首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diel variation in habitat use of subyearling Chinook salmon (Oncorhynchus tshawytscha), subyearling coho salmon (O. kisutch), yearling steelhead (O. mykiss), and yearling Atlantic salmon (Salmo salar) was examined during the spring in two tributaries of Lake Ontario. A total of 1318 habitat observations were made on juvenile salmonids including 367 on steelhead, 351 on Chinook salmon, 333 on Atlantic salmon, and 261 on coho salmon. Steelhead exhibited the most diel variation in habitat use and Chinook the least. Juvenile salmonids were generally associated with more cover and larger substrate during the day in both streams. Interspecific differences in habitat use in both streams occurred with Atlantic salmon (fast velocities) and coho salmon (pools) using the least similar habitat. Chinook salmon and Atlantic salmon used similar habitat in both streams. These findings should help guide future management actions specific to habitat protection and restoration of Atlantic salmon in Lake Ontario tributaries.  相似文献   

2.
Since juvenile Atlantic salmon (Salmo salar) and Chinook salmon (Oncorhynchus tshawytscha) occupy a similar habitat in Lake Ontario tributaries, we sought to determine the degree of diet similarity between these species in order to assess the potential for interspecific competition. Atlantic salmon, an historically important but currently extirpated component of the Lake Ontario fish community, are the focus of a bi‐national restoration effort. Presently this effort includes the release of hatchery produced juvenile Atlantic salmon in Lake Ontario tributaries. These same tributaries support substantial numbers of naturally reproduced juvenile Pacific salmonids including Chinook salmon. Subyearling Atlantic salmon and subyearling Chinook salmon had significantly different diets during each of the three time periods examined. Atlantic salmon fed slightly more from the benthos than from the drift and consumed mainly chirononmids (47.0%) and ephemeropterans (21.1%). The diet of subyearling Chinook salmon was more closely associated with the drift and consisted mainly of chironomids (60.2%) and terrestrial invertebrates (16.0%). Low diet similarity between subyearling Atlantic salmon and subyearling Chinook salmon likely minimizes competitive interactions for food between these species in Lake Ontario tributaries. However, the availability of small prey such as chironomids which comprise over 50% of the diet of each species, soon after emergence, could constitute a short term resource limitation. To our knowledge this is the first study of interspecific diet associations between these two important salmonid species.  相似文献   

3.
Over‐winter survival of salmonids in streams is thought to be an important population regulation mechanism. Yet because of the difficulty of conducting field studies due to adverse weather or ice conditions, compared to other seasons, salmonid ecology during winter is least understood. Consequently, we sought to examine interspecific feeding associations of an important salmonid stream assemblage in the Lake Ontario watershed during winter. The diets of Atlantic salmon (Salmo salar) parr, brown trout (S. trutta) parr, and rainbow trout (Oncorhynchus mykiss) parr were significantly different in February but not in March. Salmonid diets differed from the benthos and the drift during both months. Dipterans (chironomids, simuliids, and tipulids) and ephemerellids were the major prey taxa consumed. All three species fed more heavily on prey items from the benthos than from the drift. The diet of Atlantic salmon had the highest similarity to the benthos whereas the diet of brown trout had the lowest similarity to the drift. All three salmonid species generally selected ephemerellids, limnephilids, and chironomids and avoided elmids. These winter feeding observations are the first reported for this specific salmonid assemblage and will help managers better understand interspecific associations during this critical period.  相似文献   

4.
Synopsis This paper describes the magnitude and geographic dispersion of adult steelhead trout, Salmo gairdneri, diverted from Columbia River tributaries which were impacted by the 1980 volcanic eruption of Mount St. Helens. Compelling circumstantial evidence suggests that for 1–3 yr after the eruption, large numbers of adult steelhead migrating toward affected tributaries entered two non-affected tributaries flowing into the Columbia River upstream of natal streams. Streams downstream of affected tributaries did not appear to receive substantial numbers of displaced fish. I estimated that the percentage of non-natal steelhead migrating into the lower portions of the nearest upstream river increased from 16% pre-eruption to 45% post-eruption. Winter-run steelhead strays probably originated from both the Cowlitz and Toutle rivers, whereas summer-run strays originated predominantly from the Toutle River. Increased natural production in tributaries resulting from the infusion of large numbers of strays was of insufficient magnitude to be detected by the methods of this study.  相似文献   

5.
River restoration plans often propose multiple rehabilitation actions to address key habitat impairments, but they rarely attempt to quantify the potential benefits of alternative sets of actions for targeted biota. We use geomorphic and biological analyses to estimate restoration potential under three alternative scenarios for a 64‐km section of the Trinity River, California, between the North Fork Trinity River and Lewiston Dam, which is the focus of habitat rehabilitation efforts under the Trinity River Restoration Program. The three scenarios are (1) increasing habitat quality by wood additions and alcove construction, (2) increasing habitat quantity by increasing sinuosity and side‐channel length, and (3) increasing both habitat quality and quantity. For each scenario, we used existing stream habitat and juvenile salmonid data from previous studies to estimate potential improvements in fry or pre‐smolt production. The potential increase in Oncorhynchus tshawytscha (Chinook salmon) and O. mykiss (steelhead) fry rearing capacity was 62 and 67%, respectively, for Scenario 1 (increasing habitat quality), and 36 and 44% for Scenario 2 (increasing habitat quantity). Only the most optimistic Scenario 3 (increasing both habitat quality and quantity) more than doubles potential juvenile salmonid production (112% increase in Chinook fry capacity and 107% increase in steelhead fry capacity). These quantitative predictions are useful in developing realistic restoration targets and evaluating whether proposed restoration actions can achieve the aims of a restoration program.  相似文献   

6.
Habitat fragmentation by damming can affect the persistence of single species population and also coexistence of two or more species through intensified competition. This study examined the effects of habitat fragmentation by damming on the coexistence of two stream-dwelling salmonids: the southern form of white-spotted charr (Salvelinus leucomaenis japonicus) and the red-spotted masu salmon (Oncorhynchus masou ishikawae). We examined charr, salmon, and dam distributions in 27 streams of the Fuji River basin, central Japan. In the 1970s, there were streams with five sympatric and 22 allopatric populations (n = 13 for charr, n = 9 for salmon). However, from the 1970s to 2004, 356 impassable dams were constructed in the surveyed streams, and four of the five sympatric streams became allopatric. In the extant sympatric stream, more than 20 dams fragmented habitat. Species distributions were separated by dams (with decreasing altitude) in the following order: extirpation area, charr-dominant area, and salmon-dominant area. Within the uppermost sympatric section (i.e., situated between the dams), salmon congregated in the largest uppermost pool just below the dam; despite these conditions, salmon frequency increased in the downstream direction at the stream scale. The results suggest that habitat fragmentation threatens the coexistence of stream-dwelling charr and salmon at both the basin and stream scales. We believe that exclusion of one species by another is likely in extremely fragmented habitats with minimal gradients and little variation in physical conditions (through reduced stream gradient and increased sand sedimentation caused by damming). In addition, multiple sites of damming ensure that there are no salmonid refuges from the collapse of metapopulation structure. In such fragmented habitats, even small tributaries serve important roles, as they are used mainly by salmonid fry and juveniles. We propose that habitats of native salmonids should be maximized by reconnecting fragmented habitats as part of a broader management plan.  相似文献   

7.
An experimental analysis of self-thinning in juvenile steelhead trout   总被引:1,自引:0,他引:1  
Ernest R. Keeley 《Oikos》2003,102(3):543-550
Mobile animal populations have been proposed to decline in density according to a slope based on the allometry of metabolic requirements or space requirements. In salmonid fishes, metabolic rate and food consumption scale to body mass by the exponent 0.87 and 0.73, respectively; whereas the territory size of steelhead trout scales to body mass by the exponent 0.86. Experimental cohorts of juvenile steelhead trout ( Oncorhynchus mykiss ) were used to test the hypothesis that mobile animal populations composed of individuals with indeterminate growth decline in density as a result of self-thinning. After controlling for experimentally manipulated levels of food abundance and stocking density, cohorts of steelhead trout declined in density with increasing body size according to a slope closest to the allometry of food consumption. Densities of steelhead trout were inversely related to average mass by the exponent −0.74. Despite the similarity to the food consumption slope, a relatively wide confidence interval also precluded distinguishing the slope either the metabolic rate or territory size slopes. Data from the literature were also examined to determine if there was general support for the idea of self-thinning in natural populations of stream-dwelling salmonid fish. Although not all data suggest that populations of salmonids in streams decline as a result of density-dependent intraspecific competition, at least some appear to fit the idea of self-thinning; especially when density is above a minimum level of habitat saturation.  相似文献   

8.
We compared the diet of hatchery-reared steelhead produced from an integrated hatchery program as emigrating spring smolts and non-migrating hatchery residuals to their sympatric wild counterparts. Our results suggest that there is a potential for hatchery fish to affect wild steelhead populations due to dietary overlap and subyearling salmonid predation; however, relative ecological risk did not increase as steelhead delayed or forwent emigration. Predation by hatchery smolts was related to release timing, but not experience with native fish. Diet composition appears to be more strongly affected by seasonal and yearly differences in prey abundance and presence rather than differences in rearing environments. Hatchery and wild steelhead showed small but important foraging differences. Hatchery smolts did not consume as many salmonids as wild fish and hatchery residuals showed relatively stronger surface oriented feeding behavior than wild parr. Because most hatchery smolts emigrated shortly after release and the overall number of residuals in the study creek was low, we speculate that in this case there is low dietary and predatory-based risk of hatchery steelhead in Abernathy Creek negatively impacting wild salmonids.  相似文献   

9.
Movement behaviors are central to ecology and conservation. Movement sensing technologies can monitor behaviors that are otherwise difficult to observe under field conditions and may enhance the ability to quantify behaviors at the population scale. We monitored steelhead trout (Oncorhynchus mykiss) spawning behaviors in a seminatural enclosure using accelerometer telemetry tags while simultaneously observing behaviors with underwater cameras. Behavioral assignments from visual observations were compared to acceleration histories to develop assignment criteria for acceleration data, including for a key behavior (oviposition). Behavioral events independently classified using acceleration data prior to reviewing video were compared to video scoring and 97% of holding behaviors, 93% of digging behaviors, and 86% of oviposition/covering behaviors were correctly assigned using acceleration data alone. We applied the method to at‐liberty steelhead in spawning tributaries. Acceleration records revealed putative spawning and oviposition in at‐liberty female steelhead, and time budgets for at‐liberty steelhead were similar to those monitored within enclosures. The use of similar movement sensing tags and classification approaches offers a method for monitoring movement behavior, activity budgets, and habitat use in a broad array of aquatic and terrestrial taxa, and may be especially useful when behaviors are cryptic.  相似文献   

10.

Lake Tana is one of East Africa’s largest freshwater bodies, yet many of its fishes are migratory and utilize in-flowing tributaries as critical spawning habitat. However, factors such as expanding water resources developments and sand mining along these rivers and streams may disrupt this ecosystem function. We monitored juvenile and adult fish abundance and water quality across five lake tributaries from August 2014 to April 2015 to examine how irrigation schemes and water quality affect assemblage and population structure. Adult assemblages were dominated by Labeobarbus cyprinids and varied between tributaries, albeit without separation by irrigation development or sand mining. Overall, adult abundances of the dominant migratory Labeobarbus species were four-fold higher below the Shini River irrigation weir than upstream. Contrastingly, juvenile abundances were often significantly higher above these structures. Juvenile abundances decreased on average by 46% along the first 1000 m of two irrigation canals, suggesting poor habitat suitability or high mortalities from water withdrawals. Water quality varied more between rivers than sampling times, but without any separation of tributaries by irrigation or sand mining. Conductivity and turbidity-related parameters had the highest correlation with adult assemblage structure and individual species abundances. These findings indicate that Lake Tana tributaries must be managed on a case by case basis, with more focus given to mechanisms allowing fish to bypass irrigation developments and the direct assessment of fish populations between sand mining and other sites.

  相似文献   

11.
12.
The introduction of nonnative salmonids in the Southern Hemisphere generally leads to a reduction in invertebrate abundance and changes in assemblage composition. In the Cape Floristic Region of South Africa, introduced rainbow trout Oncorhynchus mykiss is the dominant predator in many headwater streams, where they have replaced small‐bodied native fishes such as Breede River redfin Pseudobarbus burchelli. To examine the consequences of this species replacement on food web structure, we used a month‐long field experiment to compare the top‐down effects of Breede River redfin and rainbow trout on benthic invertebrate assemblages (abundance and composition) and basal resources (periphyton and particulate organic matter) in 1 × 1.5 m of plastic cages. Benthic invertebrate abundance was more strongly depleted in the cages with redfin than in the cages with trout, and redfin and trout had distinct effects on invertebrate assemblage composition. On the other hand, neither redfin nor trout had a significant influence over standing stocks of periphyton or organic matter, implying that their differential effects on benthic invertebrates did not cascade down to the base of the stream food web in our experiment. Gut content analysis showed that aquatic invertebrates contributed more to the diet of redfin, while terrestrial invertebrates contributed more to the diet of trout, which may be responsible for the relatively weak effect of trout on aquatic invertebrates. This pattern contrasts with nonnative salmonid impacts elsewhere in the Southern Hemisphere. That trout can strongly alter the structure of benthic invertebrate assemblages, in addition to severely depleting native fish abundance, in Cape Floristic Region headwater streams should be weighed into management decisions, and our findings highlight the need for a detailed understanding of species‐specific top‐down effects where native predators are replaced by invasive predators.  相似文献   

13.
Anadromous salmonids are viewed as a prized commodity and cultural symbol throughout the Pacific coast of North America. Unfortunately, several native salmonid populations are threatened or at risk of extinction. Despite this, little is known about the behavior and survival of these fish as the juveniles transition from freshwater to the ocean. Our primary objectives were to estimate survival of juvenile steelhead migrating between trapping sites and the ocean and evaluate whether survival in the estuary varies temporally (within a year) or spatially (within and between estuaries) within the same distinct population segment. We also evaluated whether flow or fork length were correlated with survival and collected information on variables that have been demonstrated to affect smolt survival in other studies to lend insight regarding differences in survival estimates between basins. We compared run timing, migration rate, survival, condition factor, age composition and time of residence in the estuary for steelhead outmigrants from each basin and measured parasite loads in outmigrating steelhead to evaluate potential differences in parasite density and parasite community between basins. In 2009, we implanted acoustic transmitters in 139 wild steelhead smolts in two small rivers on the Oregon Coast. In general, only 40–50 % of the wild steelhead smolts tagged at upstream smolt traps were detected entering the ocean. The majority of mortality occurred in the lower estuary near the ocean. Wild steelhead smolts typically spent less than 1 day in the estuary in both basins. Using similar data from previous studies in the Nehalem and Alsea basins, we showed that survival appears to be negatively correlated with flow in most releases, and in 2009 fork length was not correlated with survival. Our observations provide baseline information on factors that could influence smolt survival through the estuary as well as smolt to adult survival in these basins, and emphasize the importance of monitoring smolt survival in the estuary.  相似文献   

14.
Thirty years ago, Fausch (Can J Zool 62:441–451, 1984) proposed a simple model of optimal positions for drift-feeding salmonids in streams, whereby fish maximize their net energy intake (NEI) by selecting focal points in low water velocity near faster currents that deliver abundant drifting invertebrates. The theory was based on earlier observations in artificial and natural streams describing characteristics of salmonid positions and a conceptual model by Chapman (Am Nat 100:345–357, 1966). A test of this simple drift foraging model in a laboratory stream showed that the growth rate of juvenile trout and salmon increased with NEI, and that the rank of NEI at positions held by coho salmon (Oncorhynchus kisutch) correlated nearly perfectly with their rank in the dominance hierarchy. Fausch (1984) inferred from these findings that positions that optimize NEI, within the constraints of the dominance hierarchy, are the resource for which these stream salmonids compete. In turn, the model was used to test the effects of interspecific competition by coho salmon on the foraging positions held by brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta), and these results were used to infer potential effects of the introduced salmon on resident trout in Lake Michigan tributaries. Though the goals for this model were originally modest, it was tested in the field and further refined by Hughes and Dill (Can J Fish Aquat Sci 47:2039–2048, 1990) and others. During the last 20 years, the general theory has been incorporated into other models, which have been applied widely to analyze salmonid distribution and abundance in streams and rivers and used for management and restoration of habitat and flow regimes to benefit these fishes.  相似文献   

15.
The feeding habits of sand smelt (Atherina boyeri, Risso, 1810) from Trichonis Lake (Western Greece) were investigated. Stomach contents were analyzed from 240 specimens with total lengths ranging from 35 to 112 mm. Samples were taken at monthly intervals (January–December 1997). Of the total number of stomachs examined, 53 were empty (22.1%). However, values varied greatly with season (maximum in January: 50%; minimum in August: 7.6%). Prey analyses of stomach contents identified 15 important items (%Rn > 0.05) belonging to six major groups: crustacean (copepods, cladocera), mollusca (bivalve: larvae), insects (larvae), cestode worms and finfish (fry and eggs). Dominant prey were larvae of the bivalve Dreissena polymorpha (%Rn = 33.8), the copepods Eudiadomus drieschi (%Rn = 26.4) and the cladocera Diaphanosoma brachyurum (%Rn = 24.2). The importance of cladocera and copepods decreased with increasing size of the sand smelt, while the importance of bivalve larvae, fish eggs and finfish fry increased with increasing sand smelt size. Seasonal changes in diet composition and prey abundance in sand smelt stomachs were recorded as coinciding with the seasonal composition and abundance of the zooplankton community in the surface layers of Trichonis Lake. Bivalve larvae were the dominant prey of A. boyeri during January to May, while copepods and cladocera dominated from June to December.  相似文献   

16.
Numerous studies of population genetics in salmonids and other anadromous fishes have revealed that population structure is generally organized into geographic hierarchies (isolation by distance), but significant structure can exist in proximate populations due to varying selective pressures (isolation by adaptation). In Chignik Lakes, Alaska, anadromous Dolly Varden char (Salvelinus malma) spawn in nearly all accessible streams throughout the watershed, including those draining directly to an estuary, Chignik Lagoon, into larger rivers, and into lakes. Collections of Dolly Varden fry from 13 streams throughout the system revealed low levels of population structure among streams emptying into freshwater. However, much stronger genetic differentiation was detected between streams emptying into freshwater and streams flowing directly into estuarine environments. This fine‐scale reproductive isolation without any physical barriers to migration is likely driven by differences in selection pressures across freshwater and estuarine environments. Estuary tributaries had fewer larger, older juveniles, suggesting an alternative life history of smolting and migration to the marine environment at a much smaller size than occurs in the other populations. Therefore, genetic data were consistent with a scenario where isolation by adaptation occurs between populations of Dolly Varden in the study system, and ecological data suggest that this isolation may partially be a result of a novel Dolly Varden life history of seawater tolerance at a smaller size than previously recognized.  相似文献   

17.
  1. Using stable isotope ratios to explore the trophic ecology of freshwater animals requires knowledge about effects of food quality on isotopic incorporation dynamics. The aim of this experimental study was to: (1) estimate carbon and nitrogen isotopic incorporation rates and trophic discrimination factors (TDFs) of a freshwater first-feeding fish (i.e. salmonid fry) fed three diets that differed only in protein quality (animal or plant or a blend of both); (2) investigate effects of fasting and; (3) evaluate the proportion of each source assimilated when fry were fed a 50:50 animal:plant-based diet.
  2. For each diet, incorporation rates of δ13C and δ15N values were estimated using a time or growth-dependent isotopic incorporation model. Effects of fasting on isotope ratio values were measured regularly until the death of fry. Bayesian stable-isotope mixing models were used to estimate the contribution of animal and plant material to fish fed a blend of both food types.
  3. Our results show that incorporation rates were lower for fry fed a plant-based diet than for those fed an animal-based diet as growth rate decreased. Time- and growth-dependent models indicated that growth was solely responsible for isotopic incorporation in fry fed an animal-based diet, whereas catabolism increased in fry fed a plant-based diet. After lipid extraction, carbon TDFs were similar regardless of the diet, whereas nitrogen TDFs increased for fry fed a plant-based diet. Long-term fasting induced an increase of 0.63‰ in δ13C values of fry in 23 days, whereas δ15N values did not vary significantly. Proportions of food sources assimilated by fry fed an animal:plant-based diet were similar to those consumed when using a mixing model with the estimated TDFs, while proportions were unrealistic when using mean TDFs extrapolated from the literature.
  4. The results of our study indicate that the quality of food must be considered to use an appropriate timescale to detect changes in fry diets in the field. Moreover, we recommend using different carbon and nitrogen TDFs, one for animal-derived sources and one for plant-derived sources, to increase the accuracy of mixing models.
  相似文献   

18.
Pikeperch is a major predator in the pelagic zone of eutrophic waters, such as the large north-temperate lowland lakes Võrtsjärv (Estonia) and Peipsi (Estonia/Russia). The size and structure of the pikeperch population is strongly influenced by their success at the juvenile stage. Therefore, we investigated the diet and prey selection of pikeperch fry caught in the ice-free period in lakes Peipsi and Võrtsjärv in 2007 and 2008. We analysed the stomach contents of 635 pikeperch from Lake Peipsi and 202 pikeperch from Lake Võrtsjärv, and compared our findings with similar data from the 1950s (Erm, About Biological and Morphological Differences of Pikeperch. Hydrobiological Researches II (in Estonian), 1961). Analysing 4–20 cm long fry, we studied differences in prey size, seasonal diet patterns and the ontogenetic diet shift. In both lakes, 0+ pikeperch feed mostly on large predatory zooplankters. However, in Lake Peipsi the stomach content weight and the average number of food items in stomach were higher, and the food spectrum was wider than in Lake Võrtsjärv. There was also a difference in the type of food that dominated fry’s stomach content (calculated by weight) in the two lakes. In Lake Peipsi, chironomids larvae, as well as zooplankters Daphnia galeata and Bythotrephes longimanus dominated, while in Lake Võrtsjärv zooplankters Mesocyclops leuckarti and Leptodora kindti. Seasonal analysis showed that cladocerans dominated in pikeperch fry stomach content in summer and at the beginning of September, but copepods were dominant in autumn and spring. In contrast to the studies carried out from 1952 to 1958 (Erm, About Biological and Morphological Differences of Pikeperch. Hydrobiological Researches II (in Estonian), 1961), the shift from planktivory to piscivory at the end of the first growing season was hardly ever observed during our investigation. We believe this is due to the lack of suitable prey fish as there was a collapse of the smelt, Osmerus eperlanus (L.), population in both lakes. The transition of pikeperch from planktivory to piscivory was delayed till the next summer.  相似文献   

19.
Substantial evidence from the animal kingdom shows that there is a trade-off between benefits and costs associated with rapid somatic growth. One would therefore expect growth rates under natural conditions to be close to an evolutionary optimum. Nevertheless, natural selection in many salmonid species appears to be toward larger size and earlier emergence from spawning redds, indicating a potential for increased growth rate to evolve. We tested how selection for genetic variants (growth hormone transgenic coho salmon, Oncorhynchus kisutch, with more than doubled daily growth rate potential relative to wild genotypes) depended on predator timing and food abundance during the early period of life (fry stage). In artificial redds, fry of the fast-growing genotypes showed a highly significant developmental shift, emerging from gravel nests approximately two weeks sooner, but with an 18.6% reduced survival, relative to wild-genotype fry. In seminatural streams, fry of the fast-growing genotypes suffered higher predation than those of wild genotypes when predators were present at the time of fry emergence, but this difference was less pronounced when food was scarce. In streams where predators were introduced after emergence, fry survived equally well regardless of food availability. Surviving fry grew faster in habitats provided with more food, and fast-growing genotypes also grew faster than wild genotypes when predators arrived late and food was abundant. Fewer fish migrated downstream past a waterfall when food availability was high and in the presence of predators, and wild-genotype fry were more likely to migrate than fry of the fast-growing genotypes. After being returned to the experimental streams after migration, fast-growing genotypes survived equally well as those of the same genotypes that did not migrate, whereas migrating wild genotypes experienced higher mortality relative to those of the same genotypes that did not migrate. Comparisons of growth rates between siblings retained under hatchery conditions and those from habitats with the fastest growth in the experimental stream revealed that growth rates were similar for wild genotypes in both environments, whereas the fast-growing genotypes in the streams only realized 90% of their growth potential. The present study has shown that a major shift in developmental timing can alter critical early stages affecting survival and can have a significant effect on fitness. Furthermore, ecological conditions such as food abundance and predation pressure can strongly influence the potential for fast-growing variants to survive under natural conditions. The large-scale removal of many predatory species around the world may augment the evolution of increased intrinsic growth rates in some taxa.  相似文献   

20.
We assessed whether tributaries in upland catchments (=watersheds) affected assemblages of benthic macroinvertebrates in mainstems, as has been reported in northern hemisphere systems. Eight confluences of small to medium streams (stream orders 1–4, 2.2–10.8 m wide) were studied in the Acheron River basin in Victoria, Australia. For each confluence, two transects were sampled at each of five zones relative to the confluence: two zones upstream in the mainstem, one zone upstream in the tributary, one zone at the confluence and one zone downstream in the mainstem. Surveys were conducted in both high-flow and low-flow conditions. In mainstems, there was no change in macroinvertebrate density, taxonomic richness or functional feeding group composition downstream relative to upstream of the confluences. While tributaries statistically had distinctive benthic macroinvertebrate assemblages compared to mainstems, these distinctions were small. In low flows, densities in tributaries were substantially lower than in mainstems, but densities during high flows were more similar (albeit only about one-third as high as in low flow) in tributaries and mainstems. An inverse pattern was evident for taxonomic richness, where richness in tributaries and mainstems was similar in low flows but was greater in mainstems than in tributaries in high flows. We found little evidence of tributary effects in macroinvertebrate assemblages in this basin, which is at odds with some previous results from other continents. To explain this divergence, we suggest a conceptual model outlining factors that control variation in effects of tributaries on assemblages of benthic macroinvertebrates in mainstems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号