首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non-transcribed spacer regions of Xenopus laevis ribosomal DNA have been found which vary in length between 1.8 × 106 and 5.5 × 106 daltons. Length variation of rDNA2 repeats exists within a single nucleolar organizer. Amplified rDNA contains repeats of the same size classes but often in different abundance than the chromosomal rDNA of the same animal. If a certain repeat length is preferred during amplification in an individual, it is also preferred in siblings with the same chromosomal rDNA composition. Thus, preference for a size class in amplification is inherited. Some animals selectively amplify repeat lengths which are rarely found in their chromosomal rDNA; others amplify their most abundant size class.The intramolecular arrangement of length variability was analyzed by the electron microscopy of heteroduplex molecules. Long single strands from two separate preparations of amplified and chromosomal rDNA each were reannealed with an homogeneous cloned spacer-containing rDNA fragment (CD30), and the size of adjacent heteroduplex regions was determined. The arrangement of length heterogeneity is very different in the two types of rDNA. Most, if not all, tandem repeats along a single molecule of amplified rDNA are equal in length. This observation supports a rolling circle mechanism for amplification. In contrast, between 50% and 68% of adjacent repeats in a given molecule of chromosomal rDNA differ in length. For one of the chromosomal rDNA preparations analyzed, the frequency of non-identical nearest-neighbors is compatible with random scrambling of repeats of different lengths. This result bears on the mechanism by which tandem genes evolve. It rules out sudden correction mechanisms of tandem genes such as the “master-slave” or certain “expansion-contraction” models, which predict that tandem genes will be identical.  相似文献   

2.
3.
The inhibition of human prostatic epithelial cell (MA-160) replication by cAMP and certain analogs was explored in tissue cultures. When untreated fetal bovine serum was used to supplement the culture medium, cyclic AMP (cAMP) markedly inhibited cell growth. The inhibition was reversed by equimolar concentrations of uridine. Inhibition by 8-methyl-thio-cAMP (MES) was somewhat less effective and was not reversed by uridine. After heat treatment of the fetal bovine serum, which inactivated the cAMP phosphodiesterases, cAMP became less effective in cell growth inhibition, whereas the activity of MES remained unaltered. Dibutyryl cAMP (db-cAMP) had no effect on cell growth, however, when combined with the phosphodiesterase inhibitor, 1-methyl-3-isobutylxanthine (MIX), significant retardation of cell replication was observed. Cells treated for 24 h with 0.5 mM MES took up and incorporated significantly less [3H]TdR and [3H]uridine than control cells. Treatment of cells with 0.5 mM cAMP for 24 h, on the other hand, resulted in both substantially increased [3H]TdR uptake and increased [3H]uridine incorporation into RNA. The effects of similar treatment with db-cAMP plus MIX closely paralleled those of MES with marked inhibition of the uptake and incorporation of both thymidine and uridine.  相似文献   

4.
5.
Denaturation map of the ribosomal DNA of Xenopus laevis   总被引:13,自引:0,他引:13  
  相似文献   

6.
7.
Adrian P. Bird 《Chromosoma》1974,46(4):421-433
A technique for the isolation of very high molecular weight rDNA1 from the ovary of Xenopus laevis is described. Tritiated rDNA was prepared by this method from ovaries at the amplification stage, and spread on slides for light microscope autoradiography. The average molecular weight of the spread DNA was greater than 180×106 daltons. Unlike chromosomal DNA grain tracks, rDNA tracks after 2 or 4 hours of labelling were not tandemly arranged. By allowing ovaries to equilibrate gradually with exogenous precursors, tracks showing a single gradient of grain density were produced, indicating that replication was proceeding in one direction at these sites. Bidirectional initiations, if they occur at all during amplification, are rare. The rate of rDNA chain growth is 10.5 μ/hour at 23° C, which is the same as the rate for chromosomal DNA synthesis in X. laevis. After 24 hours some tracks are over 200 μ long, suggesting that replication at a site may be continuous for at least this period. Although they do not distinguish between several alternative mechanisms, the results are compatible with a rolling circle mechanism for gene amplification.  相似文献   

8.
More ribosomal spacer sequences from Xenopus laevis.   总被引:8,自引:17,他引:8       下载免费PDF全文
The base sequence analysis of a Xenopus laevis ribosomal DNA repeat (7) has been extended to cover almost the entire non-transcribed and external transcribed spacer. A compilation of these sequences is presented. All the repetitive and non-repetitive sequence elements of the spacer are identified and their evolution discussed. Comparison of the X.laevis and S.cerevisiae (25,26) ribosomal DNAs shows about 80% sequence conservation in the 18S gene but no sequence conservation, from the available data, in the external transcribed spacer. The sequence coding for the 3' terminus of the X.laevis 40S ribosomal precursor RNA is presented and its structural features analyzed.  相似文献   

9.
10.
We have determined the complete nucleotide sequence of Xenopus laevis 28S rDNA (4110 bp). In order to locate evolutionarily conserved regions within rDNA, we compared the Xenopus 28S sequence to homologous rDNA sequences from yeast, Physarum, and E. coli. Numerous regions of sequence homology are dispersed throughout the entire length of rDNA from all four organisms. These conserved regions have a higher A + T base composition than the remainder of the rDNA. The Xenopus 28S rDNA has nine major areas of sequence inserted when compared to E. coli 23S rDNA. The total base composition of these inserts in Xenopus is 83% G + C, and is generally responsible for the high (66%) G + C content of Xenopus 28S rDNA as a whole. Although the length of the inserted sequences varies, the inserts are found in the same relative positions in yeast 26S, Physarum 26S, and Xenopus 28S rDNAs. In one insert there are 25 bases completely conserved between the various eukaryotes, suggesting that this area is important for eukaryotic ribosomes. The other inserts differ in sequence between species and may or may not play a functional role.  相似文献   

11.
12.
Secondary structure maps of long single strands of amplified ribosomal DNA from two closely related species of frogs, Xenopus laevis and X. mulleri, have been compared. The secondary structure pattern of the gene region is identical in both ribosomal DNAs while the patterns in the non-transcribed spacers2 differ. In X. mulleri, the spacer shows an extended region without any secondary structure adjacent to the 28 S ribosomal RNA sequence. In contrast, the same region in the X. laevis spacer has extensive secondary structure. A comparison of secondary structure maps and denaturation maps of these two ribosomal DNAs (Brown et al., 1972) reveals that the portion without secondary structure in the X. mulleri spacer corresponds to an early melting A + T-rich region. As in X. laevis ribosomal DNA, Escherichia coli restriction endonuclease (EcoRI) makes two cuts in each repeating unit of amplified ribosomal DNA from X. mulleri. The position of the cleavage sites is identical in the two species as judged from secondary structure mapping of the two classes of EcoRI fragments generated. The small fragments of X. mulleri ribosomal DNA are homogeneous in size with a duplex molecular weight of 3.0 × 106, and contain about 85% of the 28 S ribosomal RNA gene and about 17% of the 18 S ribosomal RNA gene. The large fragments are heterogeneous in size with molecular weights ranging from 4.2 to 4.9 × 106, and contain the remaining portions of the gene regions and the nontranscribed spacer. Heteroduplexes made between large fragments of different lengths show only deletion loops. The position of these loops indicates that the length heterogeneity resides in the non-transcribed spacer region. Electrophoretic analysis of EcoRI digests of chromosomal ribosomal DNA from X. mulleri demonstrates that this DNA is heterogeneous in length as well.  相似文献   

13.
1. The nucleotide sequence of 5.8-S rRNA from Xenopus laevis is given; it differs by a C in equilibrium U transition at position 140 from the 5.8-S rRNA of Xenopus borealis. 2. The sequence contains two completely modified and two partially modified residues. 3. Three different 5' nucleotides are found: pU-C-G (0.4) pC-G (0.2) and pG (0.4). 4. The 3' terminus is C not U as in all other 5.8-S sequences so far determined. 5. The X. laevis sequence differs from the mammalian and turtle sequences by five and six residue changes respectively. 6. A ribonuclease-resistant hairpin loop is a principle feature of secondary structure models proposed for this molecule. 7. Sequence heterogeneity may occur at one position at a very low level (approximately 0.01) in X. laevis 5.8-S rRNA, while none was detected in X. borealis or HeLa cell 5.8-S rRNA.  相似文献   

14.
15.
K Tashiro  K Shiokawa  K Yamana  Y Sakaki 《Gene》1986,44(2-3):299-306
Sequences homologous to the ribosomal DNA (rDNA) in a Xenopus anucleolate (nucleolus-less) mutant were analyzed by Southern blot analysis. The mutant was found to possess a variety of sequences homologous to non-transcribed spacer (NTS) and/or coding region of rDNA. 65 rDNA-homologous clones were isolated from a genomic DNA library of the mutant. All the clones showed only partial homology to the normal rDNA unit and their restriction maps differed from that of the normal rDNA unit. Based on the hybridization patterns, the rDNA-homologous clones were divided into four groups (I-IV). Structure of group IV, which most strongly hybridized to normal rDNA probe, was analyzed by nucleotide sequencing. The group IV sequence was found to contain a part of the rDNA, including Bam island, enhancer element, promoter region, external transcribed spacer, and a portion of 18S rRNA gene. The blotting analysis suggested that the group IV sequence is specific for a particular strain of Xenopus.  相似文献   

16.
Hybridization of purified, 32p-labeled 5.8S ribosomal RNA from Xenopus laevis to fragments generated from X. laevis rDNA by the restriction endonuclease, EcoRI, demonstrates that the 5.8S rRNA cistron lies within the transcribed region that links the 18S and 28S rRNA cistrons.  相似文献   

17.
18.
The intergenic spacer region of the Xenopus laevis ribosomal DNA contains multiple elements which are either 60 or 81 base pairs long. Clusters of these elements have previously been shown to act as position- and distance-independent enhancers on an RNA polymerase I promoter when located in cis. By a combination of deletion and linker scanner mutagenesis we show that the sequences essential for enhancer function are located within a 56-base-pair region that is present in both the 60- and 81-base-pair repeats. Within the 56-base-pair region one linker scanner mutation was found to be relatively neutral, suggesting that each enhancer element may be composed of two smaller domains. Each 56-base-pair region appears to be an independent enhancer with multiple enhancers being additive in effect. We review the current evidence concerning the mechanism of action of these enhancers.  相似文献   

19.
20.
The chromatin structure of the ribosomal DNA in Xenopus laevis was studied by micrococcal nuclease digestions of blood, liver and embryonic cell nuclei. We have found that BglI-restricted DNA from micrococcal nuclease-digested blood cell nuclei has an increased electrophoretic mobility compared to the undigested control. Micrococcal nuclease digestion of liver cell nuclei causes a very slight shift in mobility, only in the region of the spacer containing the "Bam Islands". In contrast, the mobility of ribosomal DNA in chromatin of embryonic cells, under identical digestion conditions, remains unaffected by the nuclease activity. Denaturing gels or ligase action on the nuclease-treated DNA abolishes the differences in the electrophoretic mobility. Ionic strength and ethidium bromide influence the relative electrophoretic migration of the two DNA fragment populations, suggesting that secondary structure may play an important role in the observed phenomena. In addition, restriction analysis under native electrophoretic conditions of DNA prepared from blood, liver and embryonic cells shows that blood cell DNA restriction fragments always have a faster mobility than the corresponding fragments of liver and embryo cell DNA. We therefore propose that nicking activity by micrococcal nuclease modifies the electrophoretic mobility of an unusual DNA conformation, present in blood cell, and to a lesser extent, in liver cell ribosomal chromatin. A possible function for these structures is discussed. The differences of the ribosomal chromatin structures in adult and embryonic tissues may reflect the potential of the genes to be expressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号