首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
ABSTRACT The Wattled Curassow (Crax globulosa) is a globally threatened species restricted to humid várzea forest (seasonally flooded forest along white‐water rivers) in low‐lying regions of Amazonia. The Wattled Curassow were thought to have been extirpated from the Beni area of Bolivia, but were rediscovered near the Río Negro River in 2001. Our objectives were to determine the size of this population, examine habitat use, and based on our results, assess the conservation status of the Wattled Curassow. During July and August 2006, we used distance sampling to estimate the population density in our study area. We estimated the density of Wattled Curassows at 3.4 (95% CI: 1.4–8.1) individuals/km2 and all were observed within 300 m of the river. Based on the availability of suitable habitat (18 km2 of riparian várzea habitat within 300 m of the river), we estimated that the breeding population of Wattled Curassows in our study area consisted of 61 individuals. The specialized habitat requirements of the Wattled Curassow has important conservation implications because previous population estimates were based on the availability of várzea forest rather than the availability of water edge habitat within várzea forest. As a result, the current global population estimate (2500–9999) is higher than our estimate (500–2500) that takes the specialized habitat requirements of the Wattled Curassow into account. Given this low estimated population, along with the severely fragmented state of the few remaining populations and their dependence on a specialized and vulnerable habitat, we recommend that the status of the Wattled Curassow be upgraded from Vulnerable to Endangered.  相似文献   

2.
The Wattled Curassow (Crax globulosa, Cracidae, Aves) is a large bird living in the Western Amazon basin and a critically endangered species in the Colombian and in the Peruvian Amazon. We carried out the first population genetics analysis of this species employing six nuclear microsatellite markers and sequences of the mtND2 gene. The main results are as follows. (1) The levels of gene diversity were high for the overall population as well as for each of the three islands for both microsatellites and mtDNA. (2) A small amount of genetic differentiation among populations was found with both types of markers (FST = 0.027 for microsatellites and NST = 0.17 for mitochondrial sequences). (3) Using microsatellites, the Geneclass 2.0 software detected a low correct assignment of individuals to their respective populations. The Structure software only detected one gene pool for the entire area studied. These results are relevant for conservation efforts of this critically endangered species.  相似文献   

3.
Rolf Singer 《Plant Ecology》1988,78(1-2):27-30
In a comparative survey the terms (terra-firme) flood plain, igapó, várzea with and without black water influence are reviewed and the importance of ectotrophic mycorrhiza for their definition emphasized. Várzea alta with fluvisol base is briefly characterized and a first list of Basidiomycetes collected in it is provided. These are all non-mycorrhizal litter fungi.  相似文献   

4.
5.
    
Sediment‐rich rivers seasonally flood central Amazonian várzea forests, leading to periodic anoxic conditions in the rhizosphere and requiring morphological and structural adaptations, such as aboveground root systems. We investigated some possible relationships between root types and environmental factors in forest plots covering 3.1 ha of várzea in the Mamirauá Sustainable Development Reserve, Brazil. Digital elevation models of the study sites were obtained; sedimentation and soil texture were investigated to check relationship between position of trees on the flood gradient, soil conditions, and aboveground root systems. Different types of aboveground roots were closely related to flooding duration and habitat dynamics. Species subjected to higher and more prolonged floods tended to produce more aboveground roots than species subjected to lower and shorter inundations. Plank‐buttressing species increased with decreasing flood height and/or flood duration, and with increasing growth height and basal area. Habitats inundated for long periods were dominated by species with low growth heights and low basal areas, which formed stilt roots and aerial roots. Root system and sediment deposition showed a close relationship, plank buttressing being more common in sites subjected to lower sediment rates. In the disturbed sites close to the main river channel colonized by pioneer species, the occurrence of buttresses was lower than in less disturbed climax stages. No clear relationship was found between root systems and sediment grain sizes.  相似文献   

6.
  总被引:2,自引:0,他引:2  
Aim Attention has increasingly been focused on the floristic variation within forests of the Amazon Basin. Variations in species composition and diversity are poorly understood, especially in Amazonian floodplain forests. We investigated tree species composition, richness and α diversity in the Amazonian white‐water (várzea) forest, looking particularly at: (1) the flood‐level gradient, (2) the successional stage (stand age), and (3) the geographical location of the forests. Location Eastern Amazonia, central Amazonia, equatorial western Amazonia and the southern part of western Amazonia. Methods The data originate from 16 permanent várzea forest plots in the central and western Brazilian Amazon and in the northern Bolivian Amazon. In addition, revised species lists of 28 várzea forest inventories from across the Amazon Basin were used. Most important families and species were determined using importance values. Floristic similarity between plots was calculated to detect similarity variations between forest types and over geographical distances. To check for spatial diversity gradients, α diversity (Fisher) of the plots was correlated with stand age, longitudinal and latitudinal plot location, and flood‐level gradient. Results More than 900 flood‐tolerant tree species were recorded, which indicates that Amazonian várzea forests are the most species‐rich floodplain forests worldwide. The most important plant families recorded also dominate most Neotropical upland forests, and c. 31% of the tree species listed also occur in the uplands. Species distribution and diversity varied: (1) on the flood‐level gradient, with a distinct separation between low‐várzea forests and high‐várzea forests, (2) in relation to natural forest succession, with species‐poor forests in early stages of succession and species‐rich forests in later stages, and (3) as a function of geographical distance between sites, indicating an increasing α diversity from eastern to western Amazonia, and simultaneously from the southern part of western Amazonia to equatorial western Amazonia. Main conclusions The east‐to‐west gradient of increasing species diversity in várzea forests reflects the diversity patterns also described for Amazonian terra firme. Despite the fine‐scale geomorphological heterogeneity of the floodplains, and despite high disturbance of the different forest types by sedimentation and erosion, várzea forests are dominated by a high proportion of generalistic, widely distributed tree species. In contrast to high‐várzea forests, where floristic dissimilarity increases significantly with increasing distance between the sites, low‐várzea forests can exhibit high floristic similarity over large geographical distances. The high várzea may be an important transitional zone for lateral immigration of terra firme species to the floodplains, thus contributing to comparatively high species richness. However, long‐distance dispersal of many low‐várzea trees contributes to comparatively low species richness in highly flooded low várzea.  相似文献   

7.
    
Aim To determine the effect and relative importance of geographic and local environmental factors on species richness and turnover of ant assemblages in floodplain forests across the Amazon basin. Location Twenty‐six mature forest sites scattered along the entire extension of the Amazon River in Brazil. The study area encompassed nearly 18° of longitude and 3.5° of latitude. Methods Systematic collections of ants were performed at each site during the low‐water season (i.e. when forests are not inundated) using three complementary sampling methods. We used variance partitioning techniques to assess the relative effects of the spatial (latitude and longitude) and environmental (rainfall, length of the dry season and flood height) variables on ant species richness and composition. Results There was a twofold variation in the number of species per site, which was largely explained by inter‐site variations in rainfall seasonality and flooding intensity. In general, there were more species at sites located in the western part of the basin, where the dry season is less severe, or near the river estuary, where precipitation is also high and flooding is less intense. Ant community composition was also affected by environmental heterogeneity. For instance, some species only occurred at those sites less affected by the river’s seasonal flooding, whereas others were mostly associated with the drier or wetter regions of the basin. In addition, the turnover of species increased significantly as geographic distances increased. Nevertheless, the rate of change was small given that many species had a broad distribution across the study area. Main conclusions Ant distribution patterns along the floodplain forests of the Amazon appear to be controlled to a relatively large extent by the current gradient in flooding intensity and – most importantly – in precipitation. Altered rainfall regimes resulting from global warming and land‐use change thus have the potential to influence these patterns.  相似文献   

8.
We investigated species composition, distribution, and forest structure of understory trees (≥1 m height, <10 cm diameter at breast height) in two late-successional várzea forests subject to contrasting levels of inundation within the Mamirauá Sustainable Development Reserve, western Brazilian Amazon, and compared it with the overstory flora at the same study sites. In total, 1486 individuals and 116 woody species were recorded on an area totaling 3140 m2. Individual densities and tree species richness were considerably higher in the high várzea than in the low várzea, which suggests that the heights and durations of the annual inundations are the main factor limiting species regeneration. In addition, approximately one third of the recorded species with densities ≥8 individuals showed regular or random spatial distribution patterns, which suggests that floodwaters act on dispersal strategies and species establishment.Independent of the forest type, floristic similarity between the understory and the overstory amounted to approximately 35%, and to approximately 10% when compared to other understory inventories in Amazonian várzea. Although the inventoried area of the understory amounted to only 16% of that of the overstory, species richness accounted for approximately 52-56% of that of the overstory. The results indicate that the understory flora of várzea forests is distinct and that it significantly increases local tree species richness. The understory flora of várzea forests therefore should be addressed in floristic inventories that provide the basis for regional and/or basin-wide estimations of tree diversity.  相似文献   

9.
    
Most nests of Arapaima gigas in floodplains of the Amazon were built at the margins of the forests surrounding temporary or permanent lakes and their connecting channels. They were found under forested levees in locations that were shallow and sandy. From 2000 to 2005, the adult population increased six-fold but nest density increased only two-fold.  相似文献   

10.
    
We assessed population structure and the spatio‐temporal pattern of diversification in the Glossy Antshrike Sakesphorus luctuosus (Aves, Thamnophilidae) to understand the processes shaping the evolutionary history of Amazonian floodplains and address unresolved taxonomic controversies surrounding its species limits. By targeting ultraconserved elements (UCEs) from 32 specimens of S. luctuosus, we identified independent lineages and estimated their differentiation, divergence times, and migration rates. We also estimated current and past demographic histories for each recovered lineage. We found evidence confirming that S. luctuosus consists of a single species, comprising at least four populations, with some highly admixed individuals and overall similar levels of migration between populations. We confirmed the differentiation of the Araguaia River basin population (S. l. araguayae) and gathered circumstantial evidence indicating that the taxon S. hagmanni may represent a highly introgressed population between three distinct phylogroups of S. luctuosus. Divergences between populations occurred during the last 1.2 mya. Signs of population expansions were detected for populations attributed to subspecies S. l. luctuosus, but not for the S. l. araguayae population. Our results support that S. luctuosus has had a complex population history, resulting from a high dependence on southeastern “clear water” seasonally flooded habitats and their availability through time. Spatial and demographic expansions toward the western “white water” flooded forests might be related to recent changes in connectivity and availability of these habitats. Our study reinforces the view that isolation due to absence of suitable habitat has been an important driver of population differentiation within Amazonian flooded forests, but also that differences between várzeas (“white water” floodplains, mostly in southwestern Amazonia) and igapós (“clear water” floodplains, especially located in the east) should be further explored as drivers of micro‐evolution for terrestrial species.  相似文献   

11.
This paper compares the non-deltaic, riparian-flooded forests of the Orinoco and Amazon River basins. Ecological relationships between these forests and their environments that can be useful in establishing schemes for biodiversity conservation are identified. Adaptations of species to flow seasonality, flooding intensity, sedimentation pattern and nutrient depletion are described. The variability and diversity of riparian-flooded forests is related to (i) landscape evolution (regional-scale, long-term), (ii) water quality (basin scale, long-term) and (iii) hydrology and geomorphology (sector-scale, medium-term). The floristic analysis has produced a preliminary list of 242 tree species common to the riparian-flooded forests of both basins. This relatively high number of species is related to connectivity between the riparian corridors of both basins and the effective operation of dispersal mechanisms. Highly oligotrophic environments add uniqueness at the regional scale through the evolution of endemic species presenting adaptations not only to flooding but also to nutrient depletion. The process of genetic diversification and the evolution of genotypes adapted to flooding are suggested to explain longitudinal gradients at tributary junctions and floodplain-upland ecotones where current fluvial dynamics are unpredictable over ecological time scales. The paper presents information that may be used to devise appropriate measures to evaluate sites for riparian biodiversity conservation and management.  相似文献   

12.
    
Lowland Amazon is climatically one of the least seasonal regions on the planet, but little is known about how this is reflected in ecological seasonality. The central objective of this study was to determine whether seasonal fluctuations in the availability of fruit resources in Neotropical forests are sufficiently marked to affect the ecology and physiology of frugivorous bats. Seasonal variations in the overall bat abundance and in the captures, body condition, and reproductive activity of the two most abundant species, Carollia perspicillata and Artibeus planirostris, were studied within a region of central Brazilian Amazonia dominated by a mosaic of nonflooded (terra firme) and seasonally flooded forests (várzea and igapó). Concurrent seasonal changes in fruit availability were measured. The abundance of fruits was markedly seasonal, with far fewer resources available during the low-water season. There was a positive correlation between fruit and bat abundance. Overall, bats did not increase the consumption of arthropods during the period of fruit shortage. In A. planirostris, the body condition declined when fruits were scarcer. In both C. perspicillata and A. planirostris, foraging and reproductive activity were positively correlated with fruit availability. Consequently, the results suggest that resource seasonality is sufficiently marked to affect frugivorous bats and force them to make important eco-physiological adjustments.  相似文献   

13.
Synopsis Because of the need for surface access for aquatic surface respiration (ASR), fish density increases were demonstrated for the open water of a floodplain lake during severe hypoxia. This indicates an O2-induced diurnal pattern of horizontal migrations between the zone of macrophyte cover and open water. Supplemental experimental investigations seem to suggest that species such as characoids,Colossoma macropomum andSchizodon fasciatum, deviate from this pattern. During long periods of oxygen depletion, they return to the region of macrophyte growth and survive there without displaying the usual kind of ASR. Mortality studies in net cages exposed in natural water bodies confirmed that only these two species are able to survive severe hypoxia beneath macrophyte cover. The possibility of an O2-input through the root system of plants is discussed. The O2-concentration has a significant influence on the locomotory behavior and the frequency of opercular movement in characoids. There is significantly less locomotory activity beneath the macrophytes during periods of oxygen depletion among those species not forced to migrate than among those in the open water regions, where normal ASR behavior is possible.  相似文献   

14.
    
The tucuxi (Sotalia fluviatilis) is a small dolphin endemic to the Amazon River basin. Because the abundance and trends are currently unknown for the species, this study aimed to estimate its abundance in a lake system of the Central Amazon. A total of 10 two‐day sampling periods were carried out from March to June of 2013 throughout a 13.5 km2 area in the Mamirauá Reserve. In the 104 encounters with the species, a minimum number of 389 dolphins were sighted and photographed, which allowed the positive identification of 49 individuals. Mark‐recapture models were used to estimate an abundance of 119 individuals (95% CI = 105–150) (corrected for the proportion of identifiable individuals). This is the first estimation of S. fluviatilis abundance using mark‐recapture analyses and, together with the photo‐id catalog made available, provides a useful reference for future studies regarding tucuxi dolphins.  相似文献   

15.
1. Ditches are often connected to root vole habitat patches (i.e. moist reed patches) in the Netherlands. Due to the linear structure of ditches and because ditch habitat is qualitatively similar to root vole habitat patches, we hypothesized that ditches could function as habitat corridors facilitating dispersal movement of root voles. In order to test this hypothesis, we radiotracked root voles released in a landscape novel to them, consisting of ditches and agricultural meadows.
2. Agricultural meadows often surround the marsh patches inhabited by root voles. As the meadows are mowed regularly, we included the length of the meadow vegetation as an experimental factor in the study.
3. Assuming that ditches function as habitat corridors, we expected root voles in the ditches to move faster and more unidirectionally than root voles in the meadows, and to prefer the ditches to meadows.
4. We found that the ditches did not facilitate faster movements than the meadows. Although the root voles moved back and forth within the ditches, they showed a more directional movement pattern than the root voles in the meadows. Furthermore, the root voles preferred the ditch habitat irrespective of the vegetative cover in the meadow.
5. We conclude that ditches could function as habitat corridors for root voles, as they preferred to move in ditches when in unfamiliar areas.  相似文献   

16.
Beta diversity can provide insights into the processes that regulate communities subjected to frequent disturbances, such as flood pulses, which control biodiversity in floodplains. However, little is known about which processes structure beta diversity of amphibians in floodplains. Here, we tested the influence of flood pulses on the richness, composition, and beta diversity of amphibians in Amazonian floodplain environments. We also evaluated indicator species for each environment. We established linear transects in three environments: low várzea, high várzea, and macrophyte rafts. Species richness decreased and beta diversity increased according to the susceptibility of habitats to flood pulses. Indicator species differed among environments according to forest succession promoted by the flood pulse. The decrease in species richness between high and low várzea is due to non‐random extinctions. The higher rates of species turnover between várzeas and macrophyte rafts are driven by the colonization of species adapted to open areas. Our results highlight that the maintenance of complex environments is needed to protect biodiversity in floodplains.  相似文献   

17.
I studied a primate community on a tropical rainforest island, in the northernmost area of the Brazilian Amazonia. While walking through six distinct habitats along a 12-km trail, running toward the center of the island—a remote undisturbed area—I collected data on the use of the different forest types and forest strata by the primate community and the formation of either mixed groups or species assemblages. Five species are present: Cebus olivaceus, C. apella, Saimiri sciureus, Ateles belzubuth, and Alouatta seniculus. They seemed to be habitat generalists, using most habitat types. The five species used the higher strata more significantly, probably because Maracá does not present well-defined forest floors, which could be a result of being located in the transition between the great areas of savannah and the Amazonian seasonally dry forests. The five species all formed some polyspecific associations, which involved sharing the available food resource. Mixed groups were significantly more frequent and therefore possibly more important to Saimiri, which was not the case in relation to the other four species. Assemblages, defined as the presence in the same clumped resource, without coordinated activity, of 3 primate species, were recorded primarily in fruiting fig trees. I suggest that assemblages are impelled by food constraints, forcing cofeeding in large seasonal resources, highlighting the ecological importance of figs to these primates. Linear regression models show that the number of feeding bouts in each habitat type is positively related to the number of fruiting trees exploited, but the density of these fruit trees, diversity of plant species, tree height, and total basal area of each habitat type have no relationship to feeding.  相似文献   

18.
    
Few studies have successfully monitored community‐wide phenological patterns in seasonally flooded Amazonian várzea forests, where a prolonged annual flood pulse arguably generates the greatest degree of seasonality of any low‐latitude ecosystem on Earth. We monitored the vegetative and reproductive plant phenology of várzea (VZ) floodplain and adjacent terra firme (TF) forests within two contiguous protected areas in western Brazilian Amazonia, using three complementary methods: monthly canopy observations of 1056 individuals (TF: 556, VZ: 500), twice monthly collections from 0.5‐m2 litterfall traps within two 100‐ha plots (1 TF, 1 VZ; 96 traps per plot), and monthly ground surveys of residual fruit‐fall along transect‐grids within each 100‐ha plot (12 km per plot). Surveys encompassed the entire annual flood cycle and employed a floating trap design to cope with fluctuating water levels. Phenology patterns were generally similar in both forest types. Leaffall peaked during the aquatic phase in várzea forest and the dry season in terra firme. Flowering typically followed leaffall and leaf flush, extending into the onset of the terrestrial phase and rainy season in várzea and terra firme, respectively. Abiotic seed dispersal modes were relatively more prevalent in várzea than terra firme; the main contrast in fruiting seasonality was more likely a result of differences in community composition and relative abundance of seed dispersal modes than differences within individual genera. We emphasize the difficulty in distinguishing the role of the flood pulse from other seasonal environmental variables without multiannual data or spatially replicated studies across the spectrum of Amazonian forest types.  相似文献   

19.
20.
  总被引:2,自引:0,他引:2  
Synopsis Investigations of seasonal changes in the hematological parameters of Colossoma macropomum revealed that during times of the year when they are exposed to low oxygen concentrations (< 0.5 mg 1–1), there is an increase in the hemoglobin content of the blood and the erythrocyte count. Experiments to determine the influence of oxygen content on the routine oxygen consumption showed that the critical concentration is 2 mg 1–1 at 30°C. At concentrations below 0.5 mg O2 1–1, surface water is used for aquatic respiration. Above the critical concentration, short-term fluctuations in oxygen availability are compensated for by adjustment in the ventilation rate. Gas exchange is facilitated by the unusually large gill surface area (349 mm2g–1 for a 200 g fish).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号