首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to investigate the heterogeneity of clathrin-coated vesicles purified from rat liver, and to quantitate rigorously their membrane contents, we have analyzed scanning transmission electron micrographs of unstained coated vesicles before and after extraction with the non-ionic detergent Triton X-100, as well as of vesicles whose coats had been removed by dialysis against 10 mM or 100 mM Tris (pH 8.2). Their respective distributions of particle masses were thus determined and compared, in light of complementary biochemical quantitations of lipid and protein. Smaller coated particles, 25-45 MDa in mass and 60-80 nm in diameter, lose no mass when extracted with Triton, and disappear when their coats are dissociated. We conclude that they do not contain membrane vesicles, although they have dense, presumably proteinaceous, cores. They may represent particles generated during tissue homogenization or, possibly, a storage form of clathrin. The remaining 70% contain bona fide vesicles: these particles are 75-150 nm in diameter, and their average mass is about 80 MDa, of which 48 MDa is contributed by coat proteins, 10-12 MDa by phospholipid and cholesterol, and 20-22 MDa by vesicle-associated proteins. Their vesicles are of two types: smaller, denser, vesicles that contain substantial amounts of internalized material, and larger, less dense, vesicles that do not. The distinction between them may, in view of other findings, reflect a difference between coated vesicles derived respectively from the Golgi and the plasma membrane.  相似文献   

2.
Heterogeneities in cell membranes due to the ordering of lipids and proteins are thought to play an important role in enabling protein and lipid trafficking throughout the secretory pathway and in maintaining cell polarization. Protein-coated vesicles provide a major mechanism for intracellular transport of select cargo, which may be sorted into lipid microdomains; however, the mechanisms and physical constraints for lipid sorting by protein coats are relatively unexplored. We studied the influence of membrane-tethered protein coats on the sorting, morphology, and phase behavior of liquid-ordered lipid domains in a model system of giant unilamellar vesicles composed of dioleoylphosphatidylcholine, sphingomyelin, and cholesterol. We created protein-coated membranes by forming giant unilamellar vesicles containing a small amount of biotinylated lipid, thereby creating binding sites for streptavidin and avidin proteins in solution. We found that individual tethered proteins colocalize with the liquid-disordered phase, whereas ordered protein domains on the membrane surface colocalize with the liquid-ordered phase. These observations may be explained by considering the thermodynamics of this coupled system, which maximizes its entropy by cosegregating ordered protein and lipid domains. In addition, protein ordering inhibits lipid domain rearrangement and modifies the morphology and miscibility transition temperature of the membrane, most dramatically near the critical point in the membrane phase diagram. This observation suggests that liquid-ordered domains are stabilized by contact with ordered protein domains; it also hints at an approach to the stabilization of lipid microdomains by cross-linked protein clusters or ordered protein coats.  相似文献   

3.
Purification of coated vesicles by agarose gel electrophoresis   总被引:10,自引:14,他引:10       下载免费PDF全文
We have applied agarose gel electrophoresis as a novel step in the purification of clathrin-coated vesicles. Preparations of coated vesicles obtained by sedimentation velocity and isopycnic centrifugation are resolved into two distinct fractions upon electrophoresis. The slower migrating fraction contains smooth vesicles, whereas the faster contains only coated vesicles and empty clathrin coats. The faster mobility of the coated vesicles is primarily caused by the acidic nature of clathrin. Coated vesicles from three different cell types have different mobilities. In each case, however, all of the major polypeptides previously attributed to coated vesicles comigrate with the now homogeneous particles, even though a powerful ATPase activity is completely removed.  相似文献   

4.
Sorting of transmembrane proteins and their ligands at various compartments of the endocytic and secretory pathways is mediated by selective incorporation into clathrin-coated intermediates. Previous morphological and biochemical studies have shown that these clathrin-coated intermediates consist of spherical vesicles with a diameter of 60-100 nm. Herein, we report the use of fluorescent imaging of live cells to demonstrate the existence of a different type of transport intermediate containing associated clathrin coats. Clathrin and the adaptors GGA1 and adaptor protein-1, labeled with different spectral variants of the green fluorescent protein, are shown to colocalize to the trans-Golgi network and to a population of vesicles and tubules budding from it. These intermediates are highly pleiomorphic and move toward the peripheral cytoplasm for distances of up to 10 microm with average speeds of approximately 1 microm/s. The labeled clathrin and GGA1 cycle on and off membranes with half-times of 10-20 s, independently of vesicle budding. Our observations indicate the existence of a novel type of trans-Golgi network-derived carriers containing associated clathrin, GGA1 and adaptor protein-1 that are larger than conventional clathrin-coated vesicles, and that undergo long-range translocation in the cytoplasm before losing their coats.  相似文献   

5.
Previously published small-angle neutron and X-ray scattering data from coated vesicles, reassembled coats, and stripped vesicles have been analyzed in terms of one common model. The neutron data sets include contrast variation measurements at three different D20 solvent concentrations. The model used for interpreting the data has spherical symmetry and explicitly takes into account polydispersity, which is described by a Gaussian distribution. Å constant thickness of the clathrin coats is assumed. The fitting of the model shows that the coated vesicles consist of a low-density outer protein shell (clathrin) and a central protein shell (accessory polypeptides and receptors) of approximately six times higher density. For the X-ray scattering and neutron contrast variation data, the polydispersity of the samples is of the order of 90 Å (full-width-at-half-maximum value) and the average outer radius is approximately 400 Å. The inner high-density shell has inner and outer radii of 115 and 190 Å, respectively. Å simultaneous fit to the three neutron contrast variation data sets identifies the lipid membrane with a thickness of 40 Å and an outer radius of 196 Å. Thus, the membrane and the high-density protein shell overlap in space, which shows that the lipid membrane contains protein. The molecular mass of the average particle is 27 × 106 Da. The coated vesicles consist, on average, of approximately 85 % protein and 15 lipids. About 40% of the protein mass is situated in the central high-density shell, which gives a large amount of protein in the lipid membrane. The densities of the central shell and the lipid membrane show that the hydration is small in the central region. Å comparison of the total mass, the mass distribution, and the structure of the average-size particles with the barrel structure shows that the accessory polypeptides are incorporated in the lipid membrane. The results from the neutron data for the reassembled coats show that the structure of these particles is very similar to the structure of the native coats. The main difference is a higher density of the central protein shell, which shows that the membrane is replaced by protein in the reassembled coats.  相似文献   

6.
Disruption of the coat of coated vesicles is accompanied by the release of clathrin and other proteins in soluble form. The ability of solubilized coated vesicle proteins to reassemble into empty coats is influenced by Mg2+, Tris ion concentration, pH, and ionic strength. The proteins solubilized by 2 M urea spontaneously reassemble into empty coats following dialysis into isolation buffer (0.1 M MES–1 mM EGTA–1 mM MgCl2–0.02% NaN3, pH 6.8). Such reassembled coats have sedimentation properties similar to untreated coated vesicles. Clathrin is the predominant protein of reassembled coats; most of the other proteins present in native coated vesicles are absent. We have found that Mg2+ is important in the coat assembly reaction. At pH 8 in 0.01 M or 0.1 M Tris, coats dissociate; however, 10 mM MgCl2 prevents dissociation. If the coats are first dissociated at pH 8 and then the MgCl2 raised to 10 mM, reassembly occurs. These results suggest that Mg2+ stabilizes the coat lattice and promotes reassembly. This hypothesis is supported by our observations that increasing Mg2+ (10 μM–10 mM) increases reassembly whereas chelation of Mg2+ by (EGTA) inhibits reassembly. Coats reassembled in low-Tris (0.01 M, pH 8) supernatants containing 10 mM MgCl2 do not sediment, but upon dialysis into isolation buffer (pH 6.8), these coats become sedimentable. Nonsedimentable coats are noted also either when partially purified clathrin (peak I from Sepharose CL4B columns) is dialyzed into low-ionic-strength buffer or when peaks I and II are dialyzed into isolation buffer. Such nonsedimentable coats may represent intermediates in the assembly reaction which have normal morphology but lack some of the physical properties of native coats. We present a model suggesting that tightly intertwined antiparallel clathrin dimers form the edges of the coat lattice.  相似文献   

7.
Non-clathrin-coated vesicles mediate membrane traffic through the Golgi complex. The proteins that constitute the coats of these vesicles have similar molecular weights to the clathrin coat proteins. A major component of the coat of non-clathrin-coated vesicles, beta-COP, has significant homology with the clathrin coat protein beta-adaptin, indicating that the coats of the two different classes of vesicles may be structurally and functionally homologous.  相似文献   

8.
Clathrin-coated vesicles (CCVs) play important roles in nutrient uptake, downregulation of signaling receptors, pathogen invasion and biogenesis of endosomes and lysosomes. Although detailed models for endocytic CCV formation have emerged, the process of CCV formation at the Golgi and endosomes has been less clear. Key to endocytic CCV formation are proteins containing related phosphoinositide-binding ENTH and ANTH domains. Now, recent studies have identified novel ENTH/ANTH proteins that participate in CCV-mediated traffic between the trans-Golgi Network (TGN) and endosomes and have defined a molecular basis for interaction with AP-1 and GGA adaptors in clathrin coats of the TGN/endosomes. Thus, ENTH/ANTH domain proteins appear to be universal elements in nucleation of clathrin coats.  相似文献   

9.
Fibroblasts apparently ingest low density lipoproteins (LDL) by a selective mechanism of receptor-mediated endocytosis involving the formation of coated vesicles from the plasma membrane. However, it is not known exactly how coated vesicles collect LDL receptors and pinch off from the plasma membrane. In this report, the quick-freeze, deep- etch, rotary-replication method has been applied to fibroblasts; it displays with unusual clarity the coats that appear under the plasma membrane at the start of receptor-mediated endocytosis. These coats appear to be polygonal networks of 7-nm strands or struts arranged into 30-nm polygons, most of which are hexagons but some of which are 5- and 7-sided rings. The proportion of pentagons in each network increases as the coated area of the plasma membrane puckers up from its planar configuration (where the network is mostly hexagons) to its most sharply curved condition as a pinched-off coated vesicle. Coats around the smallest vesicles (which are icosahedrons of hexagons and pentagons) appear only slightly different from "empty coats" purified from homogenized brain, which are less symmetrical baskets containing more pentagons than hexagons. A search for structural intermediates in this coat transformation allows a test of T. Kanaseki and K. Kadota's (1969. J. Cell Biol. 42:202--220.) original idea that an internal rearrangement in this basketwork from hexagons to pentagons could "power" coated vesicle formation. The most noteworthy variations in the typical hexagonal honeycomb are focal juxtapositions of 5- and 7-sided polygons at points of partial contraction and curvature in the basketwork. These appear to precede complete contraction into individual pentagons completely surrounded by hexagons, which is the pattern that characterizes the final spherical baskets around coated vesicles.  相似文献   

10.
H. Depta  D. G. Robinson 《Protoplasma》1986,130(2-3):162-170
Summary A method has been developed to isolate and purify coated vesicles from suspension cultured carrot (Daucus carota L.) cells. It incorporates features of centrifugation methods (sucrose step gradient; Ficoll/D2O gradient) previously employed in the isolation of coated vesicles from mammalian brain tissue. Most important is the treatment of the crude coated vesicle fraction (postmicrosomal supernatant) with ribonuclease to remove ribosomes which are a serious source of contamination in such fractions. The fraction finally obtained is contaminated to the extent of 30% of total observed particles in negatively stained preparations with naked vesicles whose diameter are smaller than those of the coated vesicles. These vesicles are interpreted as being coated vesicles which have been stripped of their coats. SDS-PAGE of coated vesicle fractions purified by this method reveal significant differences in the polypeptide patterns obtained from plant and animal systems.  相似文献   

11.
Mary E. Marsh 《Protoplasma》1994,177(3-4):108-122
Summary Immunolocalization of two highly acidic polysaccharides (PS-1 and PS-2) in a calcifying algaPleurochrysis carterae is described throughout the mineralization process, from before crystal nucleation through the cessation of crystal growth. This unicellular coccolithophorid alga is a useful model for mineralization because it produces calcified scales known as coccoliths in homogeneous cell culture. PS-1 and PS-2 were localized in the crystal coats of mature coccoliths and in electron dense Golgi particles. The polyanions are synthesized in medial Golgi cisternae and co-aggregate with calcium ions into discrete 25 nm particles. Particle-laden vesicles bud from cisternal margins and fuse with a coccolith-forming saccule containing an organic oval-shaped scale which forms the base of the future coccolith. The particles are localized on the base before the onset of mineral deposition and are present in the coccolith saccule throughout the period of crystal (CaCO3) nucleation and growth. During the final phase of coccolith formation, the particles disappear, and the mature crystals acquire an amorphous coat containing PS-1 and PS-2 polysaccharides which remain with the mineral phase after the coccoliths are extruded from the cell. Postulated mechanisms of polyanion-mediated mineralization are reviewed and their relevance to the calcification of coccoliths is addressed.Abbreviations PS-1 polysaccharide one - PS-2 polysaccharide two - BSA bovine serum albumin - SDS sodium dodecyl sulfate - MES 2-(N-morpholino)-ethanesulfonic acid - EDTA ethylenediaminetetraacetic acid - DHA 3-deoxy-lyxo-2-heptulosaric acid - TCA trichloroacetic acid  相似文献   

12.
Two vesicular fractions and one nonvesicular fraction were prepared from crude synaptosomes by differential centrifugation and salting out with ammonium sulfate. Fraction 1 contained a mixture of coated vesicles, material thought to be derived from breakdown of the coats (shell fragments), and plain synaptic vesicles. Fraction 2 contained a mixture of plain synaptic vesicles and flocculent material. Fraction 3 contained flocculent material only. Fractions 1 and 3 were partially purified by passage through a Sephadex column. Fraction 3 contained no shell fragments but contained finer flocculent material which, it is suggested, is composed of unit particles either occurring singly or linked together into chainlike or amorphous aggregates. Each unit particle appears to have four subunits and is here referred to as a tetrasome. Tetrasomes sometimes appear to be attached to the surfaces of the plain synaptic vesicles. Also, it is possible that aggregates of tetrasomes form part of the structure of the presynaptic dense projections.  相似文献   

13.
We have studied by electron microscopy and immunocytochemistry the formation of secretory granules containing adrenocorticotropic hormone (ACTH) in murine pituitary cells of the AtT20 line. The first compartment in which condensed secretory protein appears is a complex reticular network at the extreme trans side of the Golgi stacks beyond the TPPase-positive cisternae. Condensed secretory protein accumulates in dilated regions of this trans Golgi network. Examination of en face and serial sections revealed that "condensing vacuoles" are in fact dilations of the trans Golgi network and not detached vacuoles. Only after presumptive secretory granules have reached an advanced stage of morphological maturation do they detach from the trans Golgi network. Frequently both the dilations of the trans Golgi network containing condensing secretory protein and the detached immature granules in the peri-Golgi region have surface coats which were identified as clathrin by immunocytochemistry. Moreover both are the site of budding (or fusion) of coated vesicles, some of which contain condensed secretory protein. The mature granules below the plasma membrane do not, however, have surface coats. Immunoperoxidase labeling with an antiserum specific for ACTH and its precursor polypeptide confirmed that many of the coated vesicles associated with the trans Golgi network contain ACTH. The involvement of the trans Golgi network and coated vesicles in the formation of secretory granules is discussed.  相似文献   

14.
Bullock brain coated vesicles contain a family of at least six 100-kd polypeptides which have the property of promoting clathrin assembly. These proteins have been purified from Triton X-100-extracted coated vesicles by a combination of gel filtration and chromatography on hydroxylapatite and DE-52 cellulose. Three major 100-kd species occur as complexes with a stoichiometric amount of a 50-kd polypeptide. On cross-linking these complexes, the chief products appear to contain two polypeptides of 100 kd and two of 50 kd. These 100-kd/50-kd complexes will polymerise with low concentrations of clathrin to give a relatively homogeneous population of coats predominantly of the 'barrel' size. In contrast, three other polypeptides of 100 kd lack the 50-kd protein but polymerise with clathrin under the same conditions to yield coats of a wide range of sizes including 'barrels', truncated icosahedra and particles of greater than 100 nm diameter. When clathrin cages are reassembled with a saturating amount of 100-kd/50-kd complexes and studied by electron microscopy, the additional proteins appear to follow the underlying geometry of the clathrin polyhedra, partially filling in the polygonal faces of the cage structures. Saturation appears to require approximately 3 molecules of 100-kd polypeptide per clathrin trimer.  相似文献   

15.
Calf-brain coated vesicles were incubated with ATP and a cytosol fraction. As much as 90% of the clathrin was selectively released within 10 min at 37 degrees C without detectable proteolysis. This uncoating process required the presence of both ATP and cytosol. Empty cages of clathrin could also be dissociated in a similar manner. A nonhydrolyzable analogue, 5'-adenylylimidodiphosphate (AMP-PNP), would not substitute for ATP. Clathrin was dissociated from coats in a form unable to reassemble into cages under standard conditions. These reactions may reflect a segment of a clathrin-coated vesicle cycle in which coats are removed from vesicles after budding.  相似文献   

16.
Development of the herpes-type virus of the frog kidney tumor was investigated by electron microscopy and high-resolution autoradiography in eyechamber transplants of tumor maintained at 7.5 C for up to 27 weeks. Virus particles were first detected at 10 weeks in nuclei containing aggregates of dense granular material. The initial incorporation of a pulse of (3)H-thymidine into these aggregates indicated that they contained newly synthesized viral deoxyribonucleic acid. Capsids enclosing doubleshelled cores were labeled with (3)H-thymidine before capsids with dense cores, and intermediate core forms were observed, suggesting that the double-shelled core transforms into the dense core. Particles with dense cores were observed while being enveloped by budding through the inner membrane of the nuclear envelope, and subsequently while being unenveloped in passing through the outer membrane into the cytoplasm. Virus particles within the cytoplasm acquired fibrillar coats and budded into vesicles, from which they were released, in enveloped form, at the cell surface. Tubular forms and particles considerably smaller than virus particles were regularly encountered in infected nuclei, and the relationship of these forms to virus replication is discussed.  相似文献   

17.
On the structural and functional components of coated vesicles.   总被引:17,自引:0,他引:17  
Despite the diversity of their known functions, coated vesicles from different tissues contain a rather similar spectrum of proteins, in addition to their major coat protein, clathrin. In particular, each coated vesicle preparation shows a doublet of polypeptide species, on sodium dodecyl sulphate-containing gel electrophoresis, of apparent molecular weight in the region 30,000 to 36,000. Using bullock brain as a source, these molecules are found in association with possible trimers or higher multiples of clathrin, obtained by dissolving coated vesicles in cholate. They may play a structural role relating to the vertices or edges of the lattices of pentagons and hexagons of the polyhedral coats.Purified coated vesicles (e.g. from chicken oocytes) seem to contain relatively small amounts of specific proteins in terms of “contents”. This suggests that the bulk of the isolated particles, especially those in the small size range (500 to 800 Å diam.), may be “empty” of contents, although many still retain a lipid vesicle. These empty structures could represent a pool of recycling coated vesicle components formed after release (possibly from larger vesicles (800 to 1500 Å diam.)) of the specific contents, at their particular destination.  相似文献   

18.
Coats and vesicle budding   总被引:9,自引:0,他引:9  
Transport vesicles need coat proteins in order to form. The coat proteins are recruited from the cytosol onto a particular membrane, where they drive vesicle budding and select the vesicle cargo. So far, three types of coated transport vesicles have been purified and characterized, and candidates for components of other types of coats have been identified. This review gives a brief overview of what is known about the various coats and their role in transport vesicle formation.  相似文献   

19.
Traffic COPs and the formation of vesicle coats   总被引:9,自引:0,他引:9  
Forward and retrograde trafficking of secretory proteins between the endoplasmic reticulum and the Golgi apparatus is driven by two biochemically distinct vesicle coats, COPI and COPII. Assembly of the coats on their target membranes is thought to provide the driving force for membrane deformation and the selective packaging of cargo and targeting molecules into nascent transport vesicles. This review describes our current knowledge on these issues and discusses how the two coats may be differentially targeted and assembled to achieve protein sorting and transport within the early secretory pathway.  相似文献   

20.
Life of a clathrin coat: insights from clathrin and AP structures   总被引:1,自引:0,他引:1  
Membrane sorting between secretory and endocytic organelles is predominantly controlled by small carrier vesicles or tubules that have specific protein coats on their cytoplasmic surfaces. Clathrin-clathrin-adaptor coats function in many steps of intracellular transport and are the most extensively studied of all transport-vesicle coats. In recent years, the determination of structures of clathrin assemblies by electron microscopy, of domains of clathrin and of its adaptors has improved our understanding of the molecular mechanisms of clathrin-coated-vesicle assembly and disassembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号