首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
AIMS: To study the effect of co-contaminants (phenol) on the biodegradation of pyridine by freely suspended and calcium alginate immobilized bacteria. METHODS AND RESULTS: Varying concentrations of phenol were added to free and calcium alginate immobilized Pseudomonas putida MK1 (KCTC 12283) to examine the effect of this pollutant on pyridine degradation. When the concentration of phenol reached 0.38 g l(-1), pyridine degradation by freely suspended bacteria was inhibited. The increased inhibition with the higher phenol levels was apparent in increased lag times. Pyridine degradation was essentially completely inhibited at 0.5 g l(-1) phenol. However, immobilized cells showed tolerance against 0.5 g l(-1) phenol and pyridine degradation by immobilized cell could be achieved. CONCLUSIONS: This works shows that calcium alginate immobilization of microbial cells can effectively increase the tolerance of P. putida MK1 to phenol and results in increased degradation of pyridine. SIGNIFICANCE AND IMPACT OF THE STUDY: Treatment of wastewater stream can be negatively affected by the presence of co-pollutants. This work demonstrates the potential of calcium alginate immobilization of microbes to protect cells against compound toxicity resulting in an increase in pollutant degradation.  相似文献   

2.
Degradation of phenol by polymer entrapped microorganisms   总被引:10,自引:0,他引:10  
Summary A Pseudomonas sp. which was isolated from phenol-containing soil was immobilized in alginate and polyacrylamide-hydrazide (PAAH) and cultivated in a special airlift fermenter.The immobilized Pseudomonas sp. was able to degrade phenol at initial concentrations up to 2 g/l in less than 2 days, although the free cells did not grow at this concentration.The immobilization materials act as a protective cover against phenol, PAAH being more effective than alginate. The degradation activity as well as the outgrowth of bacteria can be manipulated by the concentration of the immobilization material, the temperature and the nitrogen content in the medium.The cells grew predominantly in microcolonies in the outer area of the beads when nitrogen was available as 1.0g NH4NO3/l and 0.5g (NH4)2SO4/l.Prof. Dr. A. Fiechter dedicated to his 60th birthday  相似文献   

3.
Polycyclic aromatic heterocycles, such as carbazole, are environmental contaminants suspected of posing human health risks. In this study, we investigated the degradation of carbazole by immobilized Sphingomonas sp. strain XLDN2-5 cells. Four kinds of polymers were evaluated as immobilization supports for Sphingomonas sp. strain XLDN2-5. After comparison with agar, alginate, and κ-carrageenan, gellan gum was selected as the optimal immobilization support. Furthermore, Fe3O4 nanoparticles were prepared by a coprecipitation method, and the average particle size was about 20 nm with 49.65-electromagnetic-unit (emu) g−1 saturation magnetization. When the mixture of gellan gel and the Fe3O4 nanoparticles served as an immobilization support, the magnetically immobilized cells were prepared by an ionotropic method. The biodegradation experiments were carried out by employing free cells, nonmagnetically immobilized cells, and magnetically immobilized cells in aqueous phase. The results showed that the magnetically immobilized cells presented higher carbazole biodegradation activity than nonmagnetically immobilized cells and free cells. The highest biodegradation activity was obtained when the concentration of Fe3O4 nanoparticles was 9 mg ml−1 and the saturation magnetization of magnetically immobilized cells was 11.08 emu g−1. Additionally, the recycling experiments demonstrated that the degradation activity of magnetically immobilized cells increased gradually during the eight recycles. These results support developing efficient biocatalysts using magnetically immobilized cells and provide a promising technique for improving biocatalysts used in the biodegradation of not only carbazole, but also other hazardous organic compounds.  相似文献   

4.
The Klebsiella sp. strain ATCC13883T capable of degrading carbofuran phenol (2,3-dihydro-2,2-dimethylbenzofuran-7-ol) has been separated from the soil by enrichment culture technique and immobilized in various, namely polyurethane foam (PUF), polyacrylamide, alginate, agar and alginate-bentonite clay-powdered activated charcoal (PAC). The degradation rates of 20 and 30 mM carbofuran phenol by free and immobilized cells in batch and semi-continuous shaken cultures were compared. The PUF-immobilized cells achieved higher degradation rates in a shorter time than freely suspended cells and the cells immobilized in polyacrylamide, alginate and agar. The PUF- and alginate-bentonite clay-PAC-immobilized cells could be reused for more than 36 cycles, polyacrylamide-entrapped cells for 20 cycles and alginate-bentonite-PAC 28 cycles, without losing any degradation capacity and showed better tolerance to pH, temperature and concentration changes than free cells. These results showed that cells immobilized in modified alginate-bentonite-PAC immobilizers tolerated and completely degraded carbofuran phenol at initial concentrations of 20 and 30 mM and also higher. Such a bacterial strain could be used for bioremediation of environments contaminated with phenolic compounds.  相似文献   

5.
Laccase was produced from Streptomyces psammoticus under solid-state fermentation. The enzyme was partially purified by ammonium sulphate precipitation and was immobilized in alginate beads by entrapment method. Calcium alginate beads retained 42.5% laccase activity, while copper alginate beads proved a better support for laccase immobilization by retaining 61% of the activity. Phenol and colour removal from a phenol model solution was carried out using immobilized laccase. Batch experiments were performed using packed bed bioreactor, containing immobilized beads. Reusability of the immobilized matrix was studied for up to 8 successive runs, each run with duration of 6 h. The system removed 72% of the colour and 69.9% of total phenolics from the phenol model solution after the initial run. The immobilized system maintained 50% of its efficiency after eight successive runs. The degradation of phenolic compounds by immobilized laccase was evaluated and confirmed by Thin layer chromatography and nuclear magnetic resonance spectroscopy.  相似文献   

6.
Polycyclic aromatic heterocycles, such as carbazole, are environmental contaminants suspected of posing human health risks. In this study, we investigated the degradation of carbazole by immobilized Sphingomonas sp. strain XLDN2-5 cells. Four kinds of polymers were evaluated as immobilization supports for Sphingomonas sp. strain XLDN2-5. After comparison with agar, alginate, and kappa-carrageenan, gellan gum was selected as the optimal immobilization support. Furthermore, Fe(3)O(4) nanoparticles were prepared by a coprecipitation method, and the average particle size was about 20 nm with 49.65-electromagnetic-unit (emu) g(-1) saturation magnetization. When the mixture of gellan gel and the Fe(3)O(4) nanoparticles served as an immobilization support, the magnetically immobilized cells were prepared by an ionotropic method. The biodegradation experiments were carried out by employing free cells, nonmagnetically immobilized cells, and magnetically immobilized cells in aqueous phase. The results showed that the magnetically immobilized cells presented higher carbazole biodegradation activity than nonmagnetically immobilized cells and free cells. The highest biodegradation activity was obtained when the concentration of Fe(3)O(4) nanoparticles was 9 mg ml(-1) and the saturation magnetization of magnetically immobilized cells was 11.08 emu g(-1). Additionally, the recycling experiments demonstrated that the degradation activity of magnetically immobilized cells increased gradually during the eight recycles. These results support developing efficient biocatalysts using magnetically immobilized cells and provide a promising technique for improving biocatalysts used in the biodegradation of not only carbazole, but also other hazardous organic compounds.  相似文献   

7.
Recently isolated Cr(VI)-reducing Amphibacillus KSUCr3 whole cells were immobilised in magnetic gels. Magnetic magnetite (Fe3O4) nanoparticles were synthesised with an average particle size of 47 nm and 80 electromagnetic unit (emu)/g saturation magnetisation. Whole cells were immobilised by entrapment in agar, agarose, alginate, or gelatin in the presence or absence of Fe3O4 nanoparticles for the preparation of both magnetic and nonmagnetic immobilised cells. Of the gels tested, alginate was selected as the best immobilisation matrix, and following optimisation of the entrapment process, the immobilisation yield reached 92.5%. In addition to the ease of separation and reuse of the magnetic cell-containing alginate beads using an external magnet, the magnetically immobilised cells showed approximately 16% higher Cr(VI) reduction activity compared with nonmagnetic immobilised cells. To improve their physical and mechanical properties, the magnetic alginate beads were successfully coated with a dense silica layer using sol-gel chemistry and Ca(OH)2, an alkaline catalyst for tetraethyl orthosilicate, to avoid leaching of Ca2+ ions. Amphibacillus KSUCr3 cells immobilised in silica-coated magnetic alginate beads showed approximately 1.4- to 3.9-fold enhancement of thermal stability compared with free cells. Furthermore, after seven batch cycles, the Cr(VI) reduction activity of free cells decreased to 48%, whereas immobilised cells still retained 81.1% of their original activity. In addition, the Cr(VI)-reduction rate of immobilised cells was higher relative to free cells, especially at higher Cr(VI) concentrations. These results supported the development of a novel, efficient biocatalysts for Cr(VI) detoxification using a combination of whole cell immobilisation, sol-gel chemistry, and nanotechnology.  相似文献   

8.
The present study was performed to produce the protease using free and immobilized cells of locally isolated cold-adapted psychrotolerant yeast Cryptococcus victoriae CA-8. Cell immobilization was performed using sodium alginate as entrapping agent. The best conditions for enzyme production by both free and immobilized cells of the yeast were temperature of 15°C and initial pH of 8.0. The optimal incubation times were 72 and 96 h for immobilized and free cells, respectively. Immobilized cells were reused in 3 successive reaction cycles without any loss in the maximum protease activity. Little decreases in the protease activity were observed in 4 and 5 cycles. Under the optimized conditions, the maximum enzyme activities were determined as 12.1 and 13.5 U/mL for free and immobilized cells, respectively. This is a first attempt on cold-active alkaline protease production by free and/or immobilized cells of yeasts. Besides, the protease activity of the yeast C. victoriae CA-8 was investigated for the first time in the present study.  相似文献   

9.
Phenol degradation by Bacillus cereus AKG1 MTCC9817 and AKG2 MTCC 9818 was investigated and degradation kinetics are reported for the free and Ca-alginate gel-immobilized systems. The optimal pH for maximum phenol degradation by immobilized AKG1 and AKG2 was found to be 6.7 and 6.9, respectively, while 3% alginate was optimum for both the strains. The degradation of phenol by free as well as immobilized cells was comparable at lower concentrations of phenol (100–1000 mg l−1). However, the degradation efficiency of the immobilized strains was higher than that of the free strains at higher phenol concentrations (1500–2000 mg l−1), indicating the improved tolerance of the immobilized cells toward phenol toxicity. More than 50% of 2000 mg l−1 phenol was degraded by immobilized AKG1 and AKG2 within 26 and 36 days, respectively. Degradation kinetics of phenol by free and immobilized cells are well represented by the Haldane and Yano model.  相似文献   

10.
Summary The thermotolerant yeast, Kluyveromyces marxianus IMB3 produced 11g ethanol/l during growth at 45°C on media containing 4% (w/v) lactose when immobilized in alginate beads whereas the free cells produced 5g ethanol/l. A magnetically responsive biocatalyst, prepared by incorporating Fe3O4 into the alginate matrix increased ethanol production to 12g/l in batch-fed reactors. Ethanol concentrations were further increased to a maximum of 18g/l by immobilization of the endogenous K. marxianus -galactosidase to the Fe3O4 particles prior to inclusion into the alginate matrix. Maximum ethanol productivity by the system was 87% of the maximum theoretical yield.  相似文献   

11.
A simple method for the preparation of the biocatalyst with whole cells is presented, and the applicability of the technique for biodegradation of phenol in wastewater from the chemical industries using the basidomycetes yeast Trichosporon cutaneum is explored. Kinetic studies of the influence of other compounds contained in wastewater as naphthalene, benzene, toluene and pyridine indicate that apart from oil fraction, which is removed, the phenol concentration is the only major factor limiting the growth of immobilized cells. Mathematical models are applied to describe the kinetic behavior of immobilized yeast cells. From the analysis of the experimental curves was shown that the obtained values for the apparent rate parameters vary depending on the substrate concentration (μmaxapp from 0.35 to 0.09 h−1 and K sapp from 0.037 to 0.4 g dm−3). The inhibitory effect of the phenol on the obtained yield coefficients was investigated too. It has been shown that covalent immobilization of T. cutaneum whole cells to plastic carrier beads is possible, and that cell viability and phenol degrading activity are maintained after the chemical modification of cell walls during the binding procedure. The results obtained indicate a possible future application of immobilized T. cutaneum for destroying phenol in industrial wastewaters.  相似文献   

12.
Degradation kinetics of phenol by free and agar-entrapped cells of Candida tropicalis was studied in batch cultures. The initial phenol degradation rate achieved with free cells was higher than that obtained with immobilized cells, when phenol concentrations up to 1000 mg l–1 were used. However, at higher phenol concentrations, the behaviour was quite different. The initial degradation rate of the immobilized yeast cells was about 10 times higher than that of the free cells, at a phenol concentration of 3500 mg l–1. The semicontinuous and continuous degradation of phenol by immobilized yeast cells was also investigated in a multi-stage fluidized bed reactor. The highest phenol removal efficiencies and degradation rates as well as the lowest values of residual phenol and chemical oxygen demand were obtained in the semicontinuous culture when phenol concentrations up to 1560 mg l–1 were used.  相似文献   

13.
Immobilized cells of Bacillus subtilis HLZ-68 were used to produce d-alanine from dl-alanine by asymmetric degradation. Different compounds such as polyvinyl alcohol and calcium alginate were employed for immobilizing the B. subtilis HLZ-68 cells, and the results showed that cells immobilized using a mixture of these two compounds presented higher l-alanine degradation activity, when compared with free cells. Subsequently, the effects of different concentrations of polyvinyl alcohol and calcium alginate on l-alanine consumption were examined. Maximum l-alanine degradation was exhibited by cells immobilized with 8% (w/v) polyvinyl alcohol and 2% (w/v) calcium alginate. Addition of 400 g of dl-alanine (200 g at the beginning of the reaction and 200 g after 30 h of incubation) into the reaction solution at 30 °C, pH 6.0, aeration of 1.0 vvm, and agitation of 400 rpm resulted in complete l-alanine degradation within 60 h, leaving 185 g of d-alanine in the reaction solution. The immobilized cells were applied for more than 15 cycles of degradation and a maximum utilization rate was achieved at the third cycle. d-alanine was easily extracted from the reaction solution using cation-exchange resin, and the chemical and optical purity of the extracted d-alanine was 99.1 and 99.6%, respectively.  相似文献   

14.
Lu D  Zhang Y  Niu S  Wang L  Lin S  Wang C  Ye W  Yan C 《Biodegradation》2012,23(2):209-219
An aerobic microorganism with an ability to utilize phenol as sole carbon and energy source was isolated from phenol-contaminated wastewater samples. The isolate was identified as Bacillus amyloliquefaciens strain WJDB-1 based on morphological, physiological, and biochemical characteristics, and 16S rDNA sequence analysis. Strain WJDB-1 immobilized in alginate–chitosan–alginate (ACA) microcapsules could degrade 200 mg/l phenol completely within 36 h. The concentration of phenol was determined using differential pulse voltammetry (DPV) at glassy carbon electrode (GCE) with a linear relationship between peak current and phenol concentration ranging from 2.0 to 20.0 mg/l. Cells immobilized in ACA microcapsules were found to be superior to the free suspended ones in terms of improving the tolerance to the environmental loadings. The optimal conditions to prepare microcapsules for achieving higher phenol degradation rate were investigated by changing the concentrations of sodium alginate, calcium chloride, and chitosan. Furthermore, the efficiency of phenol degradation was optimized by adjusting various processing parameters, such as the number of microcapsules, pH value, temperature, and the initial concentration of phenol. This microorganism has the potential for the efficient treatment of organic pollutants in wastewater.  相似文献   

15.
Polyamide granules with high specific area were used for covalent immobilization of Trichosporon cutaneum R57. In order to increase the concentration of active (amino) groups necessary for cell immobilization, the polyamide (PA) sorbent was chemically modified. The optimal conditions for covalent immobilization of the cells were determined. Phenol degradation was studied with chemically immobilized cells. For comparison, parallel experiments were carried out with physically immobilized and free cells. Both covalently-bound and free cells fully degraded phenol at concentrations up to 1·0 g/litre. The optimal pH of phenol degradation by covalently bound cells was 6·0. The number of cycles of effective phenol degradation by immobilized cells was studied. The results obtained for covalently bound Trichosporon cutaneum R57 cells on PA granules clearly show the possibility for their application for the purification of waste water containing phenol.  相似文献   

16.
Fresh, defrosted and delignified brewer's spent grains (BSG) were used as yeast supports for alcoholic fermentation of molasses. Glucose solution (12%) with and without nutrients was used for cell immobilization on fresh BSG, without nutrients for cell immobilization on defrosted and with nutrients for cell immobilization on delignified BSG. Repeated fermentation batches were performed by the immobilized biocatalysts in molasses of 7, 10 and 12 initial Baume density without additional nutrients at 30 and 20 degrees C. Defrosted BSG immobilized biocatalyst was used only for repeated fermentation batches of 7 initial Baume density of molasses without nutrients at 30 and 20 degrees C. After immobilization, the immobilized microorganism population was at 10(9) cells/g support for all immobilized biocatalysts. Fresh BSG immobilized biocatalyst without additional nutrients for yeast immobilization resulted in higher fermentation rates, lower final Baume densities and higher ethanol productivities in molasses fermentation at 7, 10 and 12 initial degrees Be densities than the other above biocatalysts. Adaptation of defrosted BSG immobilized biocatalyst in the molasses fermentation system was observed from batch to batch approaching kinetic parameters reported in fresh BSG immobilized biocatalyst. The results of this study concerning the use of fresh or defrosted BSG as yeast supports could be promising for scale-up operation.  相似文献   

17.
A microscope reactor was used to study online the dynamics of gel immobilized cell systems. The applicability of the reactor is demonstrated by a study of the growth kinetics of Saccharomyces cerevisiae entrapped in 2% calcium alginate. The specific growth rates of single immobilized cells and free cells were measured. The growth of a microcolony in Ca-alginate was followed and the specific growth rate of the cells in the microcolony determined. A simple growth model was used to estimate the cell volume fraction of the yeast cells in the microcolony. As internal and external mass transfer limitations can be neglected and immobilized cell growth rates were found to be identical to those of free cells, one may conclude that immobilization does not influence cell growth under our experimental conditions.  相似文献   

18.
The aim of this study was enhancing of stability properties of catalase enzyme by encapsulation in alginate/nanomagnetic beads. Amounts of carrier (10–100 mg) and enzyme concentrations (0.25–1.5 mg/mL) were analyzed to optimize immobilization conditions. Also, the optimum temperature (25–50°C), optimum pH (3.0–8.0), kinetic parameters, thermal stability (20–70°C), pH stability (4.0–9.0) operational stability (0–390 min), and reusability were investigated for characterization of the immobilized catalase system. The optimum pH levels of both free and immobilized catalase were 7.0. At the thermal stability studies, the magnetic catalase beads protected 90% activity, while free catalase maintained only 10% activity at 70°C. The thermal profile of magnetic catalase beads was spread over a large area. Similarly, this system indicated the improving of the pH stability. The reusability, which is especially important for industrial applications, was also determined. Thus, the activity analysis was done 50 times in succession. Catalase encapsulated magnetic alginate beads protected 83% activity after 50 cycles.  相似文献   

19.
Phenol bioconversion by Pseudomonas stutzeri OX1 using either free or immobilized cells was investigated with the aim of searching for optimal operating conditions of a continuous bioconversion process. The study was developed by analyzing: (a) free-cell growth and products of phenol bioconversion by batch cultures of P. stutzeri; (b) growth of P. stutzeri cells immobilized on carrier particles; (c) bioconversion of phenol-bearing liquid streams and the establishment and growth of an active bacterial biofilm during continuous operation of an internal-loop airlift bioreactor. We have confirmed that free Pseudomonas cultures are able to transform phenol through the classical meta pathway for the degradation of aromatic molecules. Data indicate that bacterial growth is substrate-inhibited, with a limiting phenol concentration of about 600 mg/L. Immobilization tests revealed that a stable bacterial biofilm can be formed on various types of solid carriers (silica sand, tuff, and activated carbon), but not on alumina. Entrapment in alginate beads also proved to be effective for P. stutzeri immobilization. Continuous bioconversion of phenol-bearing liquid streams was successfully obtained in a biofilm reactor operated in the internal-circulation airlift mode. Phenol conversion exceeded 95%. Biofilm formation and growth during continuous operation of the airlift bioreactor were quantitatively and qualitatively assessed.  相似文献   

20.
Kluyveromyces marxianus cells with inulinase (2,1-β-d-fructan fructanohydrolase, EC 3.2.1.7) activity have been immobilized in open pore gelatin pellets with retention of > 90% of the original activity. The open pore gelatin pellets with entrapped yeast cells were obtained by selective leaching out of calcium alginate from the composite matrix, followed by crosslinking with glutaraldehyde. Enzymatic properties of the gelatin-entrapped cells were studied and compared with those of the free cells. The immobilization procedure did not alter the optimum pH of the enzymatic preparation; the optimum for both free and immobilized cells was pH 6.0. The optimum temperature of inulin hydrolysis was 10°C higher for immobilized cells. Activation energies for the reaction with the free and immobilized cells were calculated to be 6.35 and 2.26 kcal mol?1, respectively. Km values were 8 mM inulin for the free cells and 9.52 mM for the immobilized cells. The thermal stability of the enzyme was improved by immobilization. Free and immobilized cells showed fairly stable activities between pH 4 and 7, but free cell inulinase was more labile at pH values below 4 and above 7 compared to the immobilized form. There was no loss of enzyme activity of the immobilized cells on storage at 4°C for 30 days. Over the same period at room temperature only 6% of the original activity was lost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号