首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The hymenial tubes of Polyporus betulinus were shown to be approximatelycylindrical,and to have a sporulating hymenium over the greater part oftheir surface. Sporophores were tilted through measured anglesfrom the vertical in the field and in the laboratory, and theeffect on spore liberation was measured by determining the numberof spores liberated from particular tubes in standard time.All tilting caused a reduction in spore liberation. The amountof this reduction was found to compare closely with that predictedfrom calculation of the amount of hymenium lying directly abovethe orifice at various angles of tilt. It is therefore concludedthat liberation from the tube can be accounted for by the initialviolent discharge of the spore and gravitational attractionalone. An addendum corrects an earlier paper (1959) in thisseries. It shows that the variation in density of spore depositscollected from Trametes gibbosa was due to air currents in theapparatus, not to variation in sporulation rate.  相似文献   

2.
In this study, the effect of the thermophilic fungi of composts was analysed on the fungal composition of the air above. Air samples were collected with an Andersen air sampler at 1.5 m height in three large industrial composting facilities treating different waste types. Repetition was collected on three calm and rain-free days of three consecutive weeks in October 2011, in January, April and July 2012; five plates were exposed successively per sampling day. Compost samples were also collected (averaging 1 kg/compost piles). Air and compost samples were cultured at 50 °C. The thermophilic fungal composition of the air near the compost piles of different waste types differed significantly (p < 0.05) from that of the control site above a grassland ecosystem at each sampling time. Seasonal differences could be detected regarding the total number of thermophilic fungi in the air near the agricultural and horticultural compost types, but smaller differences were found near the municipal compost type. A total of 13 and 11 fungal species were detected in the compost and air samples where the dominant species were Thermomyces lanuginosus and Rasamsonia emersonii, respectively. The concentration of airborne thermophilic fungi was higher near the horticultural compost type and lower near the municipal compost. The results suggest that the differences between the incidences of some species in composts and associated aerosols refer to spore ontogeny and biological mechanisms of spore liberation.  相似文献   

3.
We investigated the different processes involved in spore liberation in the polypod fern Adiantum peruvianum (Pteridaceae). Sporangia are being produced on the undersides of so-called false indusia, which are situated at the abaxial surface of the pinnule margins, and become exposed by a desiccation-induced movement of these pinnule flaps. The complex folding kinematics and functional morphology of false indusia are being described, and we discuss scenarios of movement initiation and passive hydraulic actuation of these structures. High-speed cinematography allowed for analyses of fast sporangium motion and for tracking ejected spores. Separation and liberation of spores from the sporangia are induced by relaxation of the annulus (the ‘throwing arm’ of the sporangium catapult) and conservation of momentum generated during this process, which leads to sporangium bouncing. The ultra-lightweight spores travel through air with a maximum velocity of ~5 m s-1, and a launch acceleration of ~6300g is measured. In some cases, the whole sporangium, or parts of it, together with contained spores break away from the false indusium and are shed as a whole. Also, spores can stick together and form spore clumps. Both findings are discussed in the context of wind dispersal.  相似文献   

4.
The effect of ultraviolet‐B (UV‐B) and UV‐A radiation on spore liberation in the intertidal marine macroalgae Ulva fasciata Delile (Chlorophyceae) and Gracilaria corticata J.Agardh (Rhodophyceae) was investigated. The two algae were exposed to UV‐A and UV‐B radiation separately for 10, 20, 30, 45 and 60 min and percentage inhibition of spore liberation was determined in controlled laboratory conditions. The spore liberation period in UV treated algae was extended for 4 days in U. fasciata and 9 days in G. corticata. UV‐B radiation inhibited spore liberation as much as 76.6% in U. fasciata and 55.5% in G. corticata at 60 min exposure. A significant positive correlation was observed between percentage inhibition of spore liberation and length of UV‐B exposure in both U. fasciata and in G. corticata. Similarly, UV‐A radiation also inhibited spore liberation as much as 75% in the former and 50% in the latter. There was a significant correlation between inhibition of spore liberation and length of UV‐A exposure in U. fasciata and in G. corticata. Analysis of variance results showed inhibition of spore liberation at 60 min of UV exposure differed significantly with that of other exposure lengths. The present findings reveal that UV‐A radiation also had an impact on spore liberation but to a lesser extent than UV‐B radiation. Thallus thickness and plant location on the shore determines their exposure to UV radiation. High UV impact was seen for U. fasciata growing in the upper parts of the intertidal region with a thin sheet like thallus and high surface area resulting in higher inhibition of spore liberation than in G. corticata.  相似文献   

5.
Aspergillus/Penicillium spore concentrations have been monitored in Derby since 1970 using a volumetric spore trap, with full year data from 1991. In addition a short comparative study with the indoor air was undertaken at two local houses in 1994 and 1996. Aspergillus/Penicillium spores were present in the Derby air throughout the year and often reached maximum monthly cumulative concentrations in the autumn, although they were occasionally the dominant spores in the winter when total spore concentrations were low. Very high daily concentrations could occur at any time of year with a count of over 5000 recorded. Peak days in the autumn and winter of 2002–2003 were examined on a two hourly basis showing higher concentrations in the middle of the day. There was a positive correlation of cumulative monthly Aspergillus/Penicillium totals with maximum temperature. Indoor data from the two houses was examined on a daily basis and compared with simultaneously sampled outdoor daily spore concentrations. The elevated Aspergillus/Penicillium spore levels found in the older of the two houses occurred on all of the days sampled. Compared to the modern house, the Aspergillus/Penicillium spore concentrations in the old house represented a much higher percentage of the total spore count than in the modern one. The correlation between outdoor Aspergillus/Penicilliumspore concentrations and the indoor air of the old house was 0.62, whereas in the modern house it was 0.31. Peak hourly samples of Aspergillus/Penicillium spore counts occurred at times of greatest activity.  相似文献   

6.
The aim of this paper was to determine for first time the influence of the main meteorological parameters on the atmospheric fungal spore concentration in Havana (Cuba). This city is characterized by a subtropical climate with two different marked annual rainfall seasons during the year: a “dry season” and a “rainy season”. A nonviable volumetric methodology (Lanzoni VPPS-2000 sampler) was used to sample airborne spores. The total number of spores counted during the 2 years of study was 293,594, belonging to 30 different genera and five spore types. Relative humidity was the meteorological parameter most influencing the atmospheric concentration of the spores, mainly during the rainy season of the year. Winds coming from the SW direction also increased the spore concentration in the air. In terms of spore intradiurnal variation we found three different patterns: morning maximum values for Cladosporium, night peaks for Coprinus and Leptosphaeria, and uniform behavior throughout the whole day for Aspergillus/Penicillium."  相似文献   

7.

Background and Aims

Initial release height and settling speed of diaspores are biologically controlled components which are key to modelling wind dispersal. Most Sphagnum (peat moss) species have explosive spore liberation. In this study, how capsule and spore sizes affect the height to which spores are propelled were measured, and how spore size and spore number of discharged particles relate to settling speed in the aspherical Sphagnum spores.

Methods

Spore discharge and spore cloud development were filmed in a closed chamber (nine species). Measurements were taken from snapshots at three stages of cloud development. Settling speed of spores (14 species) and clusters were timed in a glass tube.

Key Results

The maximum discharge speed measured was 3·6 m s−1. Spores reached a maximum height of 20 cm (average: 15 cm) above the capsule. The cloud dimensions at all stages were related positively to capsule size (R2 = 0·58–0·65). Thus species with large shoots (because they have large capsules) have a dispersal advantage. Half of the spores were released as singles and the rest as clusters (usually two to four spores). Single spores settled at 0·84–1·86 cm s−1, about 52 % slower than expected for spherical spores with the same diameters. Settling speed displayed a positive curvilinear relationship with spore size, close to predictions by Stokes'' law for spherical spores with 68 % of the actual diameters. Light-coloured spores settled slower than dark spores. Settling speed of spore clusters agrees with earlier studies. Effective spore discharge and small, slowly settling spores appear particularly important for species in forested habitats.

Conclusions

The spore discharge heights in Sphagnum are among the greatest for small, wind-dispersed propagules. The discharge heights and the slow settling of spores affect dispersal distances positively and may help to explain the wide distribution of most boreal Sphagnum species.  相似文献   

8.
Integrated air sampling and PCR-based methods for detecting airborne fungal spores, using Penicillium roqueforti as a model fungus, are described. P. roqueforti spores were collected directly into Eppendorf tubes using a miniature cyclone-type air sampler. They were then suspended in 0.1% Nonidet P-40, and counted using microscopy. Serial dilutions of the spores were made. Three methods were used to produce DNA for PCR tests: adding untreated spores to PCRs, disrupting spores (fracturing of spore walls to release the contents) using Ballotini beads, and disrupting spores followed by DNA purification. Three P. roqueforti-specific assays were tested: single-step PCR, nested PCR, and PCR followed by Southern blotting and probing. Disrupting the spores was found to be essential for achieving maximum sensitivity of the assay. Adding untreated spores to the PCR did allow the detection of P. roqueforti, but this was never achieved when fewer than 1,000 spores were added to the PCR. By disrupting the spores, with or without subsequent DNA purification, it was possible to detect DNA from a single spore. When known quantities of P. roqueforti spores were added to air samples consisting of high concentrations of unidentified fungal spores, pollen, and dust, detection sensitivity was reduced. P. roqueforti DNA could not be detected using untreated or disrupted spore suspensions added to the PCRs. However, using purified DNA, it was possible to detect 10 P. roqueforti spores in a background of 4,500 other spores. For all DNA extraction methods, nested PCR was more sensitive than single-step PCR or PCR followed by Southern blotting.  相似文献   

9.
This study determined annual and monthly fluctuations in concentration of 20 fungal genera. The selection of taxa was made based upon their high frequency in the air as well as their well-known allergenic properties. Air samples were collected using a spore trap of Hirst design at an urban site where the trap continuously worked throughout a 5-year survey. Weather data were acquired from a meteorological station co-located with the air sampler. Influence of several meteorological parameters was then examined to reveal species–environment interactions and the potential location of fungal spore sources within the urban area. The maximum monthly sum of mean daily spore concentration varied between genera, and the earliest peaks were recorded for Pleospora sp. in April and Ustilago sp. in June. However, the majority of investigated spore types occurred in the greatest concentrations between August and September. Out of the 20 studied taxa, the most dominant genus was Cladosporium sp., which exceeded an allergenic threshold of 3000 s m?3 40 times during very rainy years and twice as much during dry years. A Spearman’s rank test showed that statistically significant (p ≤ 0.05) relationships between spore concentration and weather parameters were mainly r s  ≤ 0.50. Potential sources of spores at Worcester were likely to be localised outside the city area.  相似文献   

10.
Present investigation was undertaken to study the dynamics of relationships between atmospheric fungal spores and meteorological factors in western Romania. The airborne spore sampling was carried out by employing volumetric sampling. A total of nine meteorological parameters were selected for this investigation. During 2008–2010, it was found the same pattern of behaviour in the atmosphere for selected spore types (Alternaria, Cladosporium, Pithomyces, Epicoccum and Torula). The spores occurred in the air throughout the whole year, but maximum concentrations were reached in summer. Cladosporium and Alternaria peak levels were observed in June. Epicoccum peak value was found in September. The relationships between airborne spore concentrations and environmental factors were assessed using the analysis of Spearman’s rank correlations and multiple linear regressions. Spearman’s rank correlation analysis revealed that maximum, minimum and mean temperature, and number of sunshine hours were strongly (p < 0.01) and directly proportional to the concentration of all analysed fungal spores. Negative and significant correlations were with daily mean relative humidity. The variance explained percentage by regression analyses varied between 30.6 and 39.6 % for Alternaria and Cladosporium airborne spores. Statistical methods used in this study are complementary and confirmed stable dependence of Alternaria and Cladosporium spore concentrations on meteorological factors. The climate change parameters either increased temperatures, changed precipitation regimes or a combination of both affected allergenic fungal spore concentrations in western Romania. This study demonstrates the need for investigations throughout the year, from month to month, regarding the correct interpretation of airborne spore relationships with meteorological parameters.  相似文献   

11.
The fungal and bacterial aerobiota of four St. Petersburg Underground stations has been examined over a 4-month period. In the indoor air of St. Petersburg Underground 50 fungal species were found, among which were likely deteriogenic fungi. The most prevailing genera were Acremonium, Aspergillus, Cladosporium and Penicillium. Fungal spore density in the underground air was within the sanitary level accepted for public buildings. The spore densities and specificities correlated with the station type. A more specific (independent of outdoor) air mycobiota was found in deeper stations. All fungal isolates were tested in laboratory conditions for their ability to produce extracellular proteinase, phospholipase, and hemolytic activities which can be associated to virulence. Only 2 of the 75 isolates expressed a high level of all three activities. Assuming this figure can serve as a rough assessment of pathogenicity potential, the risk of invasive mycoses was not considered significant. But taking into account the situation with peak-hours overcrowding, it may be concluded that the risk of “mould” allergic diseases for some categories of the underground passengers in St. Petersburg does exist.  相似文献   

12.
This study determined the relationship between airborne concentration of Cladosporium spp. spores and wind speed and direction using real data (local wind measured by weather station) and modelled data (air mass flow computed with the aid of HYbrid Single Particle Lagrangian Trajectory model). Air samples containing fungal conidia were taken at an urban site (Worcester, UK) for a period of five consecutive years using a spore trap of the Hirst design. A threshold of ≥6000 s m?3 (double the clinical value) was applied in order to select high spore concentration days, when airborne transport of conidia at a regional scale was more likely to occur. Collected data were then examined using geospatial and statistical tools, including circular statistics. Obtained results showed that the greatest numbers of spore concentrations were detected in July and August, when C. herbarum, C. cladosporioides and C. macrocarpum sporulate. The circular correlation test was found to be more sensitive than Spearman’s rank test. The dominance of either local wind or the air mass on Cladosporium spore distributions varied between examined months. Source areas of this pathogen had an origin within the UK territory. Very high daily mean concentrations of Cladosporium spores were observed when daily mean local wind speed was v s ≤ 2.5 m s?1 indicating warm days with a light breeze.  相似文献   

13.
Actinomycete growth in conditions of low moisture   总被引:1,自引:0,他引:1  
Actinomycete communities demonstrated a replacement of the generic composition in time as a function of soil moisture. Representatives of the genera Streptomyces, Micromonospora, Actinomadura, Saccharopolyspora, and Microbispora were repeatedly isolated from soil under different moisture conditions (field capacity, maximum molecular capacity, and maximum adsorption capacity). Representatives of some rare genera (Thermomonospora and Kibdelosporangium) were isolated from soil with low moisture levels inhibiting growth of more hydrophilic actinomycetes and bacteria. Spores of some actinomycetes could grow at low relative air humidity (RH) (50 and 67%). The complete growth cycle of all actinomycetes starting from spore germination to sporulation was observed only at RH of 98%.  相似文献   

14.
Alternaria and Cladosporium spores belong to the most frequent and allergenic particles in bioaerosol in the temperate climate. The investigation of Alternaria and Cladosporium spore concentrations was performed in two cities in Poland, Szczecin and Cracow, in 2004–2013. The meteorological parameters taken to assess their impact on fungal spores were average, maximum and minimum temperature, relative humidity and average wind velocity. In order to reveal whether changes in dynamics of spore seasons are driven by meteorological conditions, ordination methods were applied. Canonical correspondence analysis was used to explore redundancy among the predictors (meteorological parameters). Prior to ordination analyses, the data were log(x)-transformed. Concentrations of Alternaria and Cladosporium spores were significantly higher in Szczecin comparing to Cracow, but it was also observed the decreasing trend in the spore concentrations in Szczecin. As regards temperature, it was higher in Cracow and was still increasing in the studied years. Relative humidity and wind velocity were significantly lower in Cracow. In Szczecin meteorological conditions did not explain changes in spore season characteristics (insignificant redundancy analysis models), while in Cracow’s redundancy analysis models indicated that spore season parameters were in over 40 % determined by meteorological conditions, mainly air temperature and wind velocity. If they increase, the peak value, total number of spores and their average concentrations in a season will also increase.  相似文献   

15.
The present study sought to examine Coprinus and Ganoderma airborne spore counts, analysing seasonal variations, the influence of meteorological variables and intraday behaviour with a view to charting the aerobiological dynamics of both genera in Havana (Cuba) during a 2-year period (November 2010–October 2012). A Hirst-type volumetric air sampler was used as sampling methodology. The spores registered in the air were identified and counted following the model proposed by the Spanish Aerobiological Network based on two longitudinal transects along the slides. Coprinus spores outnumbered those of the Ganoderma (28,468 annual total spores vs. 1,921 spores). Moreover, both genera were recorded in the atmosphere on a large number of days over the two-year study period, with daily maximum concentrations in the rainy months. The daily maximum value for Coprinus was 880 spores/m3 (30 September 2011), whereas for Ganoderma 44 spores/m3 (4 September 2011). The analysis of the Spearman correlation coefficient showed a significant positive correlation of the airborne Coprinus and Ganoderma spores with the temperature, relative humidity and rainfall, whereas the degree of association is negative with the wind speed. Regarding the intraday behaviour, both basidiospores were more abundant in the atmosphere during the night, with a maximum peak at 5–6 a.m.  相似文献   

16.
Seasonality in Antarctic Airborne Fungal Spores   总被引:1,自引:0,他引:1       下载免费PDF全文
Airborne fungal spores were monitored over periods of up to 131/2 months at three sites on Signy Island in the maritime Antarctic. Fungal spore concentrations in the air were much lower than in other parts of the world. Concentrations were very low during the austral winter but increased during the austral summer. Chlamydospores were the most abundant fungal spore type found. Spores of Cladosporium spp. were the second most frequently trapped form. All spore types samples were most abundant in the summer months, except for chlamydospores, which were most numerous during the winter. The concentration of Cladosporium spores in the air at Signy Island was compared with the concentrations of this spore type found in the air in other parts of the world. It was evident that Cladosporium loses its dominance as the most abundant component of the air spora with increasingly high latitude. The peak concentration of fungal spores occurred at two sites following the start of the thaw; at the third site, the peak occurred with the arrival of spores by long-distance transport from more northerly regions.  相似文献   

17.
The concentration of airborne Didymella spores has been investigated at two monitoring sites situated along the west–south transect in Poland (Szczecin, Kraków), i.e. from a height of 100 to 219 m, respectively, above sea level. The aerobiological monitoring of fungal spores was performed by means of two Lanzoni volumetric spore traps. The high Didymella spore numbers were observed at both cities in June, July and August. Statistically significant correlations have been found mainly between the Didymella spore concentrations in the air and the minimum air temperature and relative air humidity. The spore count of Didymella is determined by the diversity of local flora and weather conditions, especially by the relative air humidity. The identification of factors that influence and shape spore concentrations may significantly improve the current methods of allergy prevention.  相似文献   

18.
The aerobiological investigations were carriedout at five sites located in different climaticand geobotanical regions in Poland. The diurnalperiodicity of Alnus, Betula, Secale,Poaceae, Urtica, and Artemisia wasstudied during two successive years. The taxawere chosen on the basis of pollen grainabundance and allergenity. The pollen wascollected with a Burkard spore trap. Twelvetransversal transverses of microscope slidescorresponding to two-hour periods wereanalysed. The diurnal variations ofPoaceae, Alnus and Betula were irregularand varied between sites and years; highconcentrations were observed at different hoursof the day and night. Diurnal concentrations of Secale, Urtica and Artemisia hadonly one maximum in the middle of the day,constant between sites and years. The lowestconcentrations were observed between eveningand early morning. There was no close relationbetween the time of the liberation ofAlnus, Betula and Poaceae pollen and thetime of the maximum pollen counts. There was aseveral hour delay observed between the timeof Secale pollen liberation and maximumconcentration of airborne pollen.  相似文献   

19.
Over the period 2002–2014, air temperature significantly increased regionally for Bratislava. However, no significant shifts have been observed in other meteorological parameters examined. The aim of this study was to analyse the effect of significant temperature trends on timing, duration and intensity of Alternaria, Epicoccum and Stemphylium spore seasons. Aerobiological monitoring was conducted using a Burkard 7-day volumetric spore trap. Mann–Kendall tau test was used to determine trends in spore seasons characteristics, whereas Spearman’s correlation coefficients were calculated to establish the relationships between temperature and spore season time series. Spore seasons of analysed taxa changed throughout the years of study. Alternaria spore season now starts earlier, ends later and lasts longer. Start, end and peak dates as well as duration of Alternaria spore seasons were significantly correlated with recorded increases in winter temperatures. Despite significant lengthening of Alternaria spore seasons, the lack of rising trend in its spore season index has been registered. This phenomenon could be partly explained by the reduction in the source vegetation due to drop of agricultural land use areas in Bratislava. In contrast, the intensity of Stemphylium spore seasons significantly increased during the study period and was correlated with recorded increases in summer–autumn temperatures. Based on the results of this study, it could be concluded that changes in selected fungal spore season patterns in Bratislava (earlier start date, later end date and longer duration of Alternaria spore seasons and higher Stemphylium spore season indexes) might be caused by the recorded local change in air temperature.  相似文献   

20.
Fungal spores are known to cause allergic sensitization. Recent studies reported a strong association between asthma symptoms and thunderstorms that could be explained by an increase in airborne fungal spore concentrations. Just before and during thunderstorms the values of meteorological parameters rapidly change. Therefore, the goal of this study was to create a predictive model for hourly concentrations of atmospheric Alternaria and Cladosporium spores on days with summer storms in Szczecin (Poland) based on meteorological conditions. For this study we have chosen all days of June, July and August (2004–2009) with convective thunderstorms. There were statistically significant relationships between spore concentration and meteorological parameters: positive for air temperature and ozone content while negative for relative humidity. In general, before a thunderstorm, air temperature and ozone concentration increased, which was accompanied by a considerable increase in spore concentration. During and after a storm, relative humidity increased while both air temperature ozone concentration along with spore concentrations decreased. Artificial neural networks (ANN) were used to assess forecasting possibilities. Good performance of ANN models in this study suggest that it is possible to predict spore concentrations from meteorological variables 2 h in advance and, thus, warn people with spore-related asthma symptoms about the increasing abundance of airborne fungi on days with storms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号