首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The discovery of biogeographical patterns among microbial communities has led to a focus on the empirical evaluation of the importance of dispersal limitation in microbial biota. As a result, the spatial distribution of microbial diversity has been increasingly studied while the synthesis of biogeographical theory with microbial ecology remains undeveloped. To make biogeographical theory relevant to microbial ecology, microbial traits that potentially affect the distribution of microbial diversity need to be considered. Given that many microorganisms in natural environments are in a state of dormancy and that dormancy is an important microbial fitness trait, I provide a first attempt to account for the effects of dormancy on microbial biogeography by treating dormancy as a fundamental biogeographical response. I discuss the effects of dormancy on the equilibrium theory of island biogeography and on the unified neutral theory of biodiversity and biogeography, and suggest how the equilibrium theory of island biogeography can produce predictions approaching those of the Baas‐Becking hypothesis (i.e. everything is everywhere, but the environment selects). In addition, I present a conceptual model of the unified neutral theory of biodiversity and biogeography, generalized to account for dormancy, from which a full model can be constructed for species with or without dormant life history stages.  相似文献   

2.
The colonization patterns of oceanic islands are often interpreted through transmarine dispersal. However, in islands with intense human activities and unclear geological history, this inference may be inappropriate. Cyprus is such an island, whose geotectonic evolution has not been clarified yet to the desired level for biogeographical reconstructions, leaving the questions of ‘how the Cypriote biota arrived’ and ‘does the dispersal have the formative role in patterns of its diversification’ unanswered. Here, we address these issues through a reconstruction of the evolutionary history of six herptiles (Ablepharus budaki, Ophisops elegans, Acanthodactylus schreiberi, Telescopus fallax, Pelophylax cf. bedriagae, and Hyla savignyi) by means of mitochondrial DNA (cytochrome b and 16S rRNA), applying a Bayesian phylogenetic, biogeographical, and chronophylogenetic analyses. The phylogeographical analyses show that the colonization history of those species in Cyprus started in the late Miocene and extended into the Pliocene and Pleistocene, with geodispersal, transmarine dispersal, and human‐mediated dispersal having their share in shaping the diversification of Cypriote herptiles. The revealed patterns could be divided into three biogeographical categories: old colonizers that arrived in Cyprus during the late Miocene or early Pliocene either by a land bridge (geodispersal) which connected Cyprus with the mainland or by transmarine dispersal, younger colonizers that reached the island through transmarine dispersal from the Middle East, and new settlers that arrived through human‐induced (voluntary or not) introductions. This work advances our knowledge of the biogeography of Cyprus and highlights the need to consider both geo‐ and transmarine dispersal when dealing with islands whose associations do not have a straightforward interpretation. © 2013 The Linnean Society of London  相似文献   

3.
Aim The biogeographical patterns and drivers of diversity on oceanic islands in the tropical South Pacific (TSP) are synthesized. We use published studies to determine present patterns of diversity on TSP islands, the likely sources of the biota on these islands and how the islands were colonized. We also investigate the effect of extinctions. Location We focus on oceanic islands in the TSP. Methods We review available literature and published molecular studies. Results Examples of typical island features (e.g. gigantism, flightlessness, gender dimorphism) are common, as are adaptive radiations. Diversity decreases with increasing isolation from mainland sources and with decreasing size and age of archipelagos, corresponding well with island biogeographical expectations. Molecular studies support New Guinea/Malesia, New Caledonia and Australia as major source areas for the Pacific biota. Numerous studies support dispersal‐based scenarios, either over several 100 km (long‐distance dispersal) or over shorter distances by island‐hopping (stepping stones) and transport by human means (hitch‐hiking). Only one vicariance explanation, the eastward drift of continental fragments (shuttles) that may have contributed biota to Fiji from New Caledonia, is supported by some geological evidence, although there is no evidence for the transport of taxa on shuttle fragments. Another vicariance explanation, the existence of a major continental landmass in the Pacific within the last 100 Myr (Atlantis theory), receives little support and appears unlikely. Extinction of lineages in source areas and persistence in the TSP has probably occurred many times and has resulted in misinterpretation of biogeographical data. Main conclusions Malesia has long been considered the major source region for the biota of oceanic islands in the TSP because of shared taxa and high species diversity. However, recent molecular studies have produced compelling support for New Caledonia and Australia as alternative important source areas. They also show dispersal events, and not vicariance, to have been the major contributors to the current biota of the TSP. Past extinction events can obscure interpretations of diversity patterns.  相似文献   

4.
Biogeographic tracks are mapped for Galapagos endemics representing 25 plant and animal taxa and including organisms with good and poor means of dispersal. These patterns confirm standard biogeographic tracks linking Galapagos with Central America, western North and South America, the Caribbean, Asia and Australasia. Discovery of the Galapagos Gore in the 1970s corroborates the biogeographic prediction for a major tectonic centre associated with the Galapagos. The biogeographic model developed by Croizat in 1958 of Galapagos colonization involving an ancestral biota inhabiting eastern Pacific geosynclinal forelands is congruent with plate tectonic models supporting a Pacific island arc origin for western American terranes. American relatives of Galapagos endemics may have originated within an eastern Pacific paleogeography rather than representing centres of origin for dispersal to the Galapagos. Galapagos colonization by an eastern Pacific biota between late Cretaceous and mid-Tertiary has significant implications for understanding the tempo and mode for both the origins of island biota and general models of evolutionary differentiation. Popular assertions that overwater dispersal represents the only viable origin for the entire Galapagos biota is no longer biogeographically or geologically tenable.  相似文献   

5.
6.
New applications of genetic data to questions of historical biogeography have revolutionized our understanding of how organisms have come to occupy their present distributions. Phylogenetic methods in combination with divergence time estimation can reveal biogeographical centres of origin, differentiate between hypotheses of vicariance and dispersal, and reveal the directionality of dispersal events. Despite their power, however, phylogenetic methods can sometimes yield patterns that are compatible with multiple, equally well-supported biogeographical hypotheses. In such cases, additional approaches must be integrated to differentiate among conflicting dispersal hypotheses. Here, we use a synthetic approach that draws upon the analytical strengths of coalescent and population genetic methods to augment phylogenetic analyses in order to assess the biogeographical history of Madagascar's Triaenops bats (Chiroptera: Hipposideridae). Phylogenetic analyses of mitochondrial DNA sequence data for Malagasy and east African Triaenops reveal a pattern that equally supports two competing hypotheses. While the phylogeny cannot determine whether Africa or Madagascar was the centre of origin for the species investigated, it serves as the essential backbone for the application of coalescent and population genetic methods. From the application of these methods, we conclude that a hypothesis of two independent but unidirectional dispersal events from Africa to Madagascar is best supported by the data.  相似文献   

7.
Aim Provide an empirical test of the ‘radiation zone’ hypothesis of the MacArthur–Wilson theory of island biogeography using the taxon‐pulse hypothesis of Erwin and Brooks Parsimony Analysis (BPA) on Simulium (Inseliellum) Rubstov. Location Micronesia, Cook Islands, Austral Islands, Society Islands, Marquesas Islands, Fiji and New Caledonia. Methods Primary and secondary BPA of the phylogeny of Inseliellum. Results Primary BPA showed that 15% of the taxon area cladogram contained area reticulations. Secondary BPA (invoking the area duplication convention) generated a clear sequence of dispersal for Inseliellum. The sequence follows a Micronesia – Cook Islands – Marquesas Islands – Society Islands dispersal, with a separate dispersal from the Cook Islands to the Austral Islands less than 1 Ma. A radiation in the island of Tahiti (Society Islands) produced numerous dispersals from Tahiti to other islands within the Society Islands system. Islands close to Tahiti (source island) have been colonized from Tahiti more often than islands far from Tahiti, but a higher proportion of those species colonizing distant islands have become distinct species. Main conclusions The dispersal sequence of Inseliellum exhibits both old to young island dispersal and young to old island dispersal. This is due to habitat availability on each island. Inseliellum is a model system in exemplifying the ‘radiation zone’ hypothesis of MacArthur and Wilson. As well, islands close to the source are colonized more often that those far from the source, but colonization of islands far away from the source results in a higher proportion of speciation events than for islands close to the source. The diversification of Inseliellum corresponds to a taxon‐pulse radiation, with a centre of diversification on Tahiti resulting from its large area and abundant freshwater habitats. This study illustrates the utility of BPA in identifying complex scenarios that can be used to test theories about the complementary roles of ecology and phylogeny in historical biogeography.  相似文献   

8.
Aim To use patterns of nestedness in the indigenous and non‐indigenous biotas of the Southern Ocean islands to determine the influence of dispersal ability on biogeographical patterns, and the importance of accounting for variation in dispersal ability in their subsequent interpretation, especially in the context of the Insulantarctic and multi‐regional hypotheses proposed to explain the biogeography of these islands. Location Southern Ocean islands. Methods Nestedness was determined using a new metric, d1 (a modification of discrepancy), for the indigenous and introduced seabirds, land birds, insects and vascular plants of 26 Southern Ocean islands. To assess the possible confounding effects of spatial autocorrelation on the results, islands were assigned to 11 major island groups and each group was treated as a single island in a following analysis. In addition, nestedness of the six Southern Ocean islands comprising the South Pacific Province (New Zealand islands) was analysed. All analyses were conducted for species and genera, for each of the taxa on its own, and for the complete data sets. Results Statistically significant nestedness was found in all of the taxa examined, with nestedness declining in the order seabirds > land birds > vascular plants > insects for the indigenous species. Vagility had a marked influence on nestedness and the biogeographical patterns shown by the indigenous species. This influence was borne out by additional analyses of marine taxa and small‐sized terrestrial species, both of which were more nested than the most nested group examined here, the seabirds. Assemblages of non‐indigenous species also showed nestedness, and nestedness was generally more pronounced than in the indigenous species. Surprisingly, vagility had a significant effect on nestedness in these assemblages too. Main conclusions Nestedness analyses provide a quantitative means of comparing biogeographical patterns for groups differing in vagility. These comparisons revealed that vagility has a considerable influence on biogeographical patterns and should be taken into account in analyses. Here, investigations of more vagile taxa support hypotheses for a single origin of the Southern Ocean island biota (the Insulantarctica scenario), whilst those of less mobile taxa support the more commonly held, multi‐regional hypothesis. All biogeographical analyses across the Southern Ocean (and elsewhere) will be influenced by the effects of dispersal ability, with composite analyses dominated by sedentary groups likely to favour multi‐regional scenarios, and those dominated by mobile groups favouring single origins. Mechanisms underlying nestedness in the region range from nested physiological tolerances in more mobile groups to colonization ability and patterns of speciation in less vagile taxa. Considerable nestedness in the non‐indigenous assemblages is largely a consequence of the fact that many of these species are European weedy species.  相似文献   

9.
A corollary of island biogeographical theory is that islands are largely colonized from their nearest mainland source. Despite Madagascar’s extreme isolation from India and proximity to Africa, a high proportion of the biota of the Madagascar region has Asian affinities. This pattern has rarely been viewed as surprising, as it is consistent with Gondwanan vicariance. Molecular phylogenetic data provide strong support for such Asian affinities, but often not for their vicariant origin; most divergences between lineages in Asia and the Madagascar region post‐date the separation of India and Madagascar considerably (up to 87 Myr), implying a high frequency of dispersal that mirrors colonization of the Hawaiian archipelago in distance. Indian Ocean bathymetry and the magnitude of recent sea‐level lowstands support the repeated existence of sizeable islands across the western Indian Ocean, greatly reducing the isolation of Madagascar from Asia. We put forward predictions to test the role of this historical factor in the assembly of the regional biota. © The Willi Hennig Society 2009.  相似文献   

10.
The biogeographical paradigm of New Caledonia has recently changed. Although this island is now considered by many as oceanic, its study is still often impeded by some old misconceptions concerning either regional geology or phylogenetic analysis of evolution and biogeography. I discuss ten points that I feel are especially detrimental, to help focus on the real debate and the real questions: (1) its geological history cannot be understood from the basement only; (2) the island submergence was not due simply to sea‐level variation; (3) Zealandia/Tasmantis is not a lost continent; (4) short‐distance dispersal is not equivalent to permanence on land; (5) long‐distance dispersal is not the sole event opposing vicariance, but short‐distance dispersal as well; (6) the occurrence of relicts does not prove biota permanence; (7) a major fault system was not observed in New Caledonia; (8) terranes are not rafts; (9) forest climatic refuges do not necessarily equate to centres of endemism or centres of diversity; and (10) New Caledonia is not only a sink but also a source. Study of New Caledonia will need to focus on old and non‐relict clades and there is a need to improve the local fossil record.  相似文献   

11.
Aim Oceanic islands represent a special challenge to historical biogeographers because dispersal is typically the dominant process while most existing methods are based on vicariance. Here, we describe a new Bayesian approach to island biogeography that estimates island carrying capacities and dispersal rates based on simple Markov models of biogeographical processes. This is done in the context of simultaneous analysis of phylogenetic and distributional data across groups, accommodating phylogenetic uncertainty and making parameter estimates more robust. We test our models on an empirical data set of published phylogenies of Canary Island organisms to examine overall dispersal rates and correlation of rates with explanatory factors such as geographic proximity and area size. Location Oceanic archipelagos with special reference to the Atlantic Canary Islands. Methods The Canary Islands were divided into three island‐groups, corresponding to the main magmatism periods in the formation of the archipelago, while non‐Canarian distributions were grouped into a fourth ‘mainland‐island’. Dispersal between island groups, which were assumed constant through time, was modelled as a homogeneous, time‐reversible Markov process, analogous to the standard models of DNA evolution. The stationary state frequencies in these models reflect the relative carrying capacity of the islands, while the exchangeability (rate) parameters reflect the relative dispersal rates between islands. We examined models of increasing complexity: Jukes–Cantor (JC), Equal‐in, and General Time Reversible (GTR), with or without the assumption of stepping‐stone dispersal. The data consisted of 13 Canarian phylogenies: 954 individuals representing 393 taxonomic (morphological) entities. Each group was allowed to evolve under its own DNA model, with the island‐model shared across groups. Posterior distributions on island model parameters were estimated using Markov Chain Monte Carlo (MCMC) sampling, as implemented in MrBayes 4.0, and Bayes Factors were used to compare models. Results The Equal‐in step, the GTR, and the GTR step dispersal models showed the best fit to the data. In the Equal‐in and GTR models, the largest carrying capacity was estimated for the mainland, followed by the central islands and the western islands, with the eastern islands having the smallest carrying capacity. The relative dispersal rate was highest between the central and eastern islands, and between the central and western islands. The exchange with the mainland was rare in comparison. Main conclusions Our results confirm those of earlier studies suggesting that inter‐island dispersal within the Canary Island archipelago has been more important in explaining diversification within lineages than dispersal between the continent and the islands, despite the close proximity to North Africa. The low carrying capacity of the eastern islands, uncorrelated with their size or age, fits well with the idea of a historically depauperate biota in these islands but more sophisticated models are needed to address the possible influence of major recent extinction events. The island models explored here can easily be extended to address other problems in historical biogeography, such as dispersal among areas in continental settings or reticulate area relationships.  相似文献   

12.
The origin of the terrestrial biota of Madagascar and, especially, the smaller island chains of the western Indian Ocean is relatively poorly understood. Madagascar represents a mixture of Gondwanan vicariant lineages and more recent colonizers arriving via Cenozoic dispersal, mostly from Africa. Dispersal must explain the biota of the smaller islands such as the Comoros and the chain of Mascarene islands, but relatively few studies have pinpointed the source of colonizers, which may include mainland Africa, Asia, Australasia, and Madagascar. The pantropical hermit spiders (genus Nephilengys) seem to have colonized the Indian Ocean island arc stretching from Comoros through Madagascar and onto Mascarenes, and thus offer one opportunity to reveal biogeographical patterns in the Indian Ocean. We test alternative hypotheses on the colonization route of Nephilengys spiders in the Indian Ocean and simultaneously test the current taxonomical hypothesis using genetic and morphological data. We used mitochondrial (COI) and nuclear (ITS2) markers to examine Nephilengys phylogenetic structure with samples from Africa, southeast Asia, and the Indian Ocean islands of Madagascar, Mayotte, Réunion and Mauritius. We used Bayesian and parsimony methods to reconstruct phylogenies and haplotype networks, and calculated genetic distances and fixation indices. Our results suggest an African origin of Madagascar Nephilengys via Cenozoic dispersal, and subsequent colonization of the Mascarene islands from Madagascar. We find strong evidence of gene flow across Madagascar and through the neighboring islands north of it, while phylogenetic trees, haplotype networks, and fixation indices all reveal genetically isolated and divergent lineages on Mauritius and Réunion, consistent with female color morphs. These results, and the discovery of the first males from Réunion and Mauritius, in turn falsify the existing taxonomic hypothesis of a single widespread species, Nephilengys borbonica, throughout the archipelago. Instead, we diagnose three Nephilengys species: Nephilengys livida (Vinson, 1863) from Madagascar and Comoros, N. borbonica (Vinson, 1863) from Réunion, and Nephilengys dodo new species from Mauritius. Nephilengys followed a colonization route to Madagascar from Africa, and on through to the Mascarenes, where it speciated on isolated islands. The related golden orb-weaving spiders, genus Nephila, have followed the same colonization route, but Nephila shows shallower divergencies, implying recent colonization, or a moderate level of gene flow across the archipelago preventing speciation. Unlike their synanthropic congeners, N. borbonica and N. dodo are confined to pristine island forests and their discovery calls for evaluation of their conservation status.  相似文献   

13.
Micronesian islands taxa show high endemism rates, but very little is known about their biogeographical histories. The lack of systematic biogeography is mainly due to insufficient phylogenetic research in Micronesia. With the recent increase in published molecular biogeographic data, we were able to, for the first time, answer fundamental biogeography questions by reviewing and analyzing numerous geological, ecological, and evolutionary studies. This review, in addition to providing an overview of Micronesian geological history, confirmed the importance of long-distance dispersal mechanisms and founder-event speciation, and morphological and physiological adaptations of plant propagules to cross vast stretches of ocean by wind, ocean currents, bird, or bat dispersal. These adaptations to habitat and geological features, including reef types, determined colonization success as well as inland dispersal and speciation mechanisms. We further identified the source areas of the Micronesian biota and reconstructed historical dispersal scenarios: a dominant Austro-Melanesian dispersal scenario, an Indo-Malaysian connecting to the Austro-Melanesian dispersal scenario, and a Neotropical American and an African dispersal scenario toward Micronesia. Most generic origins were estimated between the Eocene and the Miocene and dispersed to Micronesia between the Miocene and the Pleistocene.  相似文献   

14.
Aim In order to advance our understanding of the assembly of communities on islands and to elucidate the function of different islands in creating regional and subregional distribution patterns, we identify island biogeographical roles on the basis of the distribution of the islands’ biota within the archipelago. We explore which island characteristics determine island biogeographical roles. Furthermore, we identify biogeographical subregions, termed modules. Location Wallacea in Indonesia, and the West Indies in the Caribbean Sea. Methods We use a network approach to detect island biogeographical roles and avian biogeographical modules. To designate the biogeographical role of an island, each island is assigned two coordinates, l and r. The position of an island in lr space characterizes its role, namely as peripheral, connector, module hub, or network hub. Island characteristics are tested as predictors of l and r. Results Both Wallacea and the West Indies were found to be significantly modular and divided into four biogeographical modules. The four modules identified within Wallacea each contain all existing island roles, whereas no module in the West Indies represents all possible roles. Island area and elevation appeared to be the most important determinants of an island’s l score, while measurements of isolation essentially determined the r score. Main conclusions In both Wallacea and the West Indies, the geographic structuring into biogeographical modules corresponds well with our knowledge of past connections and contemporary factors. In both archipelagos, large, mountainous islands are identified as hubs and are thus responsible for faunal coherence within modules (module hubs) and across the entire archipelago (network hubs). We thus interpret these as source islands for the surrounding islands in their module (module hubs) or for the entire archipelago (network hubs). Islands positioned marginally in their module and distant from the mainland are identified as connectors or network hubs, behaving as sinks and stepping stones for dispersing species. Modularity and predictors of biogeographical roles are similar for Wallacea and the West Indies, whereas the build‐up of biogeographical modules and the assortment of roles depend on the spatial constellation of islands in each archipelago.  相似文献   

15.
Hawaiian biogeography and the islands' freshwater fish fauna   总被引:3,自引:0,他引:3  
Aim This paper describes known patterns in the distributions and relationships of Hawaiian freshwater fishes, and compares these patterns with those exhibited by Hawaii's terrestrial biota. Location The study is based in Hawaii, and seeks patterns across the tropical and subtropical Indo‐west Pacific. Methods The study is based primarily on literature analysis. Results The Hawaiian freshwater fish fauna comprises five species of goby in five different genera (Gobiidae). Four species are Hawaiian endemics, the fifth shared with islands in the western tropical Pacific Ocean. All genera are represented widely across the Indo‐west Pacific. All five species are present on all of the major Hawaiian islands. All five species are amphidromous – their larval and early juvenile life being spent in the sea. Although there has been some local phyletic evolution to produce Hawaiian endemics, there has been no local radiation to produce single‐island endemics across the archipelago. Nor is there evidence for genetic structuring among populations in the various islands. Main conclusions In this regard, the freshwater fish fauna of Hawaii differs from the well‐known patterns of local evolution and radiation in Hawaiian Island terrestrial taxa. Amphidromy probably explains the biogeographical idiosyncrasies of the fish fauna – dispersal through the sea initially brought the fish species to Hawaii, and gene flow among populations, across the archipelago, has hitherto inhibited the evolution of local island endemics, apparently even retarding genetic structuring on individual islands.  相似文献   

16.
Macaronesia is a biogeographical region comprising five Atlantic Oceanic archipelagos: the Azores, Madeira, Selvagen (Savage Islands), Canaries and Cape Verde. It has strong affinities with the Atlantic coast of the Iberian Peninsula and the north‐western fringes of Africa. This paper re‐evaluates the biogeographical history and relationships of Macaronesia in the light of geological evidence, which suggests that large and high islands may have been continuously available in the region for very much longer than is indicated by the maximum surface area of the oldest current island (27 Ma) – possibly for as long as 60 million years. We review this literature, attempting a sequential reconstruction of Palaeo‐Macaronesia from 60 Ma to the present. We consider the implications of these geological dynamics for our understanding of the history of colonization of the present islands of Macaronesia. We also evaluate the role of these archipelagos as stepping stones and as both repositories of palaeo‐endemic forms and crucibles of neo‐endemic radiations of plant and animal groups. Our principal focus is on the laurel forest communities, long considered impoverished relicts of the Palaeotropical Tethyan flora. This account is therefore contextualized by reference to the long‐term climatic and biogeographical history of Southern Europe and North Africa and by consideration of the implications of changes in land–sea configuration, climate and ocean circulation for Macaronesian biogeography. We go on to provide a synthesis of the more recent history of Macaronesian forests, which has involved a process of impoverishment of the native elements of the biota that has accelerated since human conquest of the islands. We comment briefly on these processes and on the contemporary status and varied conservation opportunities and threats facing these forests across the Macaronesian biogeographical region.  相似文献   

17.
Abstract— A vicariance hypothesis of New World biogeography involving transport of living biota on fragments of an ancestral landmass to present positions ranging from southern Alaska to northern South America is developed. Geological, as well as biogeographical, ecological, and systematic data from plethodontid salamanders provide correlative support for the model. Other groups appear to have similar biogeographic histories and, along with further geological data, could provide means of corroboration of this hypothesis. Active biotic dispersal between the American continents before Pliocene closure of the Panamanian isthmus may have been less prevalent than previously believed, and tectonic transport may have dispersed many organisms. If corroborated, geologists may be provided a new method of analyzing relationships among "suspect terranes" using phylogenetic analyses of living biota, and biologists may be required to reassess previous concepts of New World historical biogeography.  相似文献   

18.
Abstract Most biogeographical studies propose that southern temperate faunal disjunctions are either the result of vicariance of taxa originated in Gondwana or the result of transoceanic dispersal of taxa originated after the breakup of Gondwana. The aim of this paper is to show that this is a false dichotomy. Antarctica retained a mild climate until mid‐Cenozoic and had lasting connections, notably with southern South America and Australia. Both taxa originally Gondwanan and taxa secondarily on Gondwanan areas were subjected to tectonic‐induced vicariance, and there is no need to invoke ad hoc transoceanic dispersal, even for post‐Gondwanan taxa. These different elements with circumantarctic distributions are here called ‘allochronic taxa’– taxa presently occupying the same area, but whose presence in that area does not belong to the same time period. This model allows accommodation of conflicting sources of evidence now available for many groups with circumantarctic distributions. The fact that the species from both layers are mixed up in the current biodiversity implies the need to use additional sources of evidence – such as biogeographical, palaeontological, geological and molecular – to discriminate which are the original Gondwanan and which are post‐Gondwanan elements in austral landmasses.  相似文献   

19.
While geologists suggest that New Caledonian main island (Grande Terre) was submerged until ca 37 Ma, biologists are struck by the presence of supposedly Gondwanan groups on the island. Among these groups are the Oreosycea fig trees (Ficus, Moraceae) and their Dolichoris pollinators (Hymenoptera, Agaonidae). These partners are distributed in the Paleotropics and Australasia, suggesting that their presence on New Caledonia could result from Gondwanan vicariance. To test this hypothesis, we obtained mitochondrial and nuclear markers (5.3 kb) from 28 species of Dolichoris, used all available sequences for Oreosycea, and conducted phylogenetic and dating analyses with several calibration strategies. All our analyses ruled out a vicariance scenario suggesting instead that New Caledonian colonization by Dolichoris and Oreosycea involved dispersal across islands from Sundaland ca 45.9-32.0 Ma. Our results show that successful long-distance dispersal of obligate mutualists may happen further suggesting that presence of intimate mutualisms on isolated islands should not be used as a priori evidence for vicariance. Comparing our results to a review of all the published age estimates for New Caledonian plant and animal taxa, we showed that support for a vicariant origin of the island biota is still lacking. Finally, as demonstrating a causal relationship between geology and biology requires independent evidence, we argue that a priori assumptions about vicariance or dispersal should not be used to constrain chronograms. This circular reasoning could lead to under or overestimation of age estimates.  相似文献   

20.
Aim Cuckoo‐shrikes and allies (Campephagidae) form a radiation of birds widely distributed in the Indo‐Pacific and Africa. Recent studies on the group have been hampered by poor taxon sampling, causing inferences about systematics and biogeography to be rather speculative. With improved taxon sampling and analyses within an explicit spatiotemporal framework, we elucidate biogeographical patterns of dispersal and diversification within this diverse clade of passerine birds. Location Africa, Asia, Australo‐Papua, the Pacific, the Philippines and Wallacea. Methods We use model‐based phylogenetic methods (Mr Bayes and garli ) to construct a phylogenetic hypothesis of the core Campephagidae (Campephagidae with the exclusion of Pericrocotus). The phylogeny is used to assess the biogeographical history of the group with a newly developed Bayesian approach to dispersal–vicariance analysis (Bayes‐diva) . We also made use of a partitioned beast analysis, with several calibration points taken from island ages, passerine mitochondrial substitution rates and secondary calibration points for passerine birds, to assess the timing of diversification and dispersal. Results We present a robust molecular phylogeny that includes all genera and 84% of the species within the core Campephagidae. Furthermore, we estimate divergence dates and ancestral area relationships. We demonstrate that Campephagidae originated in Australo‐Papua with a single lineage (Pericrocotus) dispersing to Asia early. Later, there was further extensive transoceanic dispersal from Australo‐Papua to Africa involving lineages within the core Campephagidae radiation. Main conclusions The phylogenetic relationships, along with the results of the ancestral area analysis and the timing of dispersal events, support a transoceanic dispersal scenario from Australo‐Papua to Africa by the core Campephagidae. The sister group to core Campephagidae, Pericrocotus, dispersed to mainland Asia in the late Oligocene. Asia remained uncolonized by the core Campephagidae until the Pliocene. Transoceanic dispersal is by no means an unknown phenomenon, but our results represent a convincing case of colonization over a significant water gap of thousands of kilometres from Australo‐Papua to Africa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号