首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drought is a major stress for plants, creating a strong selection pressure for traits that enable plant growth and survival in dry environments. Many drought responses are conserved species‐wide responses, while others vary among populations distributed across heterogeneous environments. We tested how six populations of the widely distributed California valley oak (Quercus lobata) sampled from contrasting climates would differ in their response to soil drying relative to well‐watered controls in a common environment by measuring ecophysiological traits in 93 individuals and gene expression (RNA‐seq) in 42 individuals. Populations did not differ in their adjustment of turgor loss point during soil drying, suggesting a generalized species‐wide response. Differential expression analysis identified 689 genes with a common response to treatment across populations and 470 genes with population‐specific responses. Weighted gene co‐expression network analysis (WGCNA) identified groups of genes with similar expression patterns that may be regulated together (gene modules). Several gene modules responded differently to water stress among populations, suggesting regional differences in gene network regulation. Populations from sites with a high mean annual temperature responded to the imposed water stress with significantly greater changes in gene module expression, indicating that these populations may be locally adapted to respond to drought. We propose that this variation among valley oak populations provides a mechanism for differential tolerance to the increasingly frequent and severe droughts in California.  相似文献   

2.
With rates of climate change exceeding the rate at which many species are able to shift their range or adapt, it is important to understand how future changes are likely to affect biodiversity at all levels of organisation. Understanding past responses and extent of niche conservatism in climatic tolerance can help predict future consequences. We use an integrated approach to determine the genetic consequences of past and future climate changes on a bat species, Plecotus austriacus. Glacial refugia predicted by palaeo‐modelling match those identified from analyses of extant genetic diversity and model‐based inference of demographic history. Former refugial populations currently contain disproportionately high genetic diversity, but niche conservatism, shifts in suitable areas and barriers to migration mean that these hotspots of genetic diversity are under threat from future climate change. Evidence of population decline despite recent northward migration highlights the need to conserve leading‐edge populations for spearheading future range shifts.  相似文献   

3.
4.
5.
Understanding how specific environmental factors shape gene flow while disentangling their importance relative to the effects of geographical isolation is a major question in evolutionary biology and a specific goal of landscape genetics. Here, we combine information from nuclear microsatellite markers and ecological niche modelling to study the association between climate and spatial genetic structure and variability in Engelmann oak (Quercus engelmannii), a wind-pollinated species with high potential for gene flow. We first test whether genetic diversity is associated with climatic niche suitability and stability since the Last Glacial Maximum (LGM). Second, we use causal modelling to analyse the potential influence of climatic factors (current and LGM niche suitability) and altitude in the observed patterns of genetic structure. We found that genetic diversity is negatively associated with local climatic stability since the LGM, which may be due to higher immigration rates in unstable patches during favourable climatic periods and/or temporally varying selection. Analyses of spatial genetic structure revealed the presence of three main genetic clusters, a pattern that is mainly driven by two highly differentiated populations located in the northern edge of the species distribution range. After controlling for geographic distance, causal modelling analyses showed that genetic relatedness decreases with the environmental divergence among sampling sites estimated as altitude and current and LGM niche suitability. Natural selection against nonlocal genotypes and/or asynchrony in reproductive phenology may explain this pattern. Overall, this study suggests that local environmental conditions can shape patterns of genetic structure and variability even in species with high potential for gene flow and relatively small distribution ranges.  相似文献   

6.
The Mexican highlands are areas of high biological complexity where taxa of Nearctic and Neotropical origin and different population histories are found. To gain a more detailed view of the evolution of the biota in these regions, it is necessary to evaluate the effects of historical tectonic and climate events on species. Here, we analyzed the phylogeographic structure, historical demographic processes, and the contemporary period, Last Glacial Maximum (LGM) and Last Interglacial (LIG) ecological niche models of Quercus castanea, to infer the historical population dynamics of this oak distributed in the Mexican highlands. A total of 36 populations of Q. castanea were genotyped with seven chloroplast microsatellite loci in four recognized biogeographic provinces of Mexico: the Sierra Madre Occidental (western mountain range), the Central Plateau, the Trans‐Mexican Volcanic Belt (TMVB, mountain range crossing central Mexico from west to east) and the Sierra Madre del Sur (SMS, southern mountain range). We obtained standard statistics of genetic diversity and structure and tested for signals of historical demographic expansions. A total of 90 haplotypes were identified, and 29 of these haplotypes were restricted to single populations. The within‐population genetic diversity was high (mean hS = 0.72), and among‐population genetic differentiation showed a strong phylogeographic structure (NST = 0.630 > GST = 0.266; p < .001). Signals of demographic expansion were identified in the TMVB and the SMS. The ecological niche models suggested a considerable percentage of stable distribution area for the species during the LGM and connectivity between the TMVB and the SMS. High genetic diversity, strong phylogeographic structure, and ecological niche models suggest in situ permanence of Q. castanea populations with large effective population sizes. The complex geological and climatic histories of the TMVB help to explain the origin and maintenance of a large proportion of the genetic diversity in this oak species.  相似文献   

7.
Understanding the factors promoting species formation is a major task in evolutionary research. Here, we employ an integrative approach to study the evolutionary history of the Californian scrub white oak species complex (genus Quercus). To infer the relative importance of geographical isolation and ecological divergence in driving the speciation process, we (i) analysed inter‐ and intraspecific patterns of genetic differentiation and employed an approximate Bayesian computation (ABC) framework to evaluate different plausible scenarios of species divergence. In a second step, we (ii) linked the inferred divergence pathways with current and past species distribution models (SDMs) and (iii) tested for niche differentiation and phylogenetic niche conservatism across taxa. ABC analyses showed that the most plausible scenario is the one considering the divergence of two main lineages followed by a more recent pulse of speciation. Genotypic data in conjunction with SDMs and niche differentiation analyses support that different factors (geography vs. environment) and modes of speciation (parapatry, allopatry and maybe sympatry) have played a role in the divergence process within this complex. We found no significant relationship between genetic differentiation and niche overlap, which probably reflects niche lability and/or that multiple factors, have contributed to speciation. Our study shows that different mechanisms can drive divergence even among closely related taxa representing early stages of species formation and exemplifies the importance of adopting integrative approaches to get a better understanding of the speciation process.  相似文献   

8.
Populations occurring in areas of overlap between the current and future distribution of a species are particularly important because they can represent “refugia from climate change”. We coupled ecological and range‐wide genetic variation data to detect such areas and to evaluate the impacts of habitat suitability changes on the genetic diversity of the transitional Mediterranean‐temperate tree Fraxinus angustifolia. We sampled and genotyped 38 natural populations comprising 1006 individuals from across Europe. We found the highest genetic diversity in western and northern Mediterranean populations, as well as a significant west to east decline in genetic diversity. Areas of potential refugia that correspond to approximately 70% of the suitable habitat may support the persistence of more than 90% of the total number of alleles in the future. Moreover, based on correlations between Bayesian genetic assignment and climate, climate change may favour the westward spread of the Black Sea gene pool in the long term. Overall, our results suggest that the northerly core areas of the current distribution contain the most important part of the genetic variation for this species and may serve as in situ macrorefugia from ongoing climate change. However, rear‐edge populations of the southern Mediterranean may be exposed to a potential loss of unique genetic diversity owing to habitat suitability changes unless populations can persist in microrefugia that have facilitated such persistence in the past.  相似文献   

9.
Climate oscillations are the key factors to understand the patterns in modern biodiversity. East Asia harbors the most diverse temperate flora, largely because an extensive terrestrial ice cap was absent during repeated Pleistocene glaciation–interglacial cycles. Comparing the demographic histories of species that are codistributed and are close relatives may provide insight into how the process of climate change influences species ranges. In this study, we compared the spatial genetic structure and demographic histories of two coexisting Eleutherococcus species, Eleutherococcus senticosus and E. sessiliflorus. Both species are distributed in northern China, regions that are generally considered to be sensitive to climatic fluctuations. These regions once hosted temperate forest, but this temperate forest was replaced by tundra and taiga forest during the Last Glacial Maximum (LGM), according to pollen records. Using three chloroplast DNA fragments, we assessed the genetic structure of 20 and 9 natural populations of E. senticosus and E. sessiliflorus, respectively. Extremely contrasting genetic patterns were found between the two species; E. sessiliflorus had little genetic variation, whereas E. senticosus had considerably higher levels of genetic variation (15 haplotypes). We speculated that a recent severe bottleneck may have resulted in the extremely low genetic diversity in E. sessiliflorus. In E. senticosus, populations in Northeast China (NEC) harbored all of the haplotypes found in this species and included private haplotypes. The populations in NEC had higher levels of genetic diversity than did those from North China (NC). Therefore, we suggest that both the NC and NEC regions can sustain LGM refugia and that lineage admixture from multiple refugia took place after the LGM elevated the local genetic diversity in NEC. In NEC, multiple genetic hot spots were found in the Changbai Mountains and the Xiaoxing'an Range, which implied that multiple locations in NEC may sustain LGM refugia, even in the Xiaoxing'an Range.  相似文献   

10.
11.
Although climate warming is affecting most marine ecosystems, the Mediterranean is showing earlier impacts. Foundation seagrasses are already experiencing a well‐documented regression in the Mediterranean which could be aggravated by climate change. Here, we forecast distributions of two seagrasses and contrast predicted loss with discrete regions identified on the basis of extant genetic diversity. Under the worst‐case scenario, Posidonia oceanica might lose 75% of suitable habitat by 2050 and is at risk of functional extinction by 2100, whereas Cymodocea nodosa would lose only 46.5% in that scenario as losses are compensated with gained and stable areas in the Atlantic. Besides, we predict that erosion of present genetic diversity and vicariant processes can happen, as all Mediterranean genetic regions could decrease considerably in extension in future warming scenarios. The functional extinction of Posidonia oceanica would have important ecological impacts and may also lead to the release of the massive carbon stocks these ecosystems stored over millennia.  相似文献   

12.
13.
14.
Environmental processes govern demography, species movements, community turnover and diversification and yet in many respects these dynamics are still poorly understood at high latitudes. We investigate the combined effects of climate change and geography through time for a widespread Holarctic shrew, Sorex tundrensis. We include a comprehensive suite of closely related outgroup taxa and three independent loci to explore phylogeographic structure and historical demography. We then explore the implications of these findings for other members of boreal communities. The tundra shrew and its sister species, the Tien Shan shrew (Sorex asper), exhibit strong geographic population structure across Siberia and into Beringia illustrating local centres of endemism that correspond to Late Pleistocene refugia. Ecological niche predictions for both current and historical distributions indicate a model of persistence through time despite dramatic climate change. Species tree estimation under a coalescent process suggests that isolation between populations has been maintained across timeframes deeper than the periodicity of Pleistocene glacial cycling. That some species such as the tundra shrew have a history of persistence largely independent of changing climate, whereas other boreal species shifted their ranges in response to climate change, highlights the dynamic processes of community assembly at high latitudes.  相似文献   

15.
16.
17.
Deterministic processes may uniquely affect codistributed species’ phylogeographic patterns such that discordant genetic variation among taxa is predicted. Yet, explicitly testing expectations of genomic discordance in a statistical framework remains challenging. Here, we construct spatially and temporally dynamic models to investigate the hypothesized effect of microhabitat preferences on the permeability of glaciated regions to gene flow in two closely related montane species. Utilizing environmental niche models from the Last Glacial Maximum and the present to inform demographic models of changes in habitat suitability over time, we evaluate the relative probabilities of two alternative models using approximate Bayesian computation (ABC) in which glaciated regions are either (i) permeable or (ii) a barrier to gene flow. Results based on the fit of the empirical data to data sets simulated using a spatially explicit coalescent under alternative models indicate that genomic data are consistent with predictions about the hypothesized role of microhabitat in generating discordant patterns of genetic variation among the taxa. Specifically, a model in which glaciated areas acted as a barrier was much more probable based on patterns of genomic variation in Carex nova, a wet‐adapted species. However, in the dry‐adapted Carex chalciolepis, the permeable model was more probable, although the difference in the support of the models was small. This work highlights how statistical inferences can be used to distinguish deterministic processes that are expected to result in discordant genomic patterns among species, including species‐specific responses to climate change.  相似文献   

18.
The extracellular subunit of the major histocompatibility complex MHCIIβ plays an important role in the recognition of pathogens and the initiation of the adaptive immune response of vertebrates. It is widely accepted that pathogen‐mediated selection in combination with neutral micro‐evolutionary forces (e.g. genetic drift) shape the diversity of MHCIIβ, but it has proved difficult to determine the relative effects of these forces. We evaluated the effect of genetic drift and balancing selection on MHCIIβ diversity in 12 small populations of Galápagos mockingbirds belonging to four different species, and one larger population of the Northern mockingbird from the continental USA. After genotyping MHCIIβ loci by high‐throughput sequencing, we applied a correlational approach to explore the relationships between MHCIIβ diversity and population size by proxy of island size. As expected when drift predominates, we found a positive effect of population size on the number of MHCIIβ alleles present in a population. However, the number of MHCIIβ alleles per individual and number of supertypes were not correlated with population size. This discrepancy points to an interesting feature of MHCIIβ diversity dynamics: some levels of diversity might be shaped by genetic drift while others are independent and possibly maintained by balancing selection.  相似文献   

19.
Genetic structure and major climate factors may contribute to the distribution of genetic diversity of a highly valued oil tree species Xanthoceras sorbifolium (yellowhorn). Long‐term over utilization along with climate change is affecting the viability of yellowhorn wild populations. To preserve the species known and unknown valuable gene pools, the identification of genetic diversity “hotspots” is a prerequisite for their consideration as in situ conservation high priority. Chloroplast DNA (cpDNA) diversity was high among 38 natural populations (Hd = 0.717, K = 4.616, Tajmas’ D = ?0.22) and characterized by high genetic divergence (FST = 0.765) and relatively low gene flow (Nm = 0.03), indicating populations isolation reflecting the species’ habitat fragmentation and inbreeding depression. Six out of the studied 38 populations are defined as genetic diversity “hotspots.” The number and geographic direction of cpDNA mutation steps supported the species southwest to northeast migration history. Climatic factors such as extreme minimum temperature over 30 years indicated that the identified genetic “hotspots” are expected to experience 5°C temperature increase in next following 50 years. The results identified vulnerable genetic diversity “hotspots” and provided fundamental information for the species’ future conservation and breeding activities under the anticipated climate change. More specifically, the role of breeding as a component of a gene resource management strategy aimed at fulfilling both utilization and conservation goals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号