首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary We have analyzed the restriction digest patterns of the mitochondrial DNA from 41 cytoplasmic petite strains of Saccharomyces cerevisiae, that have been extensively characterized with respect to genetic markers. Each mitochondrial DNA was digested with seven restriction endonucleases (EcoRI, HpaI, HindIII, BamHI, HhaI, SalI, and PstI) which together make 41 cuts in grande mitochondrial DNA and for which we have derived fragment maps. The petite mitochondrial DNAs were also analyzed with HpaII, HaeIII, and AluI, each of which makes more than 80 cleavages in grande mitochondrial DNA. On the basis of the restriction patterns observed (i.e., only one fragment migrating differently from grande for a single deletion, and more than one for multiple deletions) and by comparing petite and grande mitochondrial DNA restriction maps, the petite clones could be classified into two main groups: (1) petites representing a single deletion of grande mitochondrial DNA and (2) petites containing multiple deletions of the grande mitochondrial DNA resulting in rearranged sequences. Single deletion petites may retain a large portion of the grande mitochondrial genome or may be of low kinetic cimplexity. Many petites which are scored as single continuous deletions by genetic criteria were later demonstrated to be internally deleted by restriction endonuclease analysis. Heterogeneous sequences, manifested by the presence of sub-stoichiometric amounts of some restriction fragments, may accompany the single or multiple deletions. Single deletions with heterogeneous sequences remain useful for mapping if the low concentration sequences represent a subset of the stoichiometric bands. Using a group of petites which retain single continuous regions of the grande mitochondrial DNA, we have physically mapped antibiotic resistance and mit- markers to regions of the grande restriction map as follows: C (99.3-1.4 map units)-OXI-1 (2.5-15.7)-OXI-2 (18.5-25)-P (28.1-34.2)-OXI-3 (32.2-61.2)-OII (60-62)-COB (64.6-80.8)-OI (80.4-85.7)-E (95-98.9).Supported by USPHS Training Grant 5-T01-GM-00090-19.Supported by USPHS Training Grant T32-GM-07197.The Franklin McLean Memorial Research Institute is operated by the University of Chicago for the U.S. Energy Research and Development Administration under Contract EY-76-C-02-0069.  相似文献   

2.
Yeast mitochondrial DNA molecules have long, AT-rich intergenic spacers punctuated by short GC clusters. GC-rich elements have previously been characterized by others as preferred sites for intramolecular recombination leading to the formation of subgenomic petite molecules. In the present study we show that GC clusters are favored sites for intermolecular recombination between a petite and the wild-type grande genome. The petite studied retains 6.5 kb of mitochondrial DNA reiterated tandemly to form molecules consisting of repeated units. Genetic selection for integration of tandem 6.5 kb repeats of the petite into the grande genome yielded a novel recombination event. One of two crossovers in a double exchange event occurred as expected in the 6.5 kb of matching sequence between the genomes, whereas the second exchange involved a 44 bp GC cluster in the petite and another 44 bp GC cluster in the grande genome 700 bp proximal to the region of homology. Creation of a mitochondrial DNA molecule with a repetitive region led to secondary recombination events that generated a family of molecules with zero to several petite units. The finding that 44 bp GC clusters are preferred as sites for intermolecular exchange adds to the data on petite excision implicating these elements as recombinational hotspots in the yeast mitochondrial genome.  相似文献   

3.
A series of spontaneous cytoplasmic petite mutants was isolated from a grande strain of Saccharomyces cerevisiae doubly marked with the cytoplasmically inherited determinants to erythromycin and oligomycin resistance. The petites were characterized with regard to the genetic stability of these antibiotic resistance markers and to their degree of suppressivity. No relation was found between the genetic instability of a petite mutant and the degree of suppressivity exhibited by that mutant. Three petites of 19.4%, 57.4% and 90.4% suppressivity were selected and their mitochondrial DNA characterized with regard to molecular weight, buoyant density in analytical cesium chloride density gradients, and the percentage of the total cellular DNA represented by the mitochondrial DNA. From these results it appears that the molecular weight of the mitochondrial DNA of the petite strains examined is the same as that shown by the parental grande strain, regardless of the degree of suppressivity exhibited.  相似文献   

4.
Buoyant density of mitochondrial DNA from 14 cytoplasmic petite mutants issued from the same grande yeast Saccharomyces cerevisiae was determined. Mutants that have retained the mitochondrial gene conferring resistance to erythromycin displayed higher buoyant density, while mutants that have retained the mitochondrial gene conferring resistance to chloramphenicol displayed lower buoyant density. It is inferred that the segment which carries the ER gene has a higher G + C content than the segment which carries the CR gene. DNA-DNA filter hybridizations were carried out systematically in different reciprocal pair-wise combinations between mtDNAs purified from various mutants and from the grande. All petites were found to be deleted in 42 to 93% of the grande sequence, depending on the mutant studied. Sequence homology between petite mtDNAs was greatest in mutants retaining common genetic markers and was least when different genetic markers were retained. Practically no hybridization was found between some CREO and COER mutants. Correlations established between the extent of DNA-DNA hybridization, kinetic and genetic complexity show that a selective enrichment of gene specific sequences occurs in mtDNA of petites.  相似文献   

5.
Several instances of mitochondrial DNA heterogeneity in grande and petite strains of Saccharomyces cerevisiae were examined. We have detected heterogeneity in the mtDNA from some of the progeny strains of a cross between two grande strains (D273-10B, MH41-7B) which differ in genome size and restriction cleavage pattern of their mtDNA. The progeny strains transmit restriction fragments characteristic of both parental strains from homologous regions of the mitochondrial genome, and this sequence heterogeneity is not eliminated by additional subcloning. Sequence diversity is more common in the mtDNA of petite than of grande strains of yeast. We have examined subclones of one petite strain to identify the origin of this variability. Many of the submolar restriction fragments persist in independent subclones of this petite after 15 and 30 cell divisions; some submolar fragments disappear, and some new fragments appear. We conclude that the observed sequence heterogeneity is due to molecular heterogeneity, i.e., to differences in the multiple copies of the petite mitochondrial genome, as well as to clonal heterogeneity. It is likely that tandem repeats on the same mtDNA molecule also differ, i.e., that there is intramolecular heterogeneity, and that this accounts for the stability of the heterogeneity. Continuing deletion is probably responsible for the appearance of “new” fragments in petite subclones.  相似文献   

6.
Summary A comparative study of eight independently isolated mitochondrial oligomycin resistant mutants obtained from three laboratories show a variety of phenotypes based on cross resistance to venturicidin and sensitivity to low temperature. Analysis of recombination between pairs of markers indicate the existence of at least three genetic classes; class A, cross resistant to venturicidin and including the mutations O III, [oli1-r], [OLG1-R], [tso-r]; class B, mutations O I, [oli17-r], [OLG2-R]; and class C, the mutation O II. The recombination data is consistent with mutations of each class residing in three separate genes, although mutations of class A and B show very close linkage.Recombination in non-polar crosses has demonstrated that markers of all three classes are linked to the mik1 locus in the configuration (AB)-mik1-C. The mapping of this segment with respect to other markers of the mitochondrial genome and the order of classes A and B was established by analyses of co-retention frequencies of markers in primary petite isolates as well as by analysis of marker overlap of genetically and physically defined petite genomes. The unambiguous order ery1-A-B-mik1-C-par was obtained. DNA-DNA hybridization studies using mtDNA isolated from selected petites confirms this map and estimates the physical separation of markers. A reasonable correlation exists in this region of the genome between distances estimated physically by hybridization and genetically by frequency of recombination in non-polar crosses.It is postulated that the oligomycin-mikamycin linkage group represents a cluster of genes involved in determining a number of mitochondrial membrane proteins associated with the mitochondrial ATPase and respiratory complex III.This work was supported by the Australian Research Grants Committee, Project D65/15930  相似文献   

7.
Summary We have physically mapped the loci conferring resistance to antibiotics that inhibit mitochondrial protein synthesis (erythromycin, chloramphenicol and paromomycin) or respiration (oligomycin I and II), as well as the 21s and 14s rRNA and tRNA genes on the restriction map of the mitochondrial genome of the yeast Saccharomyces cerevisiae. The mitochondrial genes were localized by hybridization of labeled RNA probes to restriction fragments of grande (strain MH41-7B) mitochondrial DNA (mtDNA)1 generated by endonucleases EcoRI, HpaI, BamHI, HindIII, SalI, PstI and HhaI. We have derived the HhaI restriction fragment map of MH41-7B mit DNA, to be added to our previously reported maps for the six other endonucleases.The antibiotic resistance loci (ant R) were mapped by hybridization of 3H-cRNA transcribed from single marker petite mtDNA's of low kinetic complexity to grande restriction fragments. We have chosen the single Sal I site as the origin of the circular physical map and have positioned the antibiotic loci as follows: C (99.5-1.Ou)-P(27-36.Ou)-OII (58.3-62u)-OI (80-84u)-E (94.4-98.4u). The 21s rRNA is localized at 94.4-99.2u, and the 14s rRNA is positioned between 36.2-39.8u. The two rRNA species are separated by 36% of the genome. Total mitochondrial tRNA labeled with 125I hybridized primarily to two regions of the genome, at 99.5-11.5u and 34-44u. A third region of hybridization was occasionally detected at 70-76u, which probably corresponds to seryl and glutamyl tRNA genes, previously located to this region by petite deletion mapping.Supported by USPHS Training Grant T32-GM-07197.Supported by USPHS Training Grant 5-T01-GM-0090-19.The Franklin McLean Memorial Research Institute is operated by the University of Chicago for the U. S. Energy Research and Development Administration under Contract EY-76-C-02-0069.  相似文献   

8.
Yeast strains carrying markers in several mitochondrial antibiotic resistance loci have been employed in a study of the retention and deletion of mitochondrial genes in cytoplasmic petite mutants. An assessment is made of the results in terms of the probable arrangement and linkage of mitochondrial genetic markers. The results are indicative of the retention of continuous stretches of the mitochondrial genome in most petite mutants, and it is therefore possible to propose a gene order based on co-retention of different markers. The order par, mik1, oli1 is suggested from the petite studies in the case of three markers not previously assigned an unambiguous order by analysis of mitochondrial gene recombination. The frequency of separation of markers by deletion in petites was of an order similar to that obtained by recombination in polar crosses, except in the case of the ery1 and cap1 loci, which were rarely separated in petite mutants. The deletion or retention of the locus determining polarity of recombination (ω) was also demonstrated and shown to coincide with deletion or retention of the ery1, cap1 region of the mitochondrial genome. Petites retaining this region, when crossed with rho+ strains, display features of polarity of recombination and transmission similar to the parent rho+ strain. By contrast a petite determined to have lost the ω+ locus did not show normal polarity of marker transmission. Differences were observed in the relative frequency of retention of markers in a number of strains and also when comparing petites derived spontaneously with those obtained after ultraviolet light mutagenesis. By contrast, a similar pattern of marker retention was seen when comparing spontaneous with ethidium bromide-induced petites.  相似文献   

9.
A W Linnane  P Nagley 《Plasmid》1978,1(3):324-345
The attainment of the map of functions coded in the yeast mitochondrial genome represents the end of an era of development in mitochondrial genetics. Following the earliest genetic studies, where first the respiration-deficient petite mutants, then subsequently the other types of mitochondrial mutants, were characterized, it was realized that a genetic approach to the questions of mitochondrial biogenesis and the genetic function of mtDNA would yield much useful information. A period of intensive investigation into the behavior of mitochondrial genes in genetic crosses followed, and it was concluded that the purely genetic techniques of transmissional and recombinational analysis could not yield a map of the genetic loci, although basic rules for mitochondrial genetic manipulation were established. The concurrent studies of the nature of the deletions in petite mtDNA led to the recognition that an analysis of the behavior of genetic loci in petite mutants would provide the method for genetically mapping the positions of loci in mtDNA where conventional genetic crosses between grande strains had failed. This thesis was first confirmed by our studies of the frequencies of coretention and loss of individual loci in large populations of petite isolates, which produced the first circular genetic map of drug resistance loci on mtDNA. Subsequent to this genetic mapping phase, we established a general procedure for determining the physical map position of any mitochondrial genetic locus or mtDNA sequence by introducing the use of a molecular library of petite mutants carrying physically and genetically defined segments of mtDNA. These petites can be tested for the retention or loss of genetic loci or particular nucleotide sequences. This general solution to the mapping problem and the physical map of the Saccharomyces cerevisiae mitochondrial genome obtained, which has been confirmed by studies using restriction enzymes, has provided the field with a molecular point of reference for the many current genetic and biochemical investigations into the structure and function of mtDNA in yeast.  相似文献   

10.
Mitochondrial glutamyl-tRNA isolated from mitochondria of Saccharomyces cerevisiae was separated into two distinct species by re versed-phase chromatography. The migration of the two mitochondrial glutamyl-tRNAs (tRNAIGlu and tRNAIIGlu) differed from that of two glutamyl-tRNA species found in the cytoplasm of a mitochondrial DNA-less petite strain. Both mitochondrial tRNAs hybridized with mitochondrial DNA. Three lines of evidence demonstrate that mitochondrial tRNAIGlu and tRNAIIGlu are transcribed from different mitochondrial cistrons. First the level of hybridization of a mixture of the two tRNAs to mitochondrial DNA was equal to the sum of the saturation hybridization levels of each glutamyl-tRNA alone. Second, the two mitochondrial glutamyl-tRNAs did not compete with each other in hybridization competition experiments. Finally the tRNAs showed individual hybridization patterns with different petite mitochondrial DNAs.Hybridization of the tRNAs to mitochondrial DNA of genetically defined petite strains localized each tRNA with respect to antibiotic resistance markers. The two glutamyl-tRNA cistrons were spatially separated on the genetic map.  相似文献   

11.
Summary This paper consolidates and refines the physical map of genetic loci previously established in our laboratory, by molecular analysis of seven genetically characterized new petites (deletion mutants of mtDNA). A modified DNA-DNA hybridization procedure employing filters simultaneously bound with mtDNA from two different petites has been used to measure the overlaps in mtDNA sequences between the different petite mutants.Thus, by analysis of three new petites carrying the antibiotic-resistance loci, ery1, cap1 and par1 on their mitochondrial genomes, it has now been possible to improve our estimation of the maximum distance between the cap1 and ery1 loci. The cap1, ery1 loci, and the 21S ribosomal RNA gene have now been mapped within 5 units in the same region (map position 0 to 5 units). Similarly, by analysis of four new petites carrying the O II and/or par1 loci on their mtDNAs, the map position of the O II locus is also more accurately determined within 2 units in a region (map position 34 to 36 units) between the par1 and ana1 loci. The positions of other loci including par1, the 15S ribosomal RNA gene, and some mit - loci are also discussed.We have thus extended our library of genetically and molecularly defined petite mutants, resulting in a set of petites having overlapping regions distributed throughout the entire wild-type mitochondrial genome, consistent with the idea that yeast mtDNA is physically circular.  相似文献   

12.
This paper describes investigations into the effects of ethidium bromide on the mitochondrial genomes of a number of different petite mutants derived from one respiratory competent strain of Saccharomyces cerevisiae. It is shown that the mutagenic effects of ethidium bromide on petite mutants occur by a similar mechanism to that previously reported for the action of this dye on grande cells. The consequences of ethidium bromide action in both cases are inhibition of the replication of mitochondrial DNA, fragmentation of pre-existing mitochondrial DNA, and the induction, often in high frequency, of cells devoid of mitochondrial genetic information (ρ ° cells).The susceptibility of the mitochondrial genomes to these effects of ethidium bromide varies in the different clones studied. The inhibition of mitochondrial DNA replication requires higher concentrations of ethidium bromide in petite cells than in the parent grande strain. Furthermore, the susceptibility of mitochondrial DNA replication to inhibition by ethidium bromide varies in different petite clones.It is found that during ethidium bromide treatment of the suppressive petite clones, the over-all suppressiveness of the cultures is reduced in parallel with the reduction in the over-all cellular levels of mitochondrial DNA. Furthermore, ethidium bromide treatment of petite clones carrying mitochondrial erythromycin resistance genes (ρ?ERr) leads to the elimination of these genes from the cultures. The rates of elimination of these genes are different in two ρ?ERr clones, and in both the gene elimination rate is slower than in the parent ρ+ ERr strain. It is proposed that the rate of elimination of erythromycin resistance genes by ethidium bromide is related to the absolute number of copies of these genes in different cell types. In general, the more copies of the gene in the starting cells, the slower is the rate of elimination by ethidium bromide. These concepts lead us to suggest that petite mutants provide a system for the biological purification of particular regions of yeast mitochondrial DNA and of particular relevance is the possible purification of erythromycin resistance genes.  相似文献   

13.
The survival of the ρ+ factor and of DrugR mitochondrial genetic markers after exposure to ethidium bromide has been studied. A technique allowing the determination of DrugR genetic markers among a great number of both grande and petite colonies has been developed. The results have been analyzed by the target theory. The survival of the ρ+ factor is always less than the survival of any DrugR genetic marker. The survivals of CR and ER are similar to each other, while that of OR is greater than that of the other two DrugR markers. All possible combinations of DrugR markers have been found among the ρ- petite cells induced, while the only type found among the grande colonies is the preexisting one. The loss of the CR and ER genetic markers was found to be the most frequently concomitant, while the correlation between the loss of the OR marker and the other two DrugR markers is less strong. Similar results have been obtained after U.V. irradiation. Interpretations concerning the structure of the yeast mitochondrial genome are given and hypotheses on the mechanism of petite mutation discussed.  相似文献   

14.
The 27,100 base-pair circular mitochondrial DNA from the yeast Kloeckera africana has been found to contain an inverted duplication spanning 8600 base-pairs. Sequences hybridizing to transfer RNAs and the large ribosomal RNA are present in the duplication; however, one end of this segment terminates in the large mitochondrial ribosomal RNA sequence so that at least 1000 base-pairs of the gene are not repeated. The large and small mitochondrial ribosomal RNAs have been shown to have lengths of 2700 and 1450 bases, respectively, and genes for these sequences are separated by a minimum of 1300 base-pairs and a maximum of 1750 base-pairs. Consequences of the large inverted duplication to mechanisms of the petite mutation are discussed in terms of previous hypotheses centred on intramolecular recombination in yeast mitochondrial DNA at sequences of homology or partial homology. Despite the long inverted duplication in K. africana mitochondrial DNA, this yeast has one of the lowest frequencies of spontaneous petite mutants amongst petite positive yeasts. One implication of these findings is that in this yeast intra-molecular mitochondrial DNA sequence homology may not be an important factor in the excision process leading to petite formation.  相似文献   

15.
Summary Mitochondrial transfer RNA genes have been ordered relative to the position of five mitochondrial drug resistance markers, namely, chloramphenicol (C), erythromycin (E), oligomycin I and II (OI, OII), and paromomycin (P). Forty-six petite yeast clones that were genetically characterized with respect to these markers were used for a study of these relationships. Different regions of the mitochondrial genome are deleted in these individual mutants, resulting in variable loss of genetic markers. Mitochondrial DNA was isolated from each mutant strain and hybridized with eleven individual mitochondrial transfer RNAs. The following results were obtained: i) Of the seven petite clones that retained C, E, and P resistance markers (but not OI or OII), four carried all eleven transfer RNA genes examined; the other three clones lost several transfer RNA genes, probably by secondary internal deletion; ii) Prolyl and valyl transfer RNA genes were located close to the P marker, whereas the histidyl transfer RNA gene was close to the C marker; iii) Except for a glutamyl transfer RNA gene that was loosely associated with the OI region, no other transfer RNA genes were found in petite clones retaining only the OI and/or the OII markers; and iv) Two distinct mitochondrial genes were found for glutamyl transfer RNA, they were not homologous in DNA sequence and were located at two separate loci.The data indicate that the petite mitochondrial genome is the result of a primary deletion followed by successive additional deletions. Thus an unequivocal gene arrangement cannot be readily established by deletion mapping with petite mutants alone. Nevertheless, we have derived a tentative circular map of the yeast mitochondrial genome from the data; the map indicates that all but one of the transfer RNA genes are found between the C and P markers without forming a tight cluster. The following arrangement is suggested:-P-pro-val-ile-(phe, ala, tyr, asp)-glu2-(lys-leu)-his-C-E-OI-glu1-OII-P-.Supported in part by Cancer Center CCRC 111B-3. Present address: Laboratoire de Biologie Generale, Universite Paris-Sud Orsay, 91405, FranceThe Franklin McLean Memorial Research Institute is operated by the University of Chicago for the U.S. Energy Research and Development Administration under Contract E(11-1)69  相似文献   

16.
17.
Summary The proportion of total cell DNA which is mitochondrial DNA was measured in haploid, diploid and tetraploid strains of S. cerevisiae grown under a standard set of conditions. For all strains tested the mitochondrial DNA level was in the range 16%–25% of total cell DNA. Repeated measurements of the cellular level of mitochondrial DNA in two haploid strains showed that these strains have measurably different cellular mitochondrial DNA levels (17% and 24% of total DNA, respectively) under our conditions. These two grande strains were used to investigate the role of the mitochondrial and nuclear genomes in the regulation of the mitochondrial DNA level. We have shown by genetic analysis that the difference between these two strains is determined by at least two nuclear genes. The mitochondrial genome is not involved in the regulation of cellular mitochondrial DNA levels.A number of purified petite clones derived from independent spontaneous petite isolates of the grande strain which contained 24% mitochondrial DNA were also studied. The mitochondrial DNA levels in all but one of these petites fell in the range 20–25% of total cell DNA. From these results we conclude that, in general, the mitochondrial DNA level in petite strains is controlled by the same mechanism as operates in grande strains.We propose a general model for the control of the cellular mitochondrial DNA level, in which the amount of mitochondrial DNA per cell is determined by regulation of the number of mitochondrial DNA molecules per cell. This regulation is mediated through the availability of a set of nuclear coded components, possibly a mitochondrial membrane site, which are required for the replication of mitochondrial DNA.  相似文献   

18.
B C Hyman  J H Cramer  R H Rownd 《Gene》1983,26(2-3):223-230
Restriction fragments produced by a complete Sau3A cleavage of Saccharomyces cerevisiae grande mitochondrial DNA were ligated into the yeast-Escherichia coli shuttle vector YIp5 to establish a clone library representing the mitochondrial genome. 30 hybrid plasmids with an average insert size of 1200 bp were chosen at random and tested for the presence of an autonomously replicating sequence (ars). Over two-thirds of these plasmids transformed yeast at high frequency, indicating the mitochondrial genome contains a large number of ars elements. Our calculations suggest there may be over 40 ars elements contained within the mitochondrial DNA with an average spacing of less than 1700 bp. Mapping experiments indicate that ars elements can be found at many locations on the mitochondrial genome, and in the initial example we have tested, the locations of ars elements derived from grande and petite mtDNAs appear to coincide. If we assume that these ars elements represent mitochondrial DNA replication origins used in vivo, these observations would explain in part the fact that petite mtDNAs can be derived from any location on the grande mitochondrial genome.  相似文献   

19.
Petite strains in Saccharomyces exhibit enhanced spontaneous mutation rates of nuclear genes regardless of whether they are cytoplasmically or nuclearly inherited, or whether or not the cytoplasmic petite strains have mitochondrial DNA. In petite strains, the mutation rate for the nonsense allele lys1-1 is enhanced by a factor of 3-6 and for the missense allele his1-7 by a factor of 2 as compared with their grande counterparts. The reversion of a third allele, the putative frameshift mutation, hom3-10 , is not enhanced in a petite background. The results indicate that the spontaneous mutation rate of an organism can be altered by indirect intracellular influences.  相似文献   

20.
Three related polyoma virus species, designated D92 (92% the size of full-length polyoma virus DNA), D91 (91%) and D76 (76%) have been analysed and their structures compared with that of polyoma virus A2 DNA. Three independent methods (restriction endonuclease cleavage, depurination fingerprinting and DNA-DNA hybridization) were used in the analysis.The defective DNAs appear to be: (1) entirely composed of viral sequences (no host DNA sequences were detected): (2) made up in part of long continuous sequences of DNA which appear identical to sequences of A2 DNA (D92 contains continuous sequences from 1 to 72 map units on the physical map of A2 DNA; that is, it contains the entire late region and part of the early region of the viral DNA. D91 and D76 contain those same sequences except for a 1% deletion around 18 map units): (3) made up in part of rearranged viral sequences.Several interesting features were noted about the rearranged sequences present in the defective DNAs. Sequences from the region around 67 map units were found linked to other (non-contiguous) regions of the DNA. Sequences from about 72 map units were linked to sequences from about 1 map unit. Multiple copies of sequences from 67 to 72 map units (from around the origin of DNA replication) were found (4 copies in D91 and D92, and 2 copies in D76).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号