首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sexes often have different phenotypic optima for important life-history traits, and because of a largely shared genome this can lead to a conflict over trait expression. In mammals, the obligate costs of reproduction are higher for females, making reproductive timing and rate especially liable to conflict between the sexes. While studies from wild vertebrates support such sexual conflict, it remains unexplored in humans. We used a pedigreed human population from preindustrial Finland to estimate sexual conflict over age at first and last reproduction, reproductive lifespan and reproductive rate. We found that the phenotypic selection gradients differed between the sexes. We next established significant heritabilities in both sexes for all traits. All traits, except reproductive rate, showed strongly positive intersexual genetic correlations and were strongly genetically correlated with fitness in both sexes. Moreover, the genetic correlations with fitness were almost identical in men and women. For reproductive rate, the intersexual correlation and the correlation with fitness were weaker but again similar between the sexes. Thus, in this population, an apparent sexual conflict at the phenotypic level did not reflect an underlying genetic conflict over the studied reproductive traits. These findings emphasize the need for incorporating genetic perspectives into studies of human life-history evolution.  相似文献   

2.
Sexual selection drives the evolution of exaggerated traits in males of many animal species. Nevertheless, the response to this selective pressure can be constrained by genetic correlation between sexes. This hypothesis predicts that costly ornamental structures selected for only in males appear also in females, at least because both sexes share most of their genomes. If a trait bears no fitness advantages to females, its expression should reflect a compromise between selection for hypertrophy in males and natural selection favouring reduction of ornamentation in females. Therefore, extravagant male ornaments should evolve predominantly under weak intersexual genetic correlation. Here, we explore the role and evolutionary stability of the constraint imposed by intersexual genetic correlation in the evolution of body colouration in three species-rich families of killifishes. Across most killifish lineages, the evolutionary changes in male and female variegation were correlated, which identifies intersexual genetic correlation as an important factor in the evolution of killifish colouration. Several lineages overcame the constraining intersexual genetic correlation and evolved extremely conspicuous colouration in males together with plain colouration in females. Hormonal manipulations in two species from closely related genera (Nothobranchius and Fundulopanchax) differing in magnitude of sexual dichromatism suggest that pronounced sexual dimorphism in variegation evolved via disappearance of vivid body colours in females and extension of androgen-linked vivid colouration over body surface in males.  相似文献   

3.
Males and females differ in their phenotypic optima for many traits, and as the majority of genes are expressed in both sexes, some alleles can be beneficial to one sex but harmful to the other (intralocus sexual conflict; ISC). ISC theory has recently been extended to intrasexual dimorphisms, where certain alleles may have opposite effects on the fitness of males of different morphs that employ alternative reproductive tactics (intralocus tactical conflict; ITC). Here, we use a half‐sib breeding design to investigate the genetic basis for ISC and ITC in the dung beetle Onthophagus taurus. We found positive heritabilities and intersexual genetic correlations for almost all traits investigated. Next, we calculated the intrasexual genetic correlation between males of different morphs for horn length, a sexually selected trait, and compared it to intrasexual correlations for naturally selected traits in both sexes. Intrasexual genetic correlations did not differ significantly between the sexes or between naturally and sexually selected traits, failing to support the hypothesis that horns present a reduction of intrasexual genetic correlations due to ITC. We discuss the implications for the idea of developmental reprogramming between male morphs and emphasize the importance of genetic correlations as constraints for the evolution of dimorphisms.  相似文献   

4.
Sexual conflict at loci influencing traits shared between the sexes occurs when sex-specific selection pressures are antagonistic relative to the genetic correlation between the sexes. To assess whether there is sexual conflict over shared traits, we estimated heritability and intersexual genetic correlations for highly sexually dimorphic traits (horn volume and body mass) in a wild population of bighorn sheep (Ovis canadensis) and quantified sex-specific selection using estimates of longevity and lifetime reproductive success. Body mass and horn volume showed significant additive genetic variance in both sexes, and intersexual genetic correlations were 0.24+/-0.28 for horn volume and 0.63+/-0.30 for body mass. For horn volume, selection coefficients did not significantly differ from zero in either sex. For body weight, selection coefficients were positive in females but did not differ from zero in males. The absence of detectable sexually antagonistic selection suggests that currently there are no sexual conflicts at loci influencing horn volume and body mass.  相似文献   

5.
Responses to sexually antagonistic selection are thought to be constrained by the shared genetic architecture of homologous male and female traits. Accordingly, adaptive sexual dimorphism depends on mechanisms such as genotype‐by‐sex interaction (G×S) and sex‐specific plasticity to alleviate this constraint. We tested these mechanisms in a population of Xiphophorus birchmanni (sheepshead swordtail), where the intensity of male competition is expected to mediate intersexual conflict over age and size at maturity. Combining quantitative genetics with density manipulations and analysis of sex ratio variation, we confirm that maturation traits are dimorphic and heritable, but also subject to large G×S. Although cross‐sex genetic correlations are close to zero, suggesting sex‐linked genes with important effects on growth and maturation are likely segregating in this population, we found less evidence of sex‐specific adaptive plasticity. At high density, there was a weak trend towards later and smaller maturation in both sexes. Effects of sex ratio were stronger and putatively adaptive in males but not in females. Males delay maturation in the presence of mature rivals, resulting in larger adult size with subsequent benefit to competitive ability. However, females also delay maturation in male‐biased groups, incurring a loss of reproductive lifespan without apparent benefit. Thus, in highly competitive environments, female fitness may be limited by the lack of sex‐specific plasticity. More generally, assuming that selection does act antagonistically on male and female maturation traits in the wild, our results demonstrate that genetic architecture of homologous traits can ease a major constraint on the evolution of adaptive dimorphism.  相似文献   

6.
Models of indirect (genetic) benefits sexual selection predict linkage disequilibria between genes that influence male traits and female preferences, owing to either non-random mate choice or physical linkage. Such linkage disequilibria, a genetic correlation, can accelerate the evolution of male traits and female preferences to exaggerated levels. But relatively few empirical studies have measured the genetic correlation between male traits and female responses in natural populations, and the findings of those few are mixed: often, genetic correlations are not found. We tested the above prediction in an acoustic pyralid moth, Achroia grisella, in which males attract females with a rhythmic train of sound pulses, and females respond only to song that exceeds a minimum pulse rhythm. Both male song rhythm and female threshold response are repeatable and heritable characters. Because female choice in A. grisella is based largely on male song, and males do not appear to provide direct benefits at mating, genetic correlation between male song rhythm and female response is expected. We studied 2 A. grisella populations, bred them according to a full-sib/half-sib design, split the progeny among 4 different environmental conditions, and measured the male song/female response genetic correlation in each of the 8 resulting groups. While song rhythm and response threshold were generally heritable, we found no evidence of significant genetic correlation between these traits. We suggest that the complexity of the various male song characters, of female response to male song, and of correlations between male song characters and between aspects of female response have mitigated the evolution of strong genetic correlation between song and response. Thus, exaggerated levels of trait development may be tempered.  相似文献   

7.
In Drosophila, long sperm are favoured in sperm competition based on the length of the female's primary sperm storage organ, the seminal receptacle (SR). This sperm–SR interaction, together with a genetic correlation between the traits, suggests that the coevolution of exaggerated sperm and SR lengths may be driven by Fisherian runaway selection. Here, we explore the costs and benefits of long sperm and SR genotypes, both in the sex that carries them and in the sex that does not. We measured male and female fitness in inbred lines of Drosophila melanogaster derived from four populations previously selected for long sperm, short sperm, long SRs or short SRs. We specifically asked: What are the costs and benefits of long sperm in males and long SRs in females? Furthermore, do genotypes that generate long sperm in males or long SRs in females impose a fitness cost on the opposite sex? Answers to these questions will address whether long sperm are an honest indicator of male fitness, male post‐copulatory success is associated with male precopulatory success, female choice benefits females or is costly, and intragenomic conflict could influence evolution of these traits. We found that both sexes have increased longevity in long sperm and long SR genotypes. Males, but not females, from long SR lines had higher fecundity. Our results suggest that sperm–SR coevolution is facilitated by both increased viability and indirect benefits of long sperm and SRs in both sexes.  相似文献   

8.
In promiscuous species, sexual selection generates two opposing male traits: offense (acquiring new mates and supplanting stored sperm) and defense (enforcing fidelity on one's mates and preventing sperm displacement when this fails). Coevolution between these traits requires both additive genetic variation and associated natural selection. Previous work with Drosophila melanogaster found autosomal genetic variation for these traits among inbred lines from a mixture of populations, but only nonheritable genetic variation was found within a single outbred population. These results do not support ongoing antagonistic coevolution between offense and defense, nor between either of these male traits and female reproductive characters. Here we use a new method (hemiclonal analysis) to study genomewide genetic variation in a large outbred laboratory population of D. melanogaster. Hemiclonal analysis estimates the additive genetic variation among random, genomewide haplotypes taken from a large, outbred, locally adapted laboratory population and determines the direction of the selection gradient on this variation. In contrast to earlier studies, we found low but biologically significant heritable variation for defensive and offensive offspring production as well as all their components (P1, fidelity, P2, and remating). Genetic correlations between these traits were substantially different from those reported for inbred lines. A positive genetic correlation was found between defense and offense, demonstrating that some shared genes influence both traits. In addition to this common variation, evidence for unique genetic variation for each trait was also found, supporting an ongoing coevolutionary arms race between defense and offense. Reproductive conflict between males can strongly influence female fitness. Correspondingly, we found genetic variation in both defense and offense that affected female fitness. No evidence was found for intersexual conflict in the context of male defense, but we found substantial intersexual conflict in the context of male offensive sperm competitive ability. These results indicate that conflict between competing males also promotes an associated arms race between the sexes.  相似文献   

9.
Recent work suggests that sexual selection can influence the evolution of ageing and lifespan by shaping the optimal timing and relative costliness of reproductive effort in the sexes. We used inbred lines of the decorated cricket, Gryllodes sigillatus, to estimate the genetic (co)variance between age‐dependent reproductive effort, lifespan, and ageing within and between the sexes. Sexual selection theory predicts that males should die sooner and age more rapidly than females. However, a reversal of this pattern may be favored if reproductive effort increases with age in males but not in females. We found that male calling effort increased with age, whereas female fecundity decreased, and that males lived longer and aged more slowly than females. These divergent life‐history strategies were underpinned by a positive genetic correlation between early‐life reproductive effort and ageing rate in both sexes, although this relationship was stronger in females. Despite these sex differences in life‐history schedules, age‐dependent reproductive effort, lifespan, and ageing exhibited strong positive intersexual genetic correlations. This should, in theory, constrain the independent evolution of these traits in the sexes and may promote intralocus sexual conflict. Our study highlights the importance of sexual selection to the evolution of sex differences in ageing and lifespan in G. sigillatus.  相似文献   

10.
Intralocus sexual conflict (IaSC) is pervasive because males and females experience differences in selection but share much of the same genome. Traits with integrated genetic architecture should be reservoirs of sexually antagonistic genetic variation for fitness, but explorations of multivariate IaSC are scarce. Previously, we showed that upward artificial selection on male life span decreased male fitness but increased female fitness compared with downward selection in the seed beetle Callosobruchus maculatus. Here, we use these selection lines to investigate sex‐specific evolution of four functionally integrated traits (metabolic rate, locomotor activity, body mass, and life span) that collectively define a sexually dimorphic life‐history syndrome in many species. Male‐limited selection for short life span led to correlated evolution in females toward a more male‐like multivariate phenotype. Conversely, males selected for long life span became more female‐like, implying that IaSC results from genetic integration of this suite of traits. However, while life span, metabolism, and body mass showed correlated evolution in the sexes, activity did not evolve in males but, surprisingly, did so in females. This led to sexual monomorphism in locomotor activity in short‐life lines associated with detrimental effects in females. Our results thus support the general tenet that widespread pleiotropy generates IaSC despite sex‐specific genetic architecture.  相似文献   

11.
The extent to which sexual dimorphism can evolve within a population depends on an interaction between sexually divergent selection and constraints imposed by a genetic architecture that is shared between males and females. The degree of constraint within a population is normally inferred from the intersexual genetic correlation, r(mf) . However, such bivariate correlations ignore the potential constraining effect of genetic covariances between other sexually coexpressed traits. Using the fruit fly Drosophila serrata, a species that exhibits mutual mate preference for blends of homologous contact pheromones, we tested the impact of between-sex between-trait genetic covariances using an extended version of the genetic variance-covariance matrix, G, that includes Lande's (1980) between-sex covariance matrix, B. We find that including B greatly reduces the degree to which male and female traits are predicted to diverge in the face of divergent phenotypic selection. However, the degree to which B alters the response to selection differs between the sexes. The overall rate of male trait evolution is predicted to decline, but its direction remains relatively unchanged, whereas the opposite is found for females. We emphasize the importance of considering the B-matrix in microevolutionary studies of constraint on the evolution of sexual dimorphism.  相似文献   

12.
A model of sexual selection that leads to the evolution of exaggerated male display characters that is based on antagonistic coevolution between the sexes is described. The model is motivated by three lines of research: intersexual conflict with respect to mating, sensory exploitation, and the evolution of female resistance, as opposed to preference, for male display traits. The model generates unique predictions that permit its operation to be distinguished from other established models of sexual selection. One striking prediction is that females will frequently win the coevolutionary arms race with males, leaving them encumbered with costly ornaments that have little value except that their absence understimulates females. Examples from the literature suggest that the model may have broad application in nature. The chase-away model is a special case of the more general phenomenon of Interlocus Contest Evolution (ICE).  相似文献   

13.
Intralocus sexual conflict results from sexually antagonistic selection on traits shared by the sexes. This can displace males and females from their respective fitness optima, and negative intersexual correlations (rmf) for fitness are the unequivocal indicator of this evolutionary conflict. It has recently been suggested that intersexual fitness correlations can vary depending on the segregating genetic variation present in a population, and one way to alter genetic variation and test this idea is via inbreeding. Here, we test whether intersexual correlations for fitness vary with inbreeding in Drosophila simulans isolines reared under homogenous conditions. We measured male and female fitness at different times following the establishment of isofemale lines and found that the sign of the association between the two measures varied with time after initial inbreeding. Our results are consistent with suggestions that the type of genetic variation segregating within a population can determine the extent of intralocus sexual conflict and also support the idea that sexually antagonistic alleles segregate for longer in populations than alleles with sexually concordant effects.  相似文献   

14.
Studies of sexual selection have focused mainly on dimorphic and/or polygynous species, where males, typically possess more exaggerated secondary sexual characters. However in many species, receiving far less attention, the expression of ornamental traits by females matches that in males. Several hypotheses have been proposed to explain sexual monomorphism, including mutual mate choice, genetic correlation, weak sexual selection and sexual indistinguishability. The sexual indistinguishability hypothesis suggests that sexual monomorphism is an adaption to avoid competition in monogamous flock‐living species. Based on measurements of museum skins and domesticated birds in Europe, the Australian long‐tailed finch was classified as a sexually monomorphic species, providing the best empirical support for the sexual indistinguishability hypothesis. Using both domestic and wild long‐tailed finches, we have re‐evaluated the extent to which the sexes are really indistinguishable. Morphological measurements of wing, tail, tail streamers, tarsus, bill and patch size, and colour spectrometric measurements of the yellow upper mandible and grey crown, were compared between the sexes. While the sexes are similar, males and females nonetheless differed in seven of ten traits in wild populations. In domestic populations, the sexes differed to a lesser extent but were still significantly different at three of ten traits, and discriminant analysis showed that 92% of wild individuals and 89% of domestic individuals could reliably be sexed based on just these morphological traits. Contrary to previous work, this study demonstrates that wild long‐tailed finches are sexually dimorphic, and that the similarity between males and females in this species cannot be explained by the sexual indistinguishability hypothesis.  相似文献   

15.
Sexually antagonistic selection generates intralocus sexual conflict, an evolutionary tug-of-war between males and females over optimal trait values [1-4]. Although the potential for this conflict is universal, the evolutionary importance of intralocus conflict is controversial because conflicts are typically thought to be resolvable through the evolution of sex-specific trait development [1-8]. However, whether sex-specific trait expression always resolves intralocus conflict has not been established. We assessed this with beetle populations subjected to bidirectional selection on an exaggerated sexually selected trait, the mandible. Mandibles are only ever developed in males for use in male-male combat, and larger mandibles increase male fitness (fighting [9, 10] and mating success, as we show here). We find that females from populations selected for larger male mandibles have lower fitness, whereas females in small-mandible populations have highest fitness, even though females never develop exaggerated mandibles. This is because mandible development changes genetically correlated characters, resulting in a negative intersexual fitness correlation across these populations, which is the unmistakable signature of intralocus sexual conflict [1]. Our results show that sex-limited trait development need not resolve intralocus sexual conflict, because traits are rarely, if ever, genetically independent of other characters [11]. Hence, intralocus conflict resolution is not as easy as currently thought.  相似文献   

16.
Because homologous traits of males and females are likely to have a common genetic basis, sex-specific selection (often resulting from sexual selection on one sex) may generate an evolutionary tug-of-war known as intralocus sexual conflict, which will constrain the adaptive divergence of the sexes. Theory suggests that intralocus sexual conflict can be mitigated through reduction of the intersexual genetic correlation (rMF), predicting negative covariation between rMF and sexual dimorphism. In addition, recent work showed that selection should favor reduced expression of alleles inherited from the opposite-sex parent (intersexual inheritance) in traits subject to intralocus sexual conflict. For traits under sexual selection in males, this should be manifested either in reduced maternal heritability or, when conflict is severe, in reduced heritability through the opposite-sex parent in offspring of both sexes. However, because we do not know how far these hypothesized evolutionary responses can actually proceed, the importance of intralocus sexual conflict as a long-term constraint on adaptive evolution remains unclear. In this study, we investigated the genetic architecture of sexual and nonsexual morphological traits in Prochyliza xanthostoma. The lowest rMF and greatest dimorphism were exhibited by two sexual traits (head length and antenna length) and, among all traits, the degree of sexual dimorphism was correlated negatively with rMF. Moreover, sexual traits exhibited reduced maternal heritabilities, and the most strongly dimorphic sexual trait (antenna length) was heritable only through the same-sex parent in offspring of both sexes. Our results support theory and suggest that intralocus sexual conflict can be resolved substantially by genomic adaptation. Further work is required to identify the proximate mechanisms underlying these patterns.  相似文献   

17.
Intralocus sexual conflict occurs when opposing selection pressures operate on loci expressed in both sexes, constraining the evolution of sexual dimorphism and displacing one or both sexes from their optimum. We eliminated intralocus conflict in Drosophila melanogaster by limiting transmission of all major chromosomes to males, thereby allowing them to win the intersexual tug‐of‐war. Here, we show that this male‐limited (ML) evolution treatment led to the evolution (in both sexes) of masculinized wing morphology, body size, growth rate, wing loading, and allometry. In addition to more male‐like size and shape, ML evolution resulted in an increase in developmental stability for males. However, females expressing ML chromosomes were less developmentally stable, suggesting that being ontogenetically more male‐like was disruptive to development. We suggest that sexual selection over size and shape of the imago may therefore explain the persistence of substantial genetic variation in these characters and the ontogenetic processes underlying them.  相似文献   

18.
Most bird studies of female signalling have been confined to species in which females display a male‐ornament in a vestigial form. However, a great deal of benefit may be gained from considering phenotypic traits that are specific to females. This is because (1) sex‐specific traits may signal sex‐specific qualities and (2) females may develop a male‐ornament not because they are selected to do so, but because fathers transmit to daughters the underlying genes for its expression (genetic correlation between the sexes). We investigated these two propositions in the barn owl Tyto alba, a species in which male plumage is lighter in colour and less marked with black spots than that of females. Firstly, we present published evidence that female plumage spottiness reflects parasite resistance ability. We also show that male plumage coloration is correlated with reproductive success, male feeding rate and heart mass. Secondly, cross‐fostering experiments demonstrate that plumage coloration and spottiness are genetically correlated between the sexes. This implies that if a given trait value is selected in one sex, the other sex will indirectly evolve towards a similar value. This prediction is supported by the observation that female plumage coloration and spottiness resembled that of males, in comparisons at the level of Tyto alba alba populations, Tyto alba subspecies and Tyto species. Our results therefore support the hypothesis that sex‐specific traits signal sex‐specific qualities and that a gene for a sex‐specific trait can be expressed in the other sex as the consequence of a genetic correlation between the sexes.  相似文献   

19.
Theory predicts that costly secondary sexual traits will evolve heightened condition dependence, and many studies have reported strong condition dependence of signal and weapon traits in a variety of species. However, although genital structures often play key roles in intersexual interactions and appear to be subject to sexual or sexually antagonistic selection, few studies have examined the condition dependence of genital structures, especially in both sexes simultaneously. We investigated the responses of male and female genital structures to manipulation of larval diet quality (new versus once‐used mung beans) in the bruchid seed beetle Callosobruchus maculatus. We quantified effects on mean relative size and static allometry of the male aedeagus, aedeagal spines, flap and paramere and the female reproductive tract and bursal spines. None of the male traits showed a significant effect of diet quality. In females, we found that longer bursal spines (relative to body size) were expressed on low‐quality diet. Although the function of bursal spines is poorly understood, we suggest that greater bursal spine length in low‐condition females may represent a sexually antagonistic adaptation. Overall, we found no evidence that genital traits in C. maculatus are expressed to a greater extent when nutrients are more abundant. This suggests that, even though some genital traits appear to function as secondary sexual traits, genital traits do not exhibit heightened condition dependence in this species. We discuss possible reasons for this finding.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号