共查询到20条相似文献,搜索用时 19 毫秒
1.
How complex life cycles of parasites are maintained is still a fascinating and unresolved topic. Complex life cycles using three host species, free-living stages, asexual and sexual reproduction are widespread in parasitic helminths. For such life cycles, we propose here that maintaining a second intermediate host in the life cycle can be advantageous for the individual parasite to increase the intermixture of different clones and therefore decrease the risk of matings between genetically identical individuals in the definitive host. Using microsatellite markers, we show that clone mixing occurs from the first to the second intermediate host in natural populations of the eye-fluke Diplostomum pseudospathaceum. Most individuals released by the first intermediate host belonged to one clone. In contrast, the second intermediate host was infected with a diverse array of mostly unique parasite genotypes. The proposed advantage of increased parasite clone intermixture may be a novel selection pressure favouring the maintenance of complex life cycles. 相似文献
2.
Zani PA Cohnstaedt LW Corbin D Bradshaw WE Holzapfel CM 《Journal of evolutionary biology》2005,18(1):101-105
Because mortality accumulates with age, Fisher proposed that the strength of selection acting on survival should increase from birth up to the age of first reproduction. Hamilton later theorized that the strength of selection acting on survival should not change from birth to age at first reproduction. As organisms in nature do not live in uniform environments but, rather, experience periodic stress, we hypothesized that resistance to environmental stress should increase (Fisher) or remain constant (Hamilton) from birth to age at first reproduction. Using the pitcher-plant mosquito, Wyeomyia smithii, we imposed heat stress by simulating the passage of a warm-weather front at different pre-adult and adult stages. Contrary to either Fisher or Hamilton, stress tolerance declined from embryos to larvae to pupae to adults. Consequently, reproductive value appears to have been of little consequence in the evolution of stage-specific tolerance of heat stress in W. smithii. 相似文献
3.
Tuomas Helin Laura Sokka Sampo Soimakallio Kim Pingoud Tiina Pajula 《Global Change Biology Bioenergy》2013,5(5):475-486
Forests are a significant pool of terrestrial carbon. A key feature related to forest biomass harvesting and use is the typical time difference between carbon release into and sequestration from the atmosphere. Traditionally, the use of sustainably grown biomass has been considered as carbon neutral in life cycle assessment (LCA) studies. However, various approaches to account for greenhouse gas (GHG) emissions and sinks of forest biomass acquisition and use have also been developed and applied, resulting in different conclusions on climate impacts of forest products. The aim of this study is to summarize, clarify, and assess the suitability of these approaches for LCA. A literature review is carried out, and the results are analyzed through an assessment framework. The different approaches are reviewed through their approach to the definition of reference land‐use situation, consideration of time frame and timing of carbon emissions and sequestration, substitution credits, and indicators applied to measure climate impacts. On the basis of the review, it is concluded that, to account for GHG emissions and the related climate impacts objectively, biomass carbon stored in the products and the timing of sinks and emissions should be taken into account in LCA. The reference situation for forest land use has to be defined appropriately, describing the development in the absence of the studied system. We suggest the use of some climate impact indicator that takes the timing of the emissions and sinks into consideration and enables the use of different time frames. If substitution credits are considered, they need to be transparently presented in the results. Instead of carbon stock values taken from the literature, the use of dynamic forest models is recommended. 相似文献
4.
NINA BERGMANN GIDON WINTERS GISEP RAUCH CHRISTOPHE EIZAGUIRRE JENNY GU PETER NELLE BIRGIT FRICKE THORSTEN B. H. REUSCH 《Molecular ecology》2010,19(14):2870-2883
Summer heat waves have already resulted in mortality of coastal communities, including ecologically important seagrass meadows. Gene expression studies from controlled experiments can provide important insight as to how species/genotypes react to extreme events that will increase under global warming. In a common stress garden, we exposed three populations of eelgrass, Zostera marina, to extreme sea surface temperatures, simulating the 2003‐European heat wave. Populations came from locations widely differing in their thermal regime, two northern European locations [Ebeltoft (Kattegat), Doverodde (Limfjord, Baltic Sea)], and one southern population from Gabicce Mare (Adriatic Sea), allowing to test for population specificity in the response to a realistic heat stress event. Eelgrass survival and growth as well as the expression of 12 stress associated candidate genes were assessed during and after the heat wave. Contrary to expectations, all populations suffered equally from 3 weeks of heat stress in terms of shoot loss. In contrast, populations markedly differed in multivariate measures of gene expression. While the gene expression profiles converged to pre‐stress values directly after the heat wave, stress correlated genes were upregulated again 4 weeks later, in line with the observed delay in shoot loss. Target genes had to be selected based on functional knowledge in terrestrial plants, nevertheless, 10/12 genes were induced relative to the control treatment at least once during the heat wave in the fully marine plant Z. marina. This study underlines the importance of realistic stress and recovery scenarios in studying the impact of predicted climate change. 相似文献
5.
6.
Ofir Levy Lauren B. Buckley Timothy H. Keitt Colton D. Smith Kwasi O. Boateng Davina S. Kumar Michael J. Angilletta Jr 《Proceedings. Biological sciences / The Royal Society》2015,282(1813)
Recent models predict contrasting impacts of climate change on tropical and temperate species, but these models ignore how environmental stress and organismal tolerance change during the life cycle. For example, geographical ranges and extinction risks have been inferred from thermal constraints on activity during the adult stage. Yet, most animals pass through a sessile embryonic stage before reaching adulthood, making them more susceptible to warming climates than current models would suggest. By projecting microclimates at high spatio-temporal resolution and measuring thermal tolerances of embryos, we developed a life cycle model of population dynamics for North American lizards. Our analyses show that previous models dramatically underestimate the demographic impacts of climate change. A predicted loss of fitness in 2% of the USA by 2100 became 35% when considering embryonic performance in response to hourly fluctuations in soil temperature. Most lethal events would have been overlooked if we had ignored thermal stress during embryonic development or had averaged temperatures over time. Therefore, accurate forecasts require detailed knowledge of environmental conditions and thermal tolerances throughout the life cycle. 相似文献
7.
TRACY L. SIMPSON 《Invertebrate reproduction & development.》2013,57(4):251-269
The nature of a number of fundamental processes occurring during reproduction in sponges still remains in doubt. Among the more significant of these are: the true status of sponges described as dioecious, namely whether some are actually successive hermaphrodites; the origin of oogonia, which have recently been claimed to be derived from choanocytes; the origin and mechanism of formation of large spermatogenic masses; the specific pathway leading to fertilization taken by sperm cells within the sponge tissue of viviparous species; the role played during larval metamorphosis by somatic cells which are incorporated into embryos; the cell lineage of choanocytes which form flagellated chambers during larval metamorphosis; the specific relationship of somatic growth and dormancy to gametogenesis; the role of budding and fragmentation in population maintenance; the role, if any, of gemmules in dispersion. It is considered mandatory that new techniques be developed in order to further elucidate these and other reproductive processes and to gather definitive data concerning them. The employment of only microscopic techniques is ultimately insufficient for investigating the dynamic relationships of reproductive processes. 相似文献
8.
Roger Ramirez-Barrios Emily K. Susa Clara M. Smoniewski Sean P. Faacks Charles K. Liggett Sara L. Zimmer 《Molecular microbiology》2020,113(5):1003-1021
The protozoan Trypanosoma cruzi has a complicated dual-host life cycle, and starvation can trigger transition from the replicating insect stage to the mammalian-infectious nonreplicating insect stage (epimastigote to trypomastigote differentiation). Abundance of some mature RNAs derived from its mitochondrial genome increase during culture starvation of T. cruzi for unknown reasons. Here, we examine T. cruzi mitochondrial gene expression in the mammalian intracellular replicating life stage (amastigote), and uncover implications of starvation-induced changes in gene expression. Mitochondrial RNA levels in general were found to be lowest in actively replicating amastigotes. We discovered that mitochondrial respiration decreases during starvation in insect stage cells, despite the previously observed increases in mitochondrial mRNAs encoding electron transport chain (ETC) components. Surprisingly, T. cruzi epimastigotes in replete medium grow at normal rates when we genetically compromised their ability to perform insertion/deletion editing and thereby generate mature forms of some mitochondrial mRNAs. However, these cells, when starved, were impeded in the epimastigote to trypomastigote transition. Further, they experience a short-flagella phenotype that may also be linked to differentiation. We hypothesize a scenario where levels of mature RNA species or editing in the single T. cruzi mitochondrion are linked to differentiation by a yet-unknown signaling mechanism. 相似文献
9.
Scott Hotaling Alisha A. Shah Kerry L. McGowan Lusha M. Tronstad J. Joseph Giersch Debra S. Finn H. Arthur Woods Michael E. Dillon Joanna L. Kelley 《Global Change Biology》2020,26(10):5524-5538
Rapid glacier recession is altering the physical conditions of headwater streams. Stream temperatures are predicted to rise and become increasingly variable, putting entire meltwater‐associated biological communities at risk of extinction. Thus, there is a pressing need to understand how thermal stress affects mountain stream insects, particularly where glaciers are likely to vanish on contemporary timescales. In this study, we measured the critical thermal maximum (CTMAX) of stonefly nymphs representing multiple species and a range of thermal regimes in the high Rocky Mountains, USA. We then collected RNA‐sequencing data to assess how organismal thermal stress translated to the cellular level. Our focal species included the meltwater stonefly, Lednia tumana, which was recently listed under the U.S. Endangered Species Act due to climate‐induced habitat loss. For all study species, critical thermal maxima (CTMAX > 20°C) far exceeded the stream temperatures mountain stoneflies experience (<10°C). Moreover, while evidence for a cellular stress response was present, we also observed constitutive expression of genes encoding proteins known to underlie thermal stress (i.e., heat shock proteins) even at low temperatures that reflected natural conditions. We show that high‐elevation aquatic insects may not be physiologically threatened by short‐term exposure to warm temperatures and that longer‐term physiological responses or biotic factors (e.g., competition) may better explain their extreme distributions. 相似文献
10.
Andrés N. Molina José M. Pulgar Enrico L. Rezende Mauricio J. Carter 《Global Change Biology》2023,29(1):179-188
Global warming is affecting the Antarctic continent in complex ways. Because Antarctic organisms are specialized to living in the cold, they are vulnerable to increasing temperatures, although quantitative analyses of this issue are currently lacking. Here we compiled a total of 184 estimates of heat tolerance belonging to 39 marine species and quantified how survival is affected concomitantly by the intensity and duration of thermal stress. Species exhibit thermal limits displaced toward colder temperatures, with contrasting strategies between arthropods and fish that exhibit low tolerance to acute heat challenges, and brachiopods, echinoderms, and molluscs that tend to be more sensitive to chronic exposure. These differences might be associated with mobility. A dynamic mortality model suggests that Antarctic organisms already encounter temperatures that might be physiologically stressful and indicate that these ecological communities are indeed vulnerable to ongoing rising temperatures. 相似文献
11.
12.
Geoffrey Guest Jieying Zhang Omran Maadani Hamidreza Shirkhani 《Journal of Industrial Ecology》2020,24(2):356-368
Climate change is expected to impact both the operational and structural performance of infrastructures such as roads, bridges, and buildings. However, most past life cycle assessment (LCA) studies do not consider how the operational/structural performance of infrastructure will be affected by a changing climate. The goal of this research was to develop a framework for integrating climate change impacts into LCA of infrastructure systems. To illustrate this framework, a flexible pavement case study was considered where life‐cycle environmental impacts were compared across a climate change scenario and several time horizons. The Mechanistic‐Empirical Pavement Design Guide (MEPDG) was utilized to capture the structural performance of each pavement performance scenario and performance distresses were used as inputs into a pavement LCA model that considered construction and maintenance/rehabilitation materials and activities, change in relative surface albedo, and impacts due to traffic. The results from the case study suggest that climate change will likely call for adaptive design requirements in the latter half of this century but in the near‐to‐mid term, the international roughness index (IRI) and total rutting degradation profile was very close to the historical climate run. While the inclusion of mechanistic performance models with climate change data as input introduces new uncertainties to infrastructure‐based LCA, sensitivity analyses runs were performed to better understand a comprehensive range of result outcomes. Through further infrastructure cases the framework could be streamlined to better suit specific infrastructures where only the infrastructure components with the greatest sensitivity to climate change are explicitly modeled using mechanistic‐empirical modeling routines. 相似文献
13.
Modular gene expression in Poplar: a multilayer network approach 总被引:1,自引:0,他引:1
14.
15.
Growth, development and life-cycle duration of the millipede Ommatoiulussabulosus (f.aimatopodus) were studied in a Mediterranean shrubland of southern France and compared with previous data from northwest Europe. Changes in the proportions of stadia during the course of the year were analysed in several generations. The results show that stadia VII and VIII are consistently reached after the first year of growth, and stadia IX and X after the second year. First reproduction may occur at the age of two years in males reaching maturity at stadium X, but not until the age of three in those reaching maturity at stadia XI and XII. Reproduction cannot occur until at least the age of three in females, which carry mature eggs from stadium XI onwards. In comparison with more northern populations, life-cycle duration is not shorter in the Mediterranean population but there are marked differences in its phenology: the breeding period is in autumn, so that juveniles of stadia II to VI are never faced with the summer drought, and larger individuals are mostly inactive in summer; moreover, all individuals moult once every winter. The results illustrate how julid millipedes of humid temperate regions could respond to higher temperatures and drier summer conditions in the context of climate change. 相似文献
16.
The psbQ gene encoding a 16-kDa polypeptide of the oxygen-evolving complex of photosystem II has been isolated from Arabidopsis thaliana and characterized. The gene consists of a 28 nucleotide long leader sequence, two introns and three exons encoding a 223-amino-acid precursor polypeptide. The first 75 amino acids act as a transit peptide for the translocation of the polypeptide into the thylakoid lumen. Expression studies show that the gene is light-inducible and expresses only in green tissues with high steady-state mRNA levels in leaves. Using this gene as a probe, restriction fragment length polymorphism between two ecotypes, Columbia and Estland, has also been detected. 相似文献
17.
Lucia Cenni Andrea Simoncini Luciano Massetti Annapaola Rizzoli Heidi C. Hauffe Alessandro Massolo 《Global Change Biology》2023,29(9):2436-2449
Global change is expected to have complex effects on the distribution and transmission patterns of zoonotic parasites. Modelling habitat suitability for parasites with complex life cycles is essential to further our understanding of how disease systems respond to environmental changes, and to make spatial predictions of their future distributions. However, the limited availability of high quality occurrence data with high spatial resolution often constrains these investigations. Using 449 reliable occurrence records for Echinococcus multilocularis from across Europe published over the last 35 years, we modelled habitat suitability for this parasite, the aetiological agent of alveolar echinococcosis, in order to describe its environmental niche, predict its current and future distribution under three global change scenarios, and quantify the probability of occurrence for each European country. Using a machine learning approach, we developed large-scale (25 × 25 km) species distribution models based on seven sets of predictors, each set representing a distinct biological hypothesis supported by current knowledge of the autecology of the parasite. The best-supported hypothesis included climatic, orographic and land-use/land-cover variables such as the temperature of the coldest quarter, forest cover, urban cover and the precipitation seasonality. Future projections suggested the appearance of highly suitable areas for E. multilocularis towards northern latitudes and in the whole Alpine region under all scenarios, while decreases in habitat suitability were predicted for central Europe. Our spatially explicit predictions of habitat suitability shed light on the complex responses of parasites to ongoing global changes. 相似文献
18.
Predicting the effects of climate change on Earth's biota becomes even more challenging when acknowledging that most species have life cycles consisting of multiple stages, each of which may respond differently to extreme environmental conditions. There is currently no clear consensus regarding which stages are most susceptible to increasing environmental stress, or ‘climate extremes’. We used a meta‐analytic approach to quantify variation in responses to environmental stress across multiple life stages of marine invertebrates. We identified 287 experiments in 29 papers which examined the lethal thresholds of multiple life stages (embryo, larva, juvenile and adult) of both holoplanktonic and meroplanktonic marine invertebrates subjected to the same experimental conditions of warming, acidification and hypoxia stress. Most studies considered short acute exposure to stressors. We calculated effect sizes (log response ratio) for each life stage (unpaired analysis) and the difference in effect sizes between stages of each species (paired analysis) included in each experiment. In the unpaired analysis, all significant responses were negative, indicating that warming, acidification and hypoxia tended to increase mortality. Furthermore, embryos, larvae and juveniles were more negatively affected by warming than adults. The paired analysis revealed that, when subjected to the same experimental conditions, younger life stages were more negatively affected by warming than older life stages, specifically among pairings of adults versus juveniles and larvae versus embryos. Although responses to warming are well documented, few studies of the effects of acidification and hypoxia met the criteria for inclusion in our analyses. Our results suggest that while most life stages will be negatively affected by climate change, younger stages of marine invertebrates are more sensitive to extreme heating events. 相似文献
19.