping genetic variation and covariation associated with polymorphisms in general. There is thus no need for a specific evolutionary theory for colour polymorphisms beyond the general theory of the maintenance of polymorphisms in spatially or temporally variable environments or through positive or negative frequency‐dependent selection. I outline an integrative research programme incorporating these processes and suggest some fruitful avenues in future investigations of colour polymorphisms.  相似文献   

17.
A primary question in biology concerns the genetic basis of the evolution of novel traits, often in response to environmental changes, and how this can subsequently cause species isolation. This topic was the focus of the symposium on the Genetics of Speciation and Evolution at the annual meeting of the Canadian Society for Ecology and Evolution, held in Banff in May 2011. The presentations revealed some of the rapid advances being made in understanding the genetic basis of adaptation and speciation, as well as the elegant interplay between an organism's genetic complement and the environment that organism experiences.  相似文献   

18.
    
The adaptive potential of tree species to cope with climate change has important ecological and economic implications. Many temperate tree species experience a wide range of environmental conditions, suggesting high adaptability to new environmental conditions. We investigated adaptation to regional climate in the drought‐sensitive tree species Alnus glutinosa (Black alder), using a complementary approach that integrates genomic, phenotypic and landscape data. A total of 24 European populations were studied in a common garden and through landscape genomic approaches. Genotyping‐by‐sequencing was used to identify SNPs across the genome, resulting in 1990 SNPs. Although a relatively low percentage of putative adaptive SNPs was detected (2.86% outlier SNPs), we observed clear associations among outlier allele frequencies, temperature and plant traits. In line with the typical drought avoiding nature of A. glutinosa, leaf size varied according to a temperature gradient and significant associations with multiple outlier loci were observed, corroborating the ecological relevance of the observed outlier SNPs. Moreover, the lack of isolation by distance, the very low genetic differentiation among populations and the high intrapopulation genetic variation all support the notion that high gene exchange combined with strong environmental selection promotes adaptation to environmental cues.  相似文献   

19.
    
Taxonomy is being increasingly informed by genomics. Traditionally, taxonomy has relied extensively on phenotypic traits for the identification and delimitation of species, though with a growing influence from molecular phylogenetics in recent decades. Now, genomics opens up new and more powerful tools for analysing the evolutionary history and relatedness among species, as well as understanding the genetic basis for phenotypic traits and their role in reproductive isolation. New insights gained from genomics will therefore have major effects on taxonomic classifications and species delimitation. How a genomics approach can inform a flawed taxonomy is nicely exemplified by Mason & Taylor ( 2015 ) in this issue of Molecular Ecology. They studied redpolls, which comprise a genus (Acanthis) of fringillid finches with a wide distribution in the Holarctic region, and whose species taxonomy has been a matter of much controversy for decades (Fig.  1 ). Current authoritative checklists classify them into one, two or three species, and five or six subspecies, based largely on geographical differences in phenotypic traits. Previous studies, including a recent one of the subspecies on Iceland (Amouret et al. 2015 ), have found no evidence of differentiation between these taxa in conventional molecular markers. The lack of genetic structure has been interpreted as incomplete lineage sorting among rapidly evolving lineages. Now Mason & Taylor ( 2015 ), using a large data set of genomewide SNPs, verify that they all belong to a single gene pool with a common evolutionary history, and with little or no geographical structuring. They also show that phenotypic traits used in taxonomic classifications (plumage and bill morphology) are closely associated with polygenic patterns of gene expression, presumably driven by ecological selection on a few regulatory genes. Several lessons can be learned from this study. Perhaps the most important one for taxonomy is the risk of taxonomic inflation resulting from overemphasizing phenotypic traits under local adaptation and ignoring a lack of phylogenetic signal in molecular markers.  相似文献   

20.
    
The genetic and environmental homogeneity in agricultural ecosystems is thought to impose strong and uniform selection pressures. However, the impact of this selection on plant pathogen genomes remains largely unknown. We aimed to identify the proportion of the genome and the specific gene functions under positive selection in populations of the fungal wheat pathogen Zymoseptoria tritici. First, we performed genome scans in four field populations that were sampled from different continents and on distinct wheat cultivars to test which genomic regions are under recent selection. Based on extended haplotype homozygosity and composite likelihood ratio tests, we identified 384 and 81 selective sweeps affecting 4% and 0.5% of the 35 Mb core genome, respectively. We found differences both in the number and the position of selective sweeps across the genome between populations. Using a XtX‐based outlier detection approach, we identified 51 extremely divergent genomic regions between the allopatric populations, suggesting that divergent selection led to locally adapted pathogen populations. We performed an outlier detection analysis between two sympatric populations infecting two different wheat cultivars to identify evidence for host‐driven selection. Selective sweep regions harboured genes that are likely to play a role in successfully establishing host infections. We also identified secondary metabolite gene clusters and an enrichment in genes encoding transporter and protein localization functions. The latter gene functions mediate responses to environmental stress, including interactions with the host. The distinct gene functions under selection indicate that both local host genotypes and abiotic factors contributed to local adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号