首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Characteristics of spoilage-associated secondary cucumber fermentation   总被引:2,自引:0,他引:2  
Secondary fermentations during the bulk storage of fermented cucumbers can result in spoilage that causes a total loss of the fermented product, at an estimated cost of $6,000 to $15,000 per affected tank. Previous research has suggested that such fermentations are the result of microbiological utilization of lactic acid and the formation of acetic, butyric, and propionic acids. The objectives of this study were to characterize the chemical and environmental conditions associated with secondary cucumber fermentations and to isolate and characterize potential causative microorganisms. Both commercial spoilage samples and laboratory-reproduced secondary fermentations were evaluated. Potential causative agents were isolated based on morphological characteristics. Two yeasts, Pichia manshurica and Issatchenkia occidentalis, were identified and detected most commonly concomitantly with lactic acid utilization. In the presence of oxygen, yeast metabolic activities lead to lactic acid degradation, a small decline in the redox potential (E(h), Ag/AgCl, 3 M KCl) of the fermentation brines, and an increase in pH to levels at which bacteria other than the lactic acid bacteria responsible for the primary fermentation can grow and produce acetic, butyric, and propionic acids. Inhibition of these yeasts by allyl isothiocyanate (AITC) resulted in stabilization of the fermented medium, while the absence of the preservative resulted in the disappearance of lactic and acetic acids in a model system. Additionally, three Gram-positive bacteria, Lactobacillus buchneri, a Clostridium sp., and Pediococcus ethanolidurans, were identified as potentially relevant to different stages of the secondary fermentation. The unique opportunity to study commercial spoilage samples generated a better understanding of the microbiota and environmental conditions associated with secondary cucumber fermentations.  相似文献   

2.
Controlled fermentation of maize was carried out using six strains of Lactobacillus fermentum and one strain of yeast, Saccharomyces cerevisiae, isolated from traditionally fermented maize dough as starter cultures for inoculum enrichement. The fermentations were monitored by pH, acidity, microbiological analysis and taste panel evaluation of two products, kenkey and koko, prepared from the fermented doughs. The strains of L. fermentum used as starter culture dominated the microflora during fermentation and in most inoculated doughs the required pH was attained by 24 h instead of 48 h of dough fermentation. Higher contents of lactic acid bacteria and yeasts were observed in inoculated doughs at the initial stages of fermentation but the spontaneously fermented doughs attained similar lactic acid bacteria and yeasts counts by 24 h of dough fermentation. The organoleptic quality of kenkey and koko prepared from doughs fermented with starter culture for 48 h was not significantly different from the traditional products. Kenkey prepared from doughs fermented for 24 h with starter culture were found to be unacceptable by the taste panel although similarly produced koko was acceptable.The authors are with the Food Research Institute, Council for Scientific and Industrial Research, P.O Box M 20. Accra, Ghana.  相似文献   

3.
Fermentation is one of the most critical steps of the fuel ethanol production and it is directly influenced by the fermentation system, selected yeast, and bacterial contamination, especially from the genus Lactobacillus. To control the contamination, the industry applies antibiotics and biocides; however, these substances can result in an increased cost and environmental problems. The use of the acid treatment of cells (water‐diluted sulphuric acid, adjusted to pH 2·0–2·5) between the fermentation cycles is not always effective to combat the bacterial contamination. In this context, this study aimed to evaluate the effect of ethanol addition to the acid treatment to control the bacterial growth in a fed‐batch system with cell recycling, using the industrial yeast strain Saccharomyces cerevisiae PE–2. When only the acid treatment was used, the population of Lactobacillus fermentum had a 3‐log reduction at the end of the sixth fermentation cycle; however, when 5% of ethanol was added to the acid solution, the viability of the bacterium was completely lost even after the first round of cell treatment. The acid treatment +5% ethanol was able to kill L. fermentum cells without affecting the ethanol yield and with a low residual sugar concentration in the fermented must.

Significance and Impact of the Study

In Brazilian ethanol‐producing industry, water‐diluted sulphuric acid is used to treat the cell mass at low pH (2·0) between the fermentative cycles. This procedure reduces the number of Lactobacillus fermentum from 107 to 104 CFU per ml. However, the addition of 5% ethanol to the acid treatment causes the complete loss of bacterial cell viability in fed‐batch fermentation with six cell recycles. The ethanol yield and yeast cell viability are not affected. These data indicate the feasibility of adding ethanol to the acid solution replacing the antibiotic use, offering a low cost and a low amount of residue in the biomass.  相似文献   

4.

Aim

To investigate physicochemical characteristics and especially genotypic diversity of the main culturable micro‐organisms involved in fermentation of sap from Borassus akeassii, a newly identified palm tree from West Africa.

Methods and Results

Physicochemical characterization was performed using conventional methods. Identification of micro‐organisms included phenotyping and sequencing of: 26S rRNA gene for yeasts, 16S rRNA and gyrB genes for lactic acid bacteria (LAB) and acetic acid bacteria (AAB). Interspecies and intraspecies genotypic diversities of the micro‐organisms were screened respectively by amplification of the ITS1‐5.8S rDNA‐ITS2/16S‐23S rDNA ITS regions and repetitive sequence‐based PCR (rep‐PCR). The physicochemical characteristics of samples were: pH: 3·48–4·12, titratable acidity: 1·67–3·50 mg KOH g?1, acetic acid: 0·16–0·37%, alcohol content: 0·30–2·73%, sugars (degrees Brix): 2·70–8·50. Yeast included mainly Saccharomyces cerevisiae and species of the genera Arthroascus, Issatchenkia, Candida, Trichosporon, Hanseniaspora, Kodamaea, Schizosaccharomyces, Trigonopsis and Galactomyces. Lactobacillus plantarum was the predominant LAB species. Three other species of Lactobacillus were also identified as well as isolates of Leuconostoc mesenteroides, Fructobacillus durionis and Streptococcus mitis. Acetic acid bacteria included nine species of the genus Acetobacter with Acetobacter indonesiensis as predominant species. In addition, isolates of Gluconobacter oxydans and Gluconacetobacter saccharivorans were also identified. Intraspecies diversity was observed for some species of micro‐organisms including four genotypes for Acet. indonesiensis, three for Candida tropicalis and Lactobacillus fermentum and two each for S. cerevisiae, Trichosporon asahii, Candida pararugosa and Acetobacter tropicalis.

Conclusion

fermentation of palm sap from B. akeassii involved multi‐yeast‐LAB‐AAB cultures at genus, species and intraspecies level.

Significance and Impact of the Study

First study describing microbiological and physicochemical characteristics of palm wine from B. akeassii. Genotypic diversity of palm wine LAB and AAB not reported before is demonstrated and this constitutes valuable information for better understanding of the fermentation which can be used to improve the product quality and develop added value by‐products.  相似文献   

5.

Aims

Dekkera bruxellensis and Pichia guilliermondii are contaminating yeasts in wine due to the production of phenolic aromas. Although the degradation pathway of cinnamic acids, precursors of these phenolic compounds has been described in D. bruxellensis, no such pathway has been described in P. guilliermondii.

Methods and Results

A molecular and physiological characterization of 14 D. bruxellensis and 15 P. guilliermondii phenol‐producing strains was carried out. Both p‐coumarate decarboxylase (CD) and vinyl reductase (VR) activities, responsible for the production of volatile phenols, were quantified and the production of 4‐vinylphenol and 4‐ethylphenol were measured. All D. bruxellensis and some P. guilliermondii strains showed the two enzymatic activities, whilst 11 of the 15 strains of this latter species showed only CD activity and did not produce 4‐EP in the assay conditions. Furthermore, PCR products obtained with degenerated primers showed a low homology with the sequence of the gene for a phenyl acrylic acid decarboxylase activity described in Saccharomyces cerevisiae.

Conclusions

D. bruxellensis and P. guilliermondii may share a similar metabolic pathway for the degradation of cinnamic acids.

Significance and Impact of the Study

This is the first work that analyses the CD and VR activities in P. guilliermondii, and the results suggest that within this species, there are differences in the metabolization of cinnamic acids.  相似文献   

6.

Aims

To determine whether the carotenoid production improves stress tolerance of lactic acid bacteria, the cloned enterococcal carotenoid biosynthesis genes were expressed in Lactococcus lactis ssp. cremoris MG1363, and the survival rate of carotenoid‐producing engineered MG1363 strain under stress condition was investigated.

Methods and Results

We cloned carotenoid biosynthesis genes from yellow‐pigmented Enterococcus gilvus. The cloned genes consisted of crtN and crtM and its promoter region were inserted into the shuttle vector pRH100, and the resulting plasmid was named pRC. The cloned crtNM was expressed using pRC in noncarotenoid‐producing L. lactis ssp. cremoris MG1363. The expression of crtNM led to the production of C30 carotenoid 4,4′‐diaponeurosporene. After exposure to 32 mmol l?1 H2O2, low pH (1.5, acidified with HCl), 20% bile acid and 12 mg ml?1 lysozyme, the survival rates of the MG1363 strain harbouring pRC were 18.7‐, 6.8‐, 8.8‐ and 4.4‐fold higher, respectively, than those of MG1363 strain harbouring the empty vector pRH100.

Conclusions

The expression of carotenoid biosynthesis genes from Ent. gilvus improves the multistress tolerance of L. lactis.

Significance and Impact of the study

First report of the improvement of multistress tolerance of lactic acid bacteria by the introduction of genes for carotenoid production.  相似文献   

7.
8.
Procedures were developed for the differential enumeration of an added strain of Lactobacillus plantarum and indigenous lactic acid bacteria (LAB) during the fermentation of brined cucumbers. The added strain was an N,N-nitrosoguanidine-generated mutant that lacked the ability to produce CO2 from malic acid (MDC-). The MDC- phenotype is desirable because CO2 production from malic acid decarboxylation has been shown to contribute to bloater formation in fermented cucumbers. A basal medium containing malic acid and adjusted to pH 4.0 permitted growth of indigenous LAB (predominantly MDC+), but not growth of the added MDC- culture. Transformation of the MDC- culture by electroporation with cloning vector pGK12 conferred chloramphenicol resistance, which permitted selective enumeration of this culture. The reversion frequency of the MDC- mutation was determined by a fluctuation test to be less than 10-10. The level of retention of plasmid pGK12 was greater than 90% after 10 generations in cucumber juice medium at 32°C. With the procedures developed, we were able to establish the ratio of MDC- to MDC+ LAB that results in malic acid retention in fermentations of filter-sterilized cucumber juice and unsterilized whole cucumbers under specified conditions.  相似文献   

9.

Aim

To evaluate the suitability of marine lactic acid bacteria (LAB) as starter cultures for Sargassum sp. fermentation to enhance its antioxidant and anticoagulation activity.

Methods and Results

LAB isolated from marine source were characterized for their ability to utilize seaweed as a sole carbon source and applied to Sargassum fermentation. Fermentation period was optimized by monitoring the fermented sample at regular interval for a period of 18 days. Results revealed that a fermentation period of 12 days was effective with maximum culture viability and other desirable characteristics such as pH, total titratable acidity, total and reducing sugars. Under optimum fermentation period, the sample fermented with P1‐2CB‐w1 (Enterococcus faecium) exhibited maximum anticoagulation activity and antioxidant activity.

Conclusions

The study reveals a novel well‐defined starter culture from marine origin intended for seaweed fermentation for recovery of bioactive molecules.

Significance and Impact of the study

The study provides information for the enhancement of bioactive molecules in an eco‐friendly manner and also paves a way towards the development of wide range of seaweed functional foods.  相似文献   

10.

Aims

Accumulation of carbon dioxide (CO2) in cucumber fermentations is known to cause hollow cavities inside whole fruits or bloaters, conducive to economic losses for the pickling industry. This study focused on evaluating the use of a malic acid decarboxylase (MDC)‐deficient starter culture to minimize CO2 production and the resulting bloater index in sodium chloride‐free cucumber fermentations brined with CaCl2.

Methods and Results

Attempts to isolate autochthonous MDC‐deficient starter cultures from commercial fermentations, using the MD medium for screening, were unsuccessful. The utilization of allochthonous MDC‐deficient starter cultures resulted in incomplete utilization of sugars and delayed fermentations. Acidified fermentations were considered, to suppress the indigenous microbiota and favour proliferation of the allochthonous MDC‐deficient Lactobacillus plantarum starter cultures. Inoculation of acidified fermentations with L. plantarum alone or in combination with Lactobacillus brevis minimally improved the conversion of sugars. However, inoculation of the pure allochthonous MDC‐deficient starter culture to 107 CFU per ml in acidified fermentations resulted in a reduced bloater index as compared to wild fermentations and those inoculated with the mixed starter culture.

Conclusions

Although use of an allochthonous MDC‐deficient starter culture reduces bloater index in acidified cucumber fermentations brined with CaCl2, an incomplete conversion of sugars is observed.

Significance and Impact of the Study

Economical losses due to the incidence of bloaters in commercial cucumber fermentations brined with CaCl2 may be reduced utilizing a starter culture to high cell density.  相似文献   

11.
Sorghum flour obtained from Sudan was mixed with water in a 1:2 (wt/vol) ratio and fermented at 30°C for 24 h. The bacterial populations increased with fermentation time and reached a plateau at approximately 18 h. At the end of 24 h, sorghum batter pH had dropped from 5.95 to 3.95 and the batter had a lactic acid content of 0.80%. The microbial population during the 24 h of fermentation consisted of bacteria (Pediococcus pentosaceus, Lactobacillus confusus, Lactobacillus brevis, Lactobacillus sp., Erwinia ananas, Klebsiella pneumoniae, and Enterobacter cloacae), yeasts (Candida intermedia and Debaryomyces hansenii), and molds (Aspergillus sp., Penicillium sp., Fusarium sp., and Rhizopus sp.). P. pentosaceus was the dominant microorganism at the end of the 24-h fermentation. When three consecutive fermentations using an inoculum from the previous fermentation were carried out, the bacterial population increase plateaued at 9 h. The microbial populations in these fermentations were dominated by P. pentosaceus.  相似文献   

12.
Two bacterial strains used for industrial production of 2‐keto‐L‐gulonic acid (2‐KLG), Ketogulonigenium vulgare 2 and Bacillus thuringiensis 1514, were loaded onto the spacecraft Shenzhou VII and exposed to space conditions for 68 h in an attempt to increase their fermentation productivities of 2‐KLG. An optimal combination of mutants B. thuringiensis 320 and K. vulgare 2194 (KB2194‐320) was identified by systematically screening the pH and 2‐KLG production of 16 000 colonies. Compared with the coculture of parent strains, the conversion rate of L‐sorbose to 2‐KLG by KB2194‐320 in shake flask fermentation was increased significantly from 82·7% to 95·0%. Furthermore, a conversion rate of 94·5% and 2‐KLG productivity of 1·88 g l?1 h?1 were achieved with KB2194‐320 in industrial‐scale fermentation (260 m3 fermentor). An observed increase in cell number of K2194 (increased by 47·8%) during the exponential phase and decrease in 2‐KLG reductase activity (decreased by 46·0%) were assumed to explain the enhanced 2‐KLG production. The results suggested that the mutants KB2194‐320 could be ideal substitutes for the currently employed strains in the 2‐KLG fermentation process and demonstrated the feasibility of using spaceflight to breed high‐yielding 2‐KLG‐producing strains for vitamin C production.

Significance and Impact of the Study

KB2194‐320, a combination of two bacterial strains bred by spaceflight mutation, exhibited significantly improved 2‐KLG productivity and hence could potentially increase the efficiency and reduce the cost of vitamin C production by the two‐step fermentation process. In addition, a new pH indicator method was applied for rational screening of K2, which dramatically improved the efficiency of screening.  相似文献   

13.

Aims

The present study was carried out to screen the phylloplane bacteria from tea for antagonism against grey blight caused by Pestalotiopsis theae and blister bight caused by Exobasidium vexans and to further evaluate the efficient isolates for disease control potential under field condition.

Methods and Results

A total of 316 morphologically different phylloplane bacteria were isolated. Among the antagonists, the isolates designated as BMO‐075, BMO‐111 and BMO‐147 exhibited maximum inhibitory activity against both the pathogens under in vitro conditions and hence were selected for further evaluation under microplot field trial. Foliar application of 36‐h‐old culture of BMO‐111 (1 × 108 colony‐forming units ml?1) significantly reduced the blister blight disease incidence than the other isolates. The culture of BMO‐111 as well as its culture filtrate effectively inhibited the mycelial growth of various fungal plant pathogens. The isolate BMO‐111 was identified as Ochrobactrum anthropi based on the morphological and 16S rDNA sequence analyses.

Conclusions

It could be concluded that the biocontrol agent O. anthropi BMO‐111 was effective against blister blight disease of tea.

Significance and Impact of the Study

Further study is required to demonstrate the mechanism of its action and formulation for the biocontrol potential against blister blight disease of tea.  相似文献   

14.

Aim

To determine whether expression of a cyanobacterial flavodoxin in soil bacteria of agronomic interest confers protection against the widely used herbicides paraquat and atrazine.

Methods and Results

The model bacterium Escherichia coli, the symbiotic nitrogen‐fixing bacterium Ensifer meliloti and the plant growth‐promoting rhizobacterium Pseudomonas fluorescens Aur6 were transformed with expression vectors containing the flavodoxin gene of Anabaena variabilis. Expression of the cyanobacterial protein was confirmed by Western blot. Bacterial tolerance to oxidative stress was tested in solid medium supplemented with hydrogen peroxide, paraquat or atrazine. In all three bacterial strains, flavodoxin expression enhanced tolerance to the oxidative stress provoked by hydrogen peroxide and by the reactive oxygen species‐inducing herbicides, witnessed by the enhanced survival of the transformed bacteria in the presence of these oxidizing agents.

Conclusions

Flavodoxin overexpression in beneficial soil bacteria confers tolerance to oxidative stress and improves their survival in the presence of the herbicides paraquat and atrazine. Flavodoxin could be considered as a general antioxidant resource to face oxidative challenges in different micro‐organisms.

Significance and Impact of the study

The use of plant growth‐promoting rhizobacteria or nitrogen‐fixing bacteria with enhanced tolerance to oxidative stress in contaminated soils is of significant agronomic interest. The enhanced tolerance of flavodoxin‐expressing bacteria to atrazine and paraquat points to potential applications in herbicide‐treated soils.  相似文献   

15.
A three-stage process was developed to produce polyhydroxyalkanoates (PHAs) from sugar cane molasses. The process includes (1) molasses acidogenic fermentation, (2) selection of PHA-accumulating cultures, (3) PHA batch accumulation using the enriched sludge and fermented molasses. In the fermentation step, the effect of pH (5–7) on the organic acids profile and productivity was evaluated. At higher pH, acetic and propionic acids were the main products, while lower pH favoured the production of butyric and valeric acids. PHA accumulation using fermented molasses was evaluated with two cultures selected either with acetate or fermented molasses. The effect of organic acids distribution on polymer composition and yield was evaluated with the acetate selected culture. Storage yields varied from 0.37 to 0.50 Cmmol HA/Cmmol VFA. A direct relationship between the type of organic acids used and the polymers composition was observed. Low ammonia concentration (0.1 Nmmol/l) in the fermented molasses stimulated PHA storage (0.62 Cmmol HA/Cmmol VFA). In addition, strategies of reactor operation to select a PHA-accumulating culture on fermented molasses were developed. The combination of low organic loading with high ammonia concentration selected a culture with a stable storage capacity and with a storage yield (0.59 Cmmol HA/Cmmol VFA) similar to that of the acetate-selected culture.  相似文献   

16.
The toxicity of four volatile fatty acids (VFAs) as anaerobic digestion (AD) intermediates was investigated at pH 7. Photobacterium phosphoreum T3 was used as an indicator organism. Binary, ternary and mixtures of AD intermediates were designated by letters A (acetic acid + propionic acid), B (acetic acid + butyric acid), C (acetic acid + ethanol), D (propionic acid + butyric acid), E (propionic acid + ethanol), F (butyric acid + ethanol), G (acetic acid + propionic acid + butyric acid), H (acetic acid + propionic acid + ethanol), I (acetic acid + butyric acid+ ethanol), J (propionic acid + butyric acid + ethanol) and K (acetic acid + propionic acid + butyric acid + ethanol) to assess the toxicity through equitoxic mixing ratio method. The IC50 values of acetic acid, propionic acid, butyric acid and ethanol were 9.812, 7.76, 6.717 and 17.33 g/L respectively, displaying toxicity order of: butyric acid > propionic acid > acetic acid > ethanol being additive in nature. The toxic effects of four VFAs could be designated as synergistic and one additive in nature.  相似文献   

17.

Aims

Pathogenic bacteria can spread between individuals or between food items via the surfaces they share. Limiting the survival of pathogens on surfaces, therefore, presents an opportunity to limit at least one route of how pathogens spread. In this study, we propose that a simple coating with the essential oil isoeugenol can be used to circumvent the problem of bacterial transfer via surfaces.

Methods and Results

Two commonly used materials, stainless steel and polyethylene, were coated by physical adsorption, and the coatings were characterized by Raman spectroscopy, atomic force microscopy and water contact angle measurements. We quantified and visualized the colonization of coated and uncoated surfaces by three bacteria: Staphylococcus aureus, Listeria monocytogenes and Pseudomonas fluorescens. No viable cells were detected on surfaces coated with isoeugenol.

Conclusions

The isoeugenol coating prepared with simple adsorption proved effective in preventing biofilm formation on stainless steel and polyethylene surfaces. The result was caused by the antibacterial effect of isoeugenol, as the coating did not diminish the adhesive properties of the surface.

Significance and Impact of the Study

Our study demonstrates that a simple isoeugenol coating can prevent biofilm formation of S. aureus, L. monocytogenes and P. fluorescens on two commonly used surfaces.  相似文献   

18.
Recent creation of a Unified Microbiome Initiative (UMI) has the aim of understanding how microbes interact with each other and with us. When pathogenic Staphylococcus aureus infects the skin, the interplay between S. aureus and skin commensal bacteria occurs. Our previous data revealed that skin commensal bacteria can mediate fermentation against the growth of USA300, a community‐acquired methicillin‐resistant S. aureus MRSA. By using a fermentation process with solid media on a small scale, we define poly(ethylene glycol) dimethacrylate (PEG‐DMA) as a selective fermentation initiator which can specifically intensify the probiotic ability of skin commensal Staphylococcus epidermidis bacteria. At least five short‐chain fatty acids including acetic, butyric and propionic acids with anti‐USA300 activities are produced by PEG‐DMA fermentation of S. epidermidis. Furthermore, the S. epidermidis‐laden PEG‐DMA hydrogels effectively decolonized USA300 in skin wounds in mice. The PEG‐DMA and its derivatives may become novel biomaterials to specifically tailor the human skin microbiome against invading pathogens.  相似文献   

19.

Aim

To examine the inhibition effects of rhizosphere fungal strain MF‐91 on the rice blast pathogen Magnaporthe grisea and sheath blight pathogen Rhizoctonia solani.

Methods and Results

Rhizosphere fungal strain MF‐91 and its metabolites suppressed the in vitro mycelial growth of R. solani. The inhibitory effect of the metabolites was affected by incubation temperature, lighting time, initial pH and incubation time of rhizosphere fungal strain MF‐91. The in vitro mycelial growth of M. grisea was insignificantly inhibited by rhizosphere fungal strain MF‐91 and its metabolites. The metabolites of rhizosphere fungal strain MF‐91 significantly inhibited the conidial germination and appressorium formation of M. grisea. Moreover, the metabolites reduced the disease index of rice sheath blight by 35·02% in a greenhouse and 57·81% in a field as well as reduced the disease index of rice blast by 66·07% in a field. Rhizosphere fungal strain MF‐91 was identified as Chaetomium aureum based on the morphological observation, the analysis of 18S ribosomal DNA internal transcribed spacer sequence and its physiological characteristics, such as the optimal medium, temperature and initial pH for mycelial growth and sporulation production.

Conclusions

Rhizosphere fungus C. aureum is effective in the biocontrolling of rice blast pathogen M. grisea and sheath blight pathogen R. solani both in in vitro and in vivo conditions.

Significance and Impact of the Study

This study is the first to show that rhizosphere fungus C. aureum is a potential fungicide against rice blast and sheath blight pathogens.  相似文献   

20.
Solid-phase growth of Bacillus subtilis 8130 on cellulose-rich plant substrates (presscakes or pulp) under hypoxic conditions was accompanied by cellulose depolymerization, protein hydrolysis, and degradation of other plant components, including some processes of mixed-type carbohydrate fermentation. The bacterial fermentation yielded propionic, butyric, hexanoic acids and butyric acid derivatives. The bacterial metabolism and fermentation degree can be characterized by the proportions of fatty acids in the reaction mixture. The product of sea buckthorn cake fermentation has a good sorption quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号