首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The Emu Bay Shale Lagerstätte (Cambrian Series 2, Stage 4) occurs on the north coast of Kangaroo Island, South Australia. Over 50 species are known from here, including trilobites and non‐biomineralized arthropods, palaeoscolecids, a lobopodian, a polychaete, vetulicolians, nectocaridids, hyoliths, brachiopods, sponges and chancelloriids. A new chelicerate, Wisangocaris barbarahardyae gen. et sp. nov., is described herein, based on a collection of some 270 specimens. It is up to 60 mm long, with the length of the cephalic shield comprising about 30% that of the exoskeleton. The cephalic margin has three pairs of bilaterally‐symmetrical small triangular spines. A pair of small eyes is placed well forwards on the ventral margin of the cephalic shield. The trunk comprises 11 segments that increase in length while narrowing posteriorly, each possibly bearing a pair of biramous appendages; the most posterior segment is almost square whereas the others are transversely elongated. The spatulate telson is proportionately longer than in taxa such as Sanctacaris, Utahcaris and Leanchoilia. Up to eight (?four pairs) of 3 mm‐long elements bearing alternating inward‐curving short and long spines beneath the cephalic shield are interpreted as basipodal gnathobases, part of a complex feeding apparatus. A well‐developed gut includes a stomach within the cephalic shield; it extends to the base of the telson. In a few specimens there are shell fragments within the gut, including those of the trilobite Estaingia bilobata (the most common species in the biota); these fragments have sharp margins and extend across the gut lumen. The species may have been a predator or a scavenger, ingesting material already broken up by a larger predator/scavenger. The morphology of this taxon shares many overall body features with Sanctacaris, and some with Sidneyia, particularly its gnathobasic complex. These chelicerate affinities are corroborated by phylogenetic analyses.  相似文献   

3.
The olenid trilobite Triarthrus commonly occurs in nearly monospecific assemblages within otherwise relatively barren black shales. As such, it has been proposed that these trilobites preferred dysoxic or even anoxic habitats and suggested feeding habits range from predation and particle feeding to chemoautotrophism. A unique bedding‐plane assemblage of aligned traces that grade from Rusophycus to Cruziana, with associated Triarthrus beckii carcasses, are described from three localities in the Indian Castle Formation (upper Utica Shale) just below a K‐bentonite bed. Although few body fossils are preserved, it is clear that the 15‐cm‐thick, laterally extensive Thruway K‐bentonite created a unique taphonomic window that preserved the activities of numerous olenid trilobites. Rusophycus and Cruziana, consistently observed in densities above 100 trackways/m2, were excavated by the trilobites into the upper surface of a micro‐graded bed, likely a distal turbidite deposit. Sedimentological and trace metal data (Mo, Mn, V and U) support dysoxic but not persistently anoxic conditions through this interval. Measurements from over 500 individual trackways have mean orientations of 259.1° (WSW) at the Myers Rd. locality and 224.59° (SW) at the Dolgeville Dam locality. These orientations are closely similar to independent sedimentological indicators of current transport direction at these sites, which indicates that the trilobites preferentially faced into the prevailing current. The trackways provide compelling evidence that Triarthrus beckii individuals were engaged in feeding, probably assisted by current transport of particles. These results do not support previous suggestions that Triarthrus may have relied upon a chemoautotrophic life habit, but are consistent with suggestions of predation or scavenging from the sediment.  相似文献   

4.
Abstract: Abundant material from a new quarry excavated in the lower Cambrian Emu Bay Shale (Kangaroo Island, South Australia) and, particularly, the preservation of soft‐bodied features previously unknown from this Burgess Shale‐type locality, permit the revision of two bivalved arthropod taxa described in the late 1970s, Isoxys communis and Tuzoia australis. The collections have also produced fossils belonging to two new species: Isoxys glaessneri and Tuzoia sp. Among the soft parts preserved in these taxa are stalked eyes, digestive structures and cephalic and trunk appendages, rivalling in quality and quantity those described from better‐known Lagerstätten, notably the lower Cambrian Chengjiang fauna of China and the middle Cambrian Burgess Shale of Canada.  相似文献   

5.
Trilobites dominate the Emu Bay Shale (EBS) assemblage (Cambrian Series 2, Stage 4, South Australia) in terms of numbers, with Estaingia bilobata Pocock 1964 being extremely abundant, and the larger Redlichia takooensis Lu 1950 , being common. Many specimens within the EBS represent complete moulted exoskeletons, which is unusual for Cambrian fossil deposits. The abundance of complete moults provides an excellent record that has allowed the recognition of various recurrent moult configurations for both species, enabling the inference of movement sequences required to produce such arrangements. Moult configurations of E. bilobata are characterized by slight displacement of the joined rostral plate and librigenae, often accompanied by detachment of the cranidium, suggesting ecdysis was achieved by anterior withdrawal via opening of the cephalic sutures. Moulting in R. takooensis often followed the same method, but configurations show greater displacement of cephalic sclerites, suggesting more vigorous movement by the animal during moulting. Both species also show rare examples of Salter's configuration, with the entire cephalon anteriorly inverted, and several other unusual configurations. These results indicate that moulting in trilobites was a more variable process than originally thought. In contrast, other Cambrian Konservat‐Lagerstätten with an abundance of trilobites (e.g. Wheeler Shale, USA, and Mount Stephen Trilobite Beds, Canada) show larger numbers of ‘axial shields’ and isolated sclerites, often interpreted as disarticulated exuviae. This points to a higher level of disturbance from factors, such as animal activity, depositional processes or water movement, compared to that of the EBS, where quiescent conditions and intermittent seafloor anoxia contributed to an unparalleled trilobite moulting record.  相似文献   

6.
Lin, J.‐P., Ivantsov, A.Y. & Briggs, D.E.G. 2011: The cuticle of the enigmatic arthropod Phytophilaspis and biomineralization in Cambrian arthropods. Lethaia, Vol. 44, pp. 344–349. Many non‐trilobite arthropods occur in Cambrian Burgess Shale‐type (BST) biotas, but most of these are preserved in fine‐grained siliciclastics. Only one important occurrence of Cambrian non‐trilobite arthropods, the Sinsk biota (lower Sinsk Formation, Botomian) from the Siberian Platform, has been discovered in carbonates. The chemical compositions of samples of the enigmatic arthropod Phytophilaspis pergamena Ivantsov, 1999 and the co‐occurring trilobite Jakutus primigenius Ivantsov in Ponomarenko, 2005 from this deposit were analysed. The cuticle of P. pergamena is composed of mainly calcium phosphate and differs from the cuticle of J. primigenius, which contains only calcium carbonate. Phosphatized cuticles are rare among large Cambrian arthropods, except for aglaspidids and a few trilobites. Based on recent phylogenetic studies, phosphatization of arthropod cuticle is likely to have evolved several times. □arthropod cuticle, Burgess Shale‐type preservation, fossil‐diagenesis, phosphatization.  相似文献   

7.
Abstract: The lower Cambrian Emu Bay Shale on Kangaroo Island, South Australia, contains the only known Cambrian Burgess Shale‐type biota in Australia. Two new lamellipedian arthropods, Emucaris fava gen. et sp. nov. and Kangacaris zhangi gen. et sp. nov., from the Emu Bay Shale Lagerstätte are described as monotypic genera that are resolved cladistically as a monophyletic group that is sister to Naraoiidae + Liwiidae and classified within the Nektaspida as a new family Emucarididae. Shared derived characters of Emucarididae involve a bipartite, elongate hypostome and elongation of the pygidium relative to the cephalic shield and very short thorax. A monophyletic Liwiidae is composed of Liwia and the Ordovician Tariccoia + Soomaspis but excludes Buenaspis, and even the membership of Buenaspis in Nektaspida is contradicted amongst the shortest cladograms. New morphological interpretations favour affinities of Kwanyinaspis with Conciliterga rather than with Aglaspidida, and Phytophilaspis with Petalopleura.  相似文献   

8.
Anomalous facies and ancient faeces in the latest middle Cambrian of Sweden   总被引:1,自引:1,他引:0  
The middle Cambrian–Furongian transitional interval was a time of significant biotic and environmental changes. Strata of this age in Scania, southern Sweden, contain two interlayered biofacies, a normal one dominated by trilobites and an anomalous one dominated by phosphatocopines (small bivalved arthropods). In places these biofacies are separated by intervals barren of fossils. In a phosphatocopine facies without trilobites in the upper Agnostus pisiformis Zone at Andrarum we recovered scattered fossil aggregates with a homogeneous composition of tightly packed and stacked phosphatocopines. These aggregates are interpreted as coprolites produced by an undetermined predator, possibly the chaetognath-like protoconodont animal or some other soft-bodied metazoan. The so-called barren intervals of Scania are not necessarily barren of fossils, but only trilobites, brachiopods, and other skeletal elements with a calcium-carbonate composition. The phosphatocopine facies with coprolites in the uppermost part of the A. pisiformis Zone correlates with the trilobite mass extinction at the top of the Marjumiid Biomere in Laurentia and immediately prior to the onset of the Steptoean Positive Carbon Isotope Excursion (SPICE), inferring a global shift in the oceanic chemistry that in Scania favoured phosphatocopines over the more common, trilobite-dominated faunas.  相似文献   

9.
Naraoiids are non‐biomineralized euarthropods characterized by the complete fusion of post‐cephalic tergo‐pleurae into a single shield, as well as an extensively ramified digestive tract. Ranging from the early Cambrian to the late Silurian (Pridoli), these arthropods of simple appearance have traditionally been associated with the early diversification of trilobites and their close relatives, but the interrelationships and affinities of naraoiids within Artiopoda remain poorly characterized. Three new species from the Burgess Shale (middle Cambrian, Stage 5) of British Columbia, Canada, are described here: Misszhouia canadensis sp. nov., from Marble Canyon (Kootenay National Park), the first species belonging to the genus Misszhouia outside of China; Naraoia magna sp. nov., from Marble Canyon and also from the Raymond Quarry (Yoho National Park), the largest species of Naraoia described thus far, reaching up to 9 cm in length; and Naraoia arcana sp. nov., from two sublocalities on Mount Stephen (Yoho National Park), defined by its unusual combination of spines. This new material shows that gut morphology is no longer a reliable character to distinguish Misszhouia from Naraoia. We demonstrate that Naraoia and Misszhouia can instead be discriminated morphometrically, based on simple metrics of the dorsal exoskeleton. Our quantitative results also help with inter‐specific discrimination and illustrate possible cases of sexual dimorphism. Phylogenetically, the inclusion of morphometric data adds resolution to our cladogram, although parsimony and likelihood treatments provide somewhat different evolutionary scenarios. In all cases, liwiines are nested within Naraoiidae, resolved as the most derived clade of trilobitomorph arthropods.  相似文献   

10.
Thin-bedded, pyrite-rich, fine sandstones and mudstones of the Floian-Dapingian Upper Fezouata Formation contain abundant trace fossils Rusophycus carleyi in close association with a species of the asaphid trilobite Asaphellus. The sizes and shapes of this trilobite and the traces match closely. Five specimens have even been found where an articulated specimen of Asaphellus appears to be directly located over a specimen of Rusophycus carleyi within a thin bed of sandstone, suggesting that the trilobite animal may have been trapped on top of a trace that it had just made. Such intimate associations between a putative tracemaker and a trace are rare in the fossil record and particularly rare for Trilobita. The number of coxal impressions that form part of R. carleyi, eleven, matches the number expected for an asaphid trilobite (one for each of eight thoracic segments and one for each of three post-oral cephalic appendages). Impressions of the hypostome, thoracic tip impressions, cephalic margin, and pygidial margin in a few of the traces also match those of this asaphid trilobite. R. carleyi has been found in Ordovician strata of other parts of the world in association with asaphid trilobites.  相似文献   

11.
Lerosey‐Aubril, R., Hegna, T.A. & Olive, S. 2011: Inferring internal anatomy from the trilobite exoskeleton: the relationship between frontal auxiliary impressions and the digestive system. Lethaia, Vol. 44, pp. 166–184. The digestive system of trilobites is rarely preserved. As a result, many aspects of its organization remain unknown. Fortunately, the exoskeleton sometimes preserves evidence of soft‐tissue attachment sites that can be used to infer internal anatomy. Among them are the frontal auxiliary impressions (FAIs), probable soft‐tissue insertion sites located on the fronto‐median glabellar lobe of some trilobites. FAIs are herein described in the Carboniferous trilobite Phillipsia belgica Osmólska 1970 – representing the only known example of such structures in the Proetida and their youngest occurrence. A taphonomic scenario is proposed to explain their variable preservation. Although particularly common in the Phacopina, FAIs or FAI‐like structures are also found in several orders that differ greatly. Comparisons with modern analogues suggest that FAIs might represent attachment sites for extrinsic muscles associated with a differentiated crop within the foregut. A review of purported remains of the trilobite digestive system indicates that it usually consisted of a tube‐like tract flanked by a variable number of metamerically paired diverticulae. Its anterior portion is not particularly individualized, except in a few specimens that might hint at the presence of a crop. This differentiation of a crop might have constituted a secondarily evolution of the foregut in trilobites, occurring independently in different clades. Accompanied by a strengthening of associated extrinsic muscles, this modification of the foregut might explain the presence of more conspicuous muscle insertion sites on the glabella. Study of FAIs might therefore provide new data on the anatomy of the foregut in trilobites and evidence of diverse feeding habits. □Arthropoda, digestive system, ecology, muscle scars, Proetida, Trilobita.  相似文献   

12.
The morphology of two new bivalved arthropods, Loricicaris spinocaudatus gen. et sp. nov. and Nereocaris briggsi sp. nov. from the middle Cambrian (Series 3, Stage 5) Burgess Shale Formation (Collins Quarry locality on Mount Stephen, Yoho National Park, British Columbia, Canada), is described. The material was originally assigned to the genus Branchiocaris, but exhibits distinctive character combinations meriting its assignment to other taxa. Loricicaris spinocaudatus possesses an elongate and spinose abdomen comparable to the contemporaneous Perspicaris and Canadaspis, as well as chelate second head appendages and subtriangular exopods, comparable to Branchiocaris. Nereocaris briggsi possesses a laterally compressed carapace, elongate and delicate appendages and a medial eye located between a pair of lateral eyes on a rhomboidal eye stalk. Although undoubtedly congeneric with Nereocaris exilis from a slightly younger horizon of the Burgess Shale Formation, N. briggsi differs in overall proportions and segment number, warranting assignment to a new species. The newly described taxa were coded into an extensive cladistic analysis of 755 characters, and 312 extinct and extant panarthropods, including a variety of Cambrian bivalved arthropods from both the Burgess Shale and the Chengjiang Lagerstätten. Cambrian bivalved arthropods consistently resolved as a paraphyletic assemblage at the base of Arthropoda. Important innovations in arthropod history such as the specialization of the deutocerebral head appendages and a shift from a nekton‐benthic deposit feeding habit to a benthic scavenging/predatory habit, the symplesiomorphic feeding condition of Euarthropoda (crown‐group arthropods), were found to have occurred among basal bivalved arthropods.  相似文献   

13.
The ichnogenus Rusophycus includes a wide range of short bilobate excavations generally attributed to variable feeding behaviors of arthropods, especially trilobites. An unusual Rusophycus assemblage from Upper Ordovician Georgian Bay Formation in Ontario departs radically from previously described examples and presents new challenges for understanding the behavior represented by these traces. This specimen is unique in the arrangement of multiple Rusophycus burrows in a circular, lens-shaped array (as opposed to a linear or random arrangement typical of other Rusophycus assemblages). The size and shape of the individual Rusophycus components are consistent with traces attributed to the coeval trilobite Flexicalymene. Multiple Rusophycus assemblages likely reflect aggregations of trilobites in response to a local concentration of food. The topology of this particular Rusophycus assemblage suggests that the trilobites opportunistically exploited a rich and narrowly restricted food source, perhaps the decaying remains of a buried organism.  相似文献   

14.
Trilobites are particularly common Cambrian fossils, but their trophic impact on the rapidly evolving marine ecosystems of that time is difficult to assess, due to uncertainties on how diverse their feeding habits truly were. Gut anatomy might help to constrain inferences on trilobite feeding ecology, but preservation of digestive organs is exceedingly rare. Muscle scars on the glabella, known as ‘frontal auxiliary impressions’ (FAIs), have been interpreted as evidence of the evolution of a pouch‐like organ with powerful extrinsic muscles (i.e. a crop) in some trilobites. Here we describe FAIs in Mesolenellus hyperboreus from Cambrian Stage 4 strata of North Greenland, which represents the oldest example of such structures and their first report in the Suborder Olenellina. Mesolenellus FAIs suggest that the crop in trilobites was clearly differentiated from the rest of the digestive tract, and essentially located under a hypertrophied glabellar frontal lobe. Reviews of the digestive anatomy of trilobite sister‐taxa and the glabellar morphology of the oldest‐known trilobites suggest that the gut of the trilobite ancestor was an essentially simple tract (i.e. no well‐differentiated crop) flanked laterally by numerous midgut glands. A crop first evolved in the Cambrian in groups like olenelloids and (later) paradoxidoids. Using ichnological evidence, we hypothesize that the emergence of olenelloids yields evidence for the evolution of predatory inclinations in a group of arthropods originally dominated by surface‐deposit‐feeders. By allowing the exploitation of a rapidly developing food source, infaunal animals, the diversification of feeding strategies in trilobites might partially explain their unparalleled evolutionary success.  相似文献   

15.
Pengia Geyer & Corbacho is a Cambrian burlingiid trilobite with fused trunk segments devoid of any articulation in the anamorphic and epimorphic phases of development. The type species is Pengia fusilis (Peng et al.) from the Wanshania wanshanensis Zone of China. Here we describe a second species, Pengia palsgaardia sp. nov., from the Lejopyge laevigata Zone of the Paradoxides forchhammeri Superzone. It comes from a glacial erratic in Denmark which probably originated in the Alum Shale Formation of Västergötland, Sweden. Pengia palsgaardia is a large burlingiid (~10 mm in length), with 14 fused segments in the trunk whose boundaries are marked by ridges. The axis is narrow, with the axial furrows faintly indicated or effaced across the median. Laterally along the axis and the tapering glabella, symmetrical globular lobes are developed that are pinched at their base. During ontogeny the glabellar furrows are pit‐like adaxially but shallow towards the axial furrow as the globular lobes develop. Their pit‐like appearance in Pengia palsgaardia and some other burlingiid species is not considered similar to the condition seen in oryctocephalid trilobites. A median preglabellar ridge resembling that of Schmalenseeia Moberg develops late in ontogeny but in early ontogeny the preglabellar field resembles that of Burlingia Walcott, Alumenella Geyer & Corbacho and Niordilobites Geyer & Corbacho. This gives Pengia a more basal position in the schmalenseeid lineage, outside the derived Schmalenseeia. In mature specimens the facial sutures in P. palsgaardia are fused, but an ocular suture may have been present. During ontogeny Pengia would have gone through the anamorphic and protomeric protaspid segmental conditions, but articulation between either the cephalon and pygidium, or pygidium and thoracic segments of the trunk never developed so it did not progress beyond the protaspid phase. This extreme protomeric development is considered to be a derived feature in Pengia.  相似文献   

16.
Environmental heterogeneity can have profound effects on agroecosystem function and it is important for improving ecosystem services such as biological control. Promoting system diversity via non‐crop plants is one method for increasing habitat heterogeneity within farmscapes. Non‐crop plants provide access to refuges and alternative food resources provide multiple benefits to enhance populations of arthropod predators. In this study, we examined the effects of small‐scale spatial structure on life‐stage specific interactions between the native coccinellid, Hippodamia convergensGuérin‐Méneville, and the exotic Harmonia axyridis (Pallas) (both Coleoptera: Coccinellidae), which overlap in spatial distribution in many crop systems. Squash [Cucurbita pepo L. (Cucurbitaceae)] and non‐crop mugwort [Artemisia vulgaris L. (Asteraceae)] plants with and without aphids were used as a model of spatial heterogeneity in micro‐ and mesocosm experiments. In response to factorial treatment combinations, we evaluated oviposition behavior, egg predation, larval survival, and larval predator‐prey and predator‐predator interactions. Adult H. convergens displayed higher foraging activity on aphids when exposed to complex habitats containing a non‐crop plant. In the presence of the exotic coccinellid, H. convergens preferred to deposit eggs on the non‐crop plant. Furthermore, a combination of spatial heterogeneity and prey availability reduced larval intraguild predation and cannibalism, and improved reproductive output of H. convergens by reducing intra‐ and interspecific egg predation. Our results provide evidence that life‐stage‐specific intraguild interactions are mediated by access to non‐crop plants. Thus, the introduction or maintenance of non‐crop plants has the potential to enhance coexistence of multiple natural enemies and improve top‐down control of pests.  相似文献   

17.
Terfelt, F., Ahlberg, P. & Eriksson, M.E. 2011: Complete record of Furongian polymerid trilobites and agnostoids of Scandinavia – a biostratigraphical scheme. Lethaia, Vol. 44, pp. 8–14. So far, 112 polymerid trilobite species/subspecies and 13 agnostoid species/subspecies have been recorded from the Furongian (upper Cambrian) of Scandinavia. For the first time, their zonal occurrences are summarized in a biostratigraphical scheme serving as a practical synopsis for students of this interval in time. Ninety‐six of the recorded polymerid trilobite species/subspecies belong to the family Olenidae whereas the remaining 16 are distributed across eight other families. Levels of increased speciation and low diversity (including stratigraphical range gaps) are conspicuous and these may be correlated with recorded physical and chemical anomalies. □Agnostoids, biostratigraphy, Cambrian, Furongian, polymerids, Scandinavia, trilobites.  相似文献   

18.
Hegna, T.A. 2010: The function of forks: Isotelus‐type hypostomes and trilobite feeding. Lethaia, Vol. 43, pp. 411–419. Despite previous investigations, the function of the forked morphology of asaphid trilobite hypostomes is enigmatic. The focus of this study is the large and robust forked hypostome of the largest known genus of trilobite, Isotelus, and the independently‐derived forked hypostome of Hypodicranotus, the longest hypostome relative to body size of any trilobite. Although the trilobite hypostome is analogous to the labrum in other arthropods, forked hypostomes lack an obvious modern functional counterpart. The Isotelus hypostome is distinguished from other trilobite hypostomes by closely‐spaced terrace ridges on a greatly thickened inner surface of the forked posterior margin, with the scarp of the terrace facing antero‐ventrally. This is compatible with a grinding function, suggesting possible limb differentiation to complement this structure. The inner face of the tine (one of the two, prominent, sub‐parallel posterior projections) is also unique in that it has a microstructure which is evident in section, running perpendicular to the surface. Macropredatory and filter‐feeder roles are ruled out, and previous characterizations of the hypostome as knife‐like or serrated are rejected. Its function is incompatible with that of other non‐asaphid trilobites with forked hypostomes, like the remopleuridid Hypodicranotus, which lack similar terrace ridges and thickened inner‐edge cuticle. □Arthropoda, Asaphida, ecology, functional morphology, Trilobita.  相似文献   

19.
  • Context‐dependency in species interactions is widespread and can produce concomitant patterns of context‐dependent selection. Masting (synchronous production of large seed crops at irregular intervals by a plant population) has been shown to reduce seed predation through satiation (reduction in rates of seed predation with increasing seed cone output) and thus represents an important source of context‐dependency in plant‐animal interactions. However, the evolutionary consequences of such dynamics are not well understood.
  • Here we describe masting behaviour in a Mediterranean model pine species (Pinus pinaster) and present a test of the effects of masting on selection by seed predators on reproductive output. We predicted that masting, by enhancing seed predator satiation, could in turn strengthen positive selection by seed predators for larger cone output. For this we collected six‐year data (spanning one mast year and five non‐mast years) on seed cone production and seed cone predation rates in a forest genetic trial composed by 116 P. pinaster genotypes.
  • Following our prediction, we found stronger seed predator satiation during the masting year, which in turn led to stronger seed predator selection for increased cone production relative to non‐masting years.
  • These findings provide evidence that masting can alter the evolutionary outcome of plant‐seed predator interactions. More broadly, our findings highlight that changes in consumer responses to resource abundance represent a widespread mechanism for predicting and understanding context dependency in plant‐consumer evolutionary dynamics.
  相似文献   

20.
Territorial males may adopt a mating tactic that yields greater reproductive success but that at the same time increases the risk of predation. Plasticity in reproductive behavior can reflect a balance between sexual selection and natural selection. In this study, we sought to verify the effect of predation risk on territorial behavior of males of the solitary bee Ptilothrix fructifera (Apidae). Males of the species employ alternative mating tactics and can be territorial in defense of larval food sources. By manipulating predator models in the field, we tested whether (1) males avoid perch flowers containing predator models; (2) males alternate between mating tactics when their territory is associated with a predation risk; and (3) female foraging on flowers in a territory is altered in the presence of a predator model. We measured the responses of males and females in flowers containing and not containing a model of a spider or a stuffed bird. The results show that territorial males of P. fructifera alter their territorial behavior when faced with a high risk of predation. They do not abandon their territory or change to a non‐territorial mating tactic, but instead change the use of their territory, avoiding flowers containing predator models or perching on other flowers when the previous flower presented a potential predation risk. Female P. fructifera decreases the frequency of their visits to flowers and the length of time spent there in the presence of a spider model. In short, in the face of predation risk, females and males alter their behaviors at the cost of less efficient foraging and searching for partners, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号