首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate may play important roles in speciation, such as causing the range fragmentation that underlies allopatric speciation (through niche conservatism) or driving divergence of parapatric populations along climatic gradients (through niche divergence). Here, we developed new methods to test the frequency of climate niche conservatism and divergence in speciation, and applied it to species pairs of squamate reptiles (lizards and snakes). We used a large‐scale phylogeny to identify 242 sister species pairs for analysis. From these, we selected all terrestrial allopatric pairs with sufficient occurrence records (= 49 pairs) and inferred whether each originated via climatic niche conservatism or climatic niche divergence. Among the 242 pairs, allopatric pairs were most common (41.3%), rather than parapatric (19.4%), partially sympatric (17.7%), or fully sympatric species pairs (21.5%). Among the 49 selected allopatric pairs, most appeared to have originated via climatic niche divergence (61–76%, depending on the details of the methods). Surprisingly, we found greater climatic niche divergence between allopatric sister species than between parapatric pairs, even after correcting for geographic distance. We also found that niche divergence did not increase with time, further implicating niche divergence in driving lineage splitting. Overall, our results suggest that climatic niche divergence may often play an important role in allopatric speciation, and the methodology developed here can be used to address the generality of these findings in other organisms.  相似文献   

2.
Phylogenetic reconstruction of the evolutionary relationships among 61 of the 70 species of the parrotfish genera Chlorurus and Scarus (Family Labridae) based on mitochondrial and nuclear gene sequences retrieved 15 well‐supported clades with mid Pliocene/Pleistocene diversification. Twenty‐two reciprocally monophyletic sister‐species pairs were identified: 64% were allopatric, and the remainder were sympatric. Age of divergence was similar for allopatric and sympatric species pairs. Sympatric sister pairs displayed greater divergence in morphology, ecology, and sexually dimorphic colour patterns than did allopatric pairs, suggesting that both genetic drift in allopatric species pairs and ecologically adaptive divergence between members of sympatric pairs have played a role in diversification. Basal species typically have small geographical ranges and are restricted to geographically and ecologically peripheral reef habitats. We found little evidence that a single dominant process has driven diversification, nor did we detect a pattern of discrete, sequential stages of diversification in relation to habitat, ecology, and reproductive biology. The evolution of Chlorurus and Scarus has been complex, involving a number of speciation processes. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 107 , 529–557.  相似文献   

3.
Does competition influence patterns of coexistence between closely related taxa? Here we address this question by analyzing patterns of range overlap between related species of birds (‘sister pairs’) co‐occurring on a tropical elevational gradient. We explicitly contrast the behavioral dimension of interspecific competition (interference competition) with similarity in resource acquisition traits (exploitative competition). Specifically, we ask whether elevational range overlap in 118 sister pairs that live along the Manu Transect in southeastern Peru is predicted by proxies for competition (intraspecific territorial behavior) or niche divergence (beak divergence and divergence times, an estimate of evolutionary age). We find that close relatives that defend year‐round territories tend to live in non‐overlapping elevational distributions, while close relatives that do not defend territories tend to broadly overlap in elevational distribution. In contrast, neither beak divergence nor evolutionary age was associated with patterns of range limitation. We interpret these findings as evidence that behavioral interactions – particularly direct territorial aggression – can be important in setting elevational range limits and preventing coexistence of closely related species, though this depends upon the extent to which intraspecific territorial behavior can be extended to territorial interactions between species. Our results suggest that interference competition can be an important driver of species range limits in diverse assemblages, and thus highlight the importance of considering behavioral dimensions of the niche in macroecological studies.  相似文献   

4.
Understanding ecological niche evolution over evolutionary timescales is crucial to elucidating the biogeographic history of organisms. Here, we used, for the first time, climate‐based ecological niche models (ENMs) to test hypotheses about ecological divergence and speciation processes between sister species pairs of lemurs (genus Eulemur) in Madagascar. We produced ENMs for eight species, all of which had significant validation support. Among the four sister species pairs, we found nonequivalent niches between sisters, varying degrees of niche overlap in ecological and geographic space, and support for multiple divergence processes. Specifically, three sister‐pair comparisons supported the null model that niches are no more divergent than the available background region. These findings are consistent with an allopatric speciation model, and for two sister pairs (E. collaris–E. cinereiceps and E. rufus–E. rufifrons), a riverine barrier has been previously proposed for driving allopatric speciation. However, for the fourth sister pair E. flavifrons–E. macaco, we found support for significant niche divergence, and consistent with their parapatric distribution on an ecotone and the lack of obvious geographic barriers, these findings most strongly support a parapatric model of speciation. These analyses thus suggest that various speciation processes have led to diversification among closely related Eulemur species.  相似文献   

5.
While Anartia butterflies have served as model organisms for research on the genetics of speciation, no phylogeny has been published to describe interspecific relationships. Here, we present a molecular phylogenetic analysis of Anartia species relationships, using both mitochondrial and nuclear genes. Analyses of both data sets confirm earlier predictions of sister species pairings based primarily on genital morphology. Yet both the mitochondrial and nuclear gene phylogenies demonstrate that Anartia jatrophae is not sister to all other Anartia species, but rather that it is sister to the Anartia fatima-Anartia amathea lineage. Traditional biogeographic explanations for speciation across the genus relied on A. jatrophae being sister to its congeners. These explanations invoked allopatric divergence of sister species pairs and multiple sympatric speciation events to explain why A. jatrophae flies alongside all its congeners. The molecular phylogenies are more consistent with lineage divergence due to vicariance, and range expansion of A. jatrophae to explain its sympatry with congeners. Further interpretations of the tree topologies also suggest how morphological evolution and eco-geographic adaptation may have set species range boundaries.  相似文献   

6.
Dioecious clades have been observed to have lower species richness than their non‐dioecious sister groups indicating that dioecious species experience higher extinction rates and (or) lower speciation rates. To determine whether current threats to biodiversity may exacerbate this pattern, we examined the threat to exclusively dioecious families of angiosperms among the 13,013 species of threatened plants included in the IUCN Red List of Threatened Species. When examined phylogenetically, dioecious families had proportionally more species listed than their sister groups. We then examined whether ecological traits correlated with dioecy, namely tropical distribution, woody growth form, and fleshy fruits, are associated with having higher proportions of threatened species. Ignoring breeding system, woody growth form was the only trait that was associated with a greater than expected proportion of threatened species per family. Red‐Listed dioecious families were more likely to have a woody growth form than non‐dioecious families. Woody growth habit is likely contributing to the higher incidence of dioecious species being at risk of extinction but is not solely responsible for the pattern because higher risk within dioecious groups was also apparent in a comparison of exclusively woody sister‐group pairs. Our results indicate that dioecious plants may warrant special attention in conservation practices.  相似文献   

7.
The role of speciation processes in shaping current biodiversity patterns represents a major scientific question for ecologists and biogeographers. Hence, numerous methods have been developed to determine the geography of speciation based on co‐occurrence between sister‐species. Most of these methods rely on the correlation between divergence time and several metrics based on the geographic ranges of sister‐taxa (i.e. overlap, asymmetry). The relationship between divergence time and these metrics has scarcely been examined in a spatial context beyond regression curves. Mapping this relationship across spatial grids, however, may unravel how speciation processes have shaped current biodiversity patterns through space and time. This can be particularly relevant for coral reef fishes of the Indo‐Pacific since the origin of the exceptional concentration of biodiversity in the Indo‐Australian Archipelago (IAA) has been actively debated, with several alternative hypotheses involving species diversification and dispersal. We reconstructed the phylogenetic relationships between three species‐rich families of coral reef fish (Chaetodontidae, Labridae, Pomacentridae) and calculated co‐occurrence metrics between closely related lineages of those families. We demonstrated that repeated biogeographic processes can be identified in present‐day species distribution by projecting co‐occurrence metrics between related lineages in a geographical context. Our study also evidence that sister‐species do not co‐occur randomly across the Indo‐Pacific, but tend to overlap their range within the IAA. We identified the imprint of two important biogeographic processes that caused this pattern in 48% of the sister‐taxa considered: speciation events within the IAA and repeated divergence between the Indian and Pacific Ocean, with subsequent secondary contact in the IAA.  相似文献   

8.
Sympatric sister species are predicted to have greater divergence in reproductive traits than allopatric sister species, especially if mating system shifts, such as the evolution of self-fertilization, are more likely to originate within the geographic range of the outcrossing ancestor. We present evidence that supports this expectation-sympatric sister species in the monkeyflower genus, Mimulus, exhibit greater divergence in flower size than allopatric sister species. Additionally, we find that sympatric sister species are more likely to have one species with anthers that overtop their stigmas than allopatric sister species, suggesting that the evolution of automatic self-pollination may contribute to this pattern. Potential mechanisms underlying this pattern include reinforcement and a stepping stone model of parapatric speciation.  相似文献   

9.
The Indo‐Malay‐Philippine (IMP) biodiversity hotspot, bounded by the Philippines, the Malay Peninsula and New Guinea, is the epicentre of marine biodiversity. Hypotheses to explain the source of the incredible number of species found there include the centre of overlap hypothesis, which proposes that in this region the distinct faunas of the Pacific and Indian Oceans overlap. Here we review the biogeographical evidence in support of this hypothesis. We examined tropical reef fish distributions, paying particular attention to sister species pairs that overlap in the IMP hotspot. We also review phylogeographical studies of wide‐ranging species for evidence of lineage divergence and overlap in the IMP region. Our synthesis shows that a pattern of isolation between the Pacific and the Indian Ocean faunas is evident across a wide range of taxa. The occurrence of sister species, with one member in each ocean, indicates that the mechanism(s) of isolation has been in effect since at least the Miocene, while phylogeographical studies indicate more recent divergences in the Pleistocene. Divergence in isolation followed by population expansion has led to an overlap of closely related taxa or genetic lineages in the hotspot, contributing to diversity and species richness in the region. These findings are consistent with the centre of overlap hypothesis and highlight the importance of this process in generating biodiversity within the IMP.  相似文献   

10.
Speciation often has a strong geographical and environmental component, but the ecological factors that potentially underlie allopatric and parapatric speciation remain understudied. Two ecological mechanisms by which speciation may occur on geographic scales are allopatric speciation through niche conservatism and parapatric or allopatric speciation through niche divergence. A previous study on salamanders found a strong latitudinal pattern in the prevalence of these mechanisms, with niche conservatism dominating in temperate regions and niche divergence dominating in the tropics, and related this pattern to Janzen's hypothesis of greater climatic zonation between different elevations in the tropics. Here, we test for latitudinal patterns in speciation in a related but more diverse group of amphibians, the anurans. Using data from up to 79 sister-species pairs, we test for latitudinal variation in elevational and climatic overlap between sister species, and evaluate the frequency of speciation via niche conservatism versus niche divergence in relation to latitude. In contrast to salamanders, we find no tendency for greater niche divergence in the tropics or for greater niche conservatism in temperate regions. Although our results support the idea of greater climatic zonation in tropical regions, they show that this climatic pattern does not lead to straightforward relationships between speciation, latitude, and niche evolution.  相似文献   

11.
Secondary contact between incipient species and selection against maladaptive hybridization can drive reinforcement between populations in contact and result in reproductive character displacement (RCD). Resultant divergence in mating traits within a species may generate downstream reproductive isolation between populations with displaced and non-displaced traits, referred to as the cascade reinforcement hypothesis. We examined this hypothesis using three allopatric populations of the ground beetle Carabus maiyasanus with a genital lock-and-key system. This species shows RCD in male and female genital morphologies in populations in contact with the sister species C. iwawakianus. In a reciprocal mating experiment using three allopatric populations with differences in male and female genital sizes, insemination failure increased as the difference in genital size increased. Based on the reproductive isolation index, insemination failure was the major postmating-prezygotic isolation barrier, at least in one population pair with comparable total isolation to those of other species pairs. By contrast, there was only incomplete premating isolation among populations. These results suggest that RCD in genital morphologies drives incipient allopatric speciation, supporting the cascade reinforcement hypothesis. These findings provide insight into the roles of interspecific interactions and subsequent trait diversification in speciation processes.  相似文献   

12.
A lineage of 12 arid land shrubby species in the gymnosperm genus Ephedra (Gnetales) from North America is used to evaluate the influence of climate on speciation. With a long evolutionary history, and a well documented fossil record this lineage is an ideal model for understanding the process of speciation under a niche conservatism scenario. Using seven DNA molecular markers, Bayesian inference is carried out to uncover sister species and to estimate time of divergence of the lineages. Ecological niche models are generated for four parapatric and sympatric sister species and two analyses of niche evolution are performed, one based on ecological niche models and another using raw data and multivariate analysis. As previous analyses suggest, the diversification of North America Ephedra species may be the result of a recent secondary radiation. Both parapatric and sympatric species diverged mostly in a scenario of climatic niche conservatism. However, we also found strong evidence for niche divergence for one of the sister species pairs (E. californica-E. trifurca). Moreover, the multivariate analysis found environmental differences for some variables between sister species. The estimated divergence time of three pairs of sister species distributed in southwestern North America (E. cutleri-E. aspera, E. californica-E. trifurca and E. torreyana-E. viridis) is inferred to have occurred in the Late Miocene to Pliocene and for the sister species pair E. antisyphilitica-E. coryi distributed in the southern United States and northeastern Mexico, it was inferred from the Pliocene to Pleistocene. The orogenetic and climatic changes documented for these regions related to expansion of arid lands, may have contributed to the diversification in North American Ephedra, rather than adaptations to new climatic conditions.  相似文献   

13.
14.
Characterizing the patterns of hybridization between closely related species is crucial to understand the role of gene flow in speciation. In particular, systems comprising multiple contacts between sister species offer an outstanding opportunity to investigate how reproductive isolation varies with environmental conditions, demography and geographic contexts of divergence. The flat periwinkles, Littorina obtusata and L. fabalis (Gastropoda), are two intertidal sister species with marked ecological differences compatible with late stages of speciation. Although hybridization between the two was previously suggested, its extent across the Atlantic shores of Europe remained largely unknown. Here, we combined genetic (microsatellites and mtDNA) and morphological data (shell and male genital morphology) from multiple populations of flat periwinkles in north‐western Iberia to assess the extent of current and past hybridization between L. obtusata and L. fabalis under two contrasting geographic settings of divergence (sympatry and allopatry). Hybridization signatures based on both mtDNA and microsatellites were stronger in sympatric sites, although evidence for recent extensive admixture was found in a single location. Misidentification of individuals into species based on shell morphology was higher in sympatric than in allopatric sites. However, despite hybridization, species distinctiveness based on this phenotypic trait together with male genital morphology remained relatively high. The observed variation in the extent of hybridization among locations provides a rare opportunity for future studies on the consequences of different levels of gene flow for reinforcement, thus informing about the mechanisms underlying the completion of speciation.  相似文献   

15.
Signal divergence is an important process underpinning the diversification of lineages. Research has shown that signal divergence is greatest in species pairs that possess high geographic range overlap. However, the influence of range‐size differences within pairs is less understood. We investigated how these factors have shaped signal divergence within brightly coloured coral reef butterflyfishes (genus: Chaetodon). Using a novel digital imaging methodology, we quantified both colouration and pattern using 250 000 sample points on each fish image. Surprisingly, evolutionary age did not affect colour pattern dissimilarity between species pairs, with average differences arising in just 300 000 years. However, the effect of range overlap and range symmetry was significant. Species‐pair colour patterns become more different with increasing overlap, but only when ranges are similar in size. When ranges differ markedly in area, species‐pair colour patterns become more similar with increasing overlap. This suggests that species with small ranges may maintain non‐colour‐based species boundaries.  相似文献   

16.
Coyne and Orr found that mating discrimination (premating isolation) evolves much faster between sympatric than allopatric Drosophila species pairs. Their meta‐analyses established that this pattern, expected under reinforcement, is common and that Haldane's rule is ubiquitous in Drosophila species divergence. We examine three possible contributors to the reinforcement pattern: intrinsic postzygotic isolation, dichotomized as to whether hybrid males show complete inviability/sterility; host‐plant divergence, as a surrogate for extrinsic postzygotic isolation; and X chromosome size, whether roughly 20% or 40% of the genome is X‐linked. We focus on “young” species pairs with overlapping ranges, contrasted with allopatric pairs. Using alternative criteria for “sympatry” and tests that compare either level of prezygotic isolation in sympatry or frequency of sympatry, we find no statistically significant effects associated with X chromosome size or our coarse quantifications of intrinsic postzygotic isolation or ecological differentiation. Although sympatric speciation seems very rare in animals, the pervasiveness of the reinforcement pattern and the commonness of range overlap for close relatives indicate that speciation in Drosophila is often not purely allopatric. It remains to determine whether increased premating isolation with sympatry results from secondary contact versus parapatric speciation and what drives this pattern.  相似文献   

17.
Within island archipelagos, repeated ecological settings may lead to radiations wherein similar niches are recurrently occupied. Although it has been shown that species with common habitat requirements share particular traits, it remains relatively unexplored to what extent this may lead to the repeated evolution of almost identical phenotypes (phenocopies) and how this correlates with traits subjected to sexual selection. Exploring divergence patterns of ecological and sexual relevant traits within spiders seem promising to enhance our understanding of the relative role of natural and sexual selection. Here, we conduct a detailed morphological analysis on a large set of genital and non‐genital traits (morphometrics, colour pattern) within a radiation of the wolf spider genus Hogna Simon, 1885 on Galápagos and interpret these data, taking into account their known phylogenetic relationship. Our results show that recurrent environmental gradients have led to the parallel evolution of almost identical phenotypes, which not only proves that natural selection has driven morphological divergence, but also suggests that a similar genetic or developmental basis most likely underlies this divergence. Among‐species variation in genital traits in contrast rather reflects the phylogenetic relationships on Santa Cruz and San Cristóbal. The combination of these data indicate that speciation in this system is driven by the combined effect of ecological mechanisms and allopatric divergence in sexual traits. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 123–136.  相似文献   

18.
Sister species separated by the Isthmus of Panama have been widely used to estimate rates of molecular evolution. These estimates are based on the assumption that geographic isolation occurred nearly simultaneously for most taxa, when connections between the Caribbean and eastern Pacific closed approximately three million years ago. Here we show that this assumption is invalid for the only genus for which many taxa and multiple genetic markers have been analysed. Patterns of divergence exhibited by allozymes and the mitochondrial COI gene are highly concordant for 15 pairs of snapping shrimp in the genus Alpheus, indicating that they provide a reasonable basis for estimating time since cessation of gene flow. The extent of genetic divergence between pairs of sister species varied over fourfold. Sister species from mangrove environments showed the least divergence, as would be expected if these were among the last habitats to be divided. Using this pair yields a rate of sequence divergence of 1.4% per one million years, with implied times of separation for the 15 pairs of 3 to 18 million years ago. Many past studies may have overestimated rates of molecular evolution because they sampled pairs that were separated well before final closure of the Isthmus.  相似文献   

19.
Polyphenism has been suggested as an accelerator for morphological evolution and speciation. In the dung beetles of the genus Onthophagus, horn expression is polyphenic: large males develop horns whereas smaller males express greatly reduced or no horns. Horn static allometries seem to diverge rapidly amongst extant taxa, a process which might trigger changes in the male genital morphology, thus possibly promoting speciation as a by‐product. It can therefore be hypothesized that interspecific distances in allometries and, possibly, in other morphological traits mirror phylogenetic distances. In this study we first assessed the phylogenetic relationships amongst three closely related taxa belonging to the so‐called ‘Onthophagus fracticornis‐similis‐opacicollis’ species‐complex by sequencing the mitochondrial gene cytochrome oxidase subunit 1 (cox1). Biomolecular results indicated three independent lineages, the closest relationships being found between Onthophagus similis and Onthophagus opacicollis. Then we assessed the extent to which divergence pattern of horn static allometries and size and shape divergence patterns of one genital (paramere) and two nongenital (head and epipharynx) structures mirrored the phylogenetic relationships. Interspecific divergence patterns of horn static allometries, paramere, and head shape were found to be congruent with the evolutionary relationships inferred from biomolecular data. Nevertheless, paramere size and epipharynx shape showed patterns not consistent with the phylogeny. Furthermore, the relative size of nongenital structures showed little interspecific divergence compared to their shapes. Our results suggest that size and shape interspecific divergence mirror phylogeny only in part; they also indicate that distinct morphological traits may differ in their tendency to evolve in concert, and that size and shape of the same trait can evolve independently across species. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 162 , 482–498.  相似文献   

20.
A primary challenge for modern phylogeography is understanding how ecology and geography, both contemporary and historical, shape the spatial distribution and evolutionary histories of species. Phylogeographic patterns are the result of many factors, including geology, climate, habitat, colonization history and lineage‐specific constraints. Assessing the relative influences of these factors is difficult because few species, regions and environments are sampled in enough detail to compare competing hypotheses rigorously and because a particular phylogeographic pattern can potentially result from different evolutionary scenarios. The silky anoles (Anolis sericeus complex) of Central America and Mexico are abundant and found in all types of lowland terrestrial habitat, offering an excellent opportunity to test the relative influences of the factors affecting diversification. Here, we performed a range‐wide statistical phylogeographic analysis on restriction site‐associated DNA (RAD) markers from silky anoles and compared the phylogeographic patterns we recovered to historical and contemporary environmental and topographic data. We constructed niche models to compare niche overlap between sister lineages and conducted coalescent simulations to characterize how the major lineages of silky anoles have diverged. Our results revealed that the mode of divergence for major lineage diversification events was geographic isolation, resulting in ecological divergence between lineages, followed by secondary contact. Moreover, comparisons of parapatric sister lineages suggest that ecological niche divergence contributed to isolation by environment in this system, reflecting the natural history differences among populations in divergent environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号