首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structure-function relationships in cardiac troponin T   总被引:3,自引:0,他引:3  
Regions of rabbit and bovine cardiac troponin T that are involved in binding tropomyosin, troponin C and troponin I have been identified. Two sites of contact for tropomyosin have been located, situated between residues 92-178 and 180-284 of troponin T. A cardiac-specific binding site for troponin I has been identified between residues 1-68 of cardiac troponin T, within a region of the protein that has previously been shown to be encoded by a series of exons that are expressed in a tissue-specific and developmentally regulated manner. The binding site for troponin C is located between residues 180-284 of cardiac troponin T. When isolated from fresh bovine hearts, cardiac troponin T contained 0.21 +/- 0.11 mol phosphate per mol; incubation with phosphorylase kinase increased the phosphate content to approx. 1 mol phosphate per mol. One site of phosphorylation was identified as serine-1; a second site of phosphorylation was located within peptide CB3 (residues 93-178) and has been tentatively identified as serine-176. Addition of troponin C to cardiac troponin T does not inhibit the phosphorylation of this latter protein that is catalysed by phosphorylase b kinase.  相似文献   

2.
Localization of a trifluoperazine binding site on troponin C   总被引:4,自引:0,他引:4  
J Gariépy  R S Hodges 《Biochemistry》1983,22(7):1586-1594
Trifluoperazine (TFP) was shown to interact with the cyanogen bromide fragment 9 (CB9) (residues 84-135) of rabbit skeletal troponin C and with a synthetic peptide representing the N-terminal region of CB9. The phenothiazine did not affect the calcium binding property of CB9 as observed by proton magnetic resonance and circular dichroism spectroscopies. The calculated calcium binding constants for CB9 in the presence and absence of trifluoperazine were identical (KCa2+ = 1.3 X 10(5) M-1). Localization of the trifluoperazine binding site was achieved by analyzing the 1H NMR spectrum of CB9 and of a synthetic fragment corresponding to residues 90-104 of CB9. Drug-induced shifting and broadening of the ring protons of phenylalanine residues and the methyl resonances of alanine, leucine, and isoleucine residues suggest that the segment 95-102 is in close proximity to the phenothiazine aromatic region. The neighboring negative side chains in the peptide sequence also suggest that the single positive charge present on the piperazine nitrogens of trifluoperazine may interact with them and sterically block a region of interaction of calmodulin (CaM) and troponin C (TnC) with modulated proteins such as phosphodiesterase. Primary sequence analysis of CaM and troponin C reveals that a homologous hydrophobic region to site 3 is also found in the N-terminal region of site 1 of both calcium binding proteins. Binding of TFP to CB9 occurs both in the presence and absence of calcium since the hydrophobic region in these small fragments is completely accessible to TFP whether calcium is present or not. The dissociation constant of the drug to apoCB9 (8 microM) was obtained by ellipticity measurements at 222 nm and was comparable to the 5 microM value obtained by Levin and Weiss [Levin, R. M., & Weiss, B. (1978) Biochim. Biophys. Acta 540, 197-204] for calcium-saturated rabbit skeletal troponin C.  相似文献   

3.
Immunoelectron microscopy has shown that the spatial arrangement of troponin T on tropomyosin can be represented as a structure of approximately 90 Å in length, as shown in Figure 1. The region of residues 90 to 148 of troponin T, which has been confirmed as a main part of the fragment which specifically binds to tropomyosin, was predicted to be a long stretch of α-helix by the method of secondary structure prediction. Furthermore, the mechanism of the specific binding was explored on the basis of the coiled-coil structure of tropomyosin by a simple scoring method. One of the most feasible structures of the specific binding complex was a triple-stranded coiled-coil made between a tropomyosin coiled-coil and the α-helical region of the specific binding fragment of troponin T. It is illustrated as a stereo view in Figure 2.  相似文献   

4.
The binding of the chymotryptic troponin T subfragments to tropomyosin, troponin I, and troponin C was semiquantitatively examined by using affinity chromatography, and also by co-sedimentation with F-actin and polyacrylamide gel electrophoresis in 14 mM Tris/90 mM glycine. Circular dichroism spectra of the subfragments were measured to confirm that the subfragments retained their conformational structures. Based on these results, the binding sites of tropomyosin, troponin I, and troponin C on the troponin T sequence were elucidated. Tropomyosin bound mainly to the region of troponin T1 (residues 1-158) with the same binding strength as to the original troponin T. The C-terminal region of troponin T (residues 243-259) was the second binding site to tropomyosin under physiological conditions. The binding site of troponin I was concluded to be the region including residues 223-227. The binding of troponin C was dependent on Ca2+ ion concentration. The C-terminal region of troponin T2 (residues 159-259) was indicated to be the Ca2+-independent troponin C-binding site and the N-terminal side of troponin T2 to be the Ca2+-dependent site.  相似文献   

5.
Bacterially expressed alpha-tropomyosin lacks the amino-terminal acetylation present in muscle tropomyosin and binds poorly to actin (Hitchcock-DeGregori, S. E., and Heald, R. W. (1987) J. Biol. Chem. 262, 9730-9735). Using a linear lattice model, we determined the affinity (Ko) of unacetylated tropomyosin or troponin-unacetylated tropomyosin for an isolated site on the actin filament and the fold increase in affinity (y) when binding is to an adjacent site. The absence of tropomyosin acetylation decreased Ko 2 orders of magnitude in the absence of troponin. Tropomyosin acetylation also enhanced troponin-tropomyosin binding to actin, not by increasing cooperativity (y), but rather by increasing Ko. These results suggest that the amino-terminal region of tropomyosin is a crucial actin binding site. Troponin promoted unacetylated tropomyosin binding to actin, increasing Ko more than 1,000-fold. Troponin70-259, which lacks the troponin T peptide (1-69) spanning the overlap between adjacent tropomyosins, behaved similarly to intact troponin. Cooperative interactions between adjacent troponin-tropomyosin complexes remained strong despite the use of a nonpolymerizable tropomyosin and a troponin unable to bridge neighboring tropomyosins physically. The Ko for troponin70-259-unacetylated tropomyosin was 500-fold greater than for troponin159-259-unacetylated tropomyosin, indicating that troponin T residues 70-158 are critical for anchoring troponin-tropomyosin to F-actin. The mechanism of cooperative thin filament assembly is discussed.  相似文献   

6.
Vertebrate troponin regulates muscle contraction through alternative binding of the C-terminal region of the inhibitory subunit, troponin-I (TnI), to actin or troponin-C (TnC) in a Ca(2+)-dependent manner. To elucidate the molecular mechanisms of this regulation by molluskan troponin, we compared the functional properties of the recombinant fragments of Akazara scallop TnI and rabbit fast skeletal TnI. The C-terminal fragment of Akazara scallop TnI (ATnI(232-292)), which contains the inhibitory region (residues 104-115 of rabbit TnI) and the regulatory TnC-binding site (residues 116-131), bound actin-tropomyosin and inhibited actomyosin-tropomyosin Mg-ATPase. However, it did not interact with TnC, even in the presence of Ca(2+). These results indicated that the mechanism involved in the alternative binding of this region was not observed in molluskan troponin. On the other hand, ATnI(130-252), which contains the structural TnC-binding site (residues 1-30 of rabbit TnI) and the inhibitory region, bound strongly to both actin and TnC. Moreover, the ternary complex consisting of this fragment, troponin-T, and TnC activated the ATPase in a Ca(2+)-dependent manner almost as effectively as intact Akazara scallop troponin. Therefore, Akazara scallop troponin regulates the contraction through the activating mechanisms that involve the region spanning from the structural TnC-binding site to the inhibitory region of TnI. Together with the observation that corresponding rabbit TnI-fragment (RTnI(1-116)) shows similar activating effects, these findings suggest the importance of the TnI N-terminal region not only for maintaining the structural integrity of troponin complex but also for Ca(2+)-dependent activation.  相似文献   

7.
The binding of tropomyosin to actin and troponin-tropomyosin to actin was analyzed according to a linear lattice model which quantifies two parameters: Ko, the affinity of the ligand for an isolated site on the actin filament, and gamma, the fold increase in affinity when binding is contiguous to an occupied site (cooperativity). Tropomyosin-actin binding is very cooperative (gamma = 90-137). Troponin strengthens tropomyosin-actin binding greatly but, surprisingly, does so solely by an 80-130-fold increase in Ko, while cooperativity actually decreases. Additionally, troponin complexes containing TnT subunits with deletions of either amino acids 1-69 (troponin70-259) or 1-158 (troponin159-259) were examined. Deletion of amino acids 1-69 had only small effects on Ko and y, despite this peptide's location spanning the joint between adjacent tropomyosins. Ca2+ reduced Ko by half for both troponin and troponin70-159 and had no detectable effect on cooperativity. Troponin159-259 had much weaker effects on tropomyosin-actin binding than did troponin70-259 and had no effect at all in the presence of Ca2+. This suggests the importance of Ca(2+)-insensitive interactions between tropomyosin and troponin T residues 70-159. Cooperativity was slightly lower for troponin159-259 than tropomyosin alone, suggesting that the globular head region of troponin affects tropomyosin-tropomyosin interactions along the thin filament.  相似文献   

8.
Structural changes of troponin C on calcium binding were studied by hydrogen ion titration, circular dichroism, and fluorescence measurements. The potentiometric titration curves in the carboxyl region are shifted towards lower pH with calcium binding. The intrinsic pK of the carboxyl groups at the calcium binding sites decreases by 0.8 pK unit on calcium binding; on the other hand, magnesium ions have little effect on the intrinsic pK of the carboxyl groups. The intrinsic pK of the imidazole group is not affected by calcium binding. The value of w, an electrostatic interaction factor, is identical for calcium-free and calcium-bound troponin C and is about half of the value calculated assuming a compact sphere. The results of difference titration on the calcium binding indicate that the pH of troponin C solution increases on addition of CaCl2 up to 2 mol of Ca2+ per mol of troponin C and then decreases on further addition of CaCl2. The pH increase is depressed in the presence of MgCl2, in the low pH region, or at high ionic strength. The pH increase is also observed on addition of MgCl2. The ellipticity at 222 nm was measured under the same conditions as the difference titration measurements, and the relation between the pH change and the conformational change of troponin C on calcium binding is discussed based on the results obtained. The number of calcium binding sites and the binding constants estimated by analysis of these difference titration curves were in agreement with the results of Potter and Gergely (22). No magnesium binding site was observed. The tyrosine fluorescence measurements indicated that the binding site near tyrosine-109 is one of the high affinity sites.  相似文献   

9.
C S Farah  F C Reinach 《Biochemistry》1999,38(32):10543-10551
We have introduced tryptophan codons at different positions of the chicken alpha-tropomyosin cDNA (Monteiro, P. B., Lataro, R. C., Ferro, J. A., and Reinach, F. C. (1994) J. Biol. Chem. 269, 10461-10466) and employed a trp auxotrophic Escherichia coli strain to express the proteins in media containing either normal tryptophan, 5-hydroxytrptophan, or 7-azatryptophan. The fluorescence of these latter two tryptophan analogues is excitable at 312-315 nm at which the natural fluorescence of other thin filament proteins (actin, troponin) is not excited. The recombinant tropomyosins have tryptophans or analogues located at amino acid positions 90, 101, 111, 122, or 185 of the protein, all on the external surface of the tropomyosin coiled-coil (positions "c" or "f" of the hydrophobic heptad repeat). The first four mutations are located within the third actin-binding zone of tropomyosin, a region not expected to interact directly with troponin or with neighboring tropomyosin molecules in muscle thin filaments, while position 185 is located in a region that has been implicated in interactions with the globular domain of troponin. The fluorescence intensity of the mutant containing 5-hydroxytryptophan at position 122 (5OH122W) is sensitive to actin binding and sensitive to Ca2+-binding to thin filaments reconstituted with troponin. Assuming that the globular domain of troponin binds to a site between residues 150 and 190 of tropomyosin, the distance between the troponin-binding site and the fluorescent probes at position 122 can be estimated to be 4.2-10.2 nm. While X-ray diffraction and electron micrograph reconstitution studies have provided evidence of Ca2+-induced changes in tropomyosin's interactions in the thin filament, their resolution was not sufficient to distinguish between changes involving the whole tropomyosin molecule or only that region directly interacting with troponin. Here we provide a clear demonstration that Ca2+-binding to troponin results in a conformational change in a region of tropomyosin outside the troponin binding site which is probably associated with a changed interaction with actin.  相似文献   

10.
Cardiac thin filaments contain many troponin C (TnC) molecules, each with one regulatory Ca2+ binding site. A statistical mechanical model for the effects of these sites is presented and investigated. The ternary troponin complex was reconstituted with either TnC or the TnC mutant CBMII, in which the regulatory site in cardiac TnC (site II) is inactivated. Regardless of whether Ca2+ was present, CBMII-troponin was inhibitory in a thin filament-myosin subfragment 1 MgATPase assay. The competitive binding of [3H]troponin and [14C]CBMII-troponin to actin.tropomyosin was measured. In the presence of Mg2+ and low free Ca2+ they had equal affinities for the thin filament. When Ca274+ was added, however, troponin's affinity for the thin filament was 2.2-fold larger for the mutant than for the wild type troponin. This quantitatively describes the effect of regulatory site Ca2+ on troponin's affinity for actin.tropomyosin; the decrease in troponin-thin filament binding energy is small. Application of the theoretical model to the competitive binding data indicated that troponin molecules bind to interdependent rather than independent sites on the thin filament. Ca2+ binding to the regulatory site of TnC has a long-range rather than a merely local effect. However, these indirect TnC-TnC interactions are weak, indicating that the cooperativity of muscle activation by Ca2+ requires other sources of cooperativity.  相似文献   

11.
Some new features of the troponin complex have been revealed by electron microscope study of rotary shadowed molecules. Our results demonstrate that the troponin complex has both a globular and a rod-like domain. The length of the entire complex is ~265 Å and that of the tail is ~ 160 Å. Isolated troponin T has a shape and dimensions that correspond closely to those of the tail, so that the troponin I and C subunits would comprise most of the globular region of the complex. Native and reconstituted troponin-tropomyosin complexes have also been visualized and show the globular portion of troponin bound at regular intervals along the tropomyosin filaments. These electron microscope results, together with recent biochemical studies, suggest that troponin subunits C and I, and part of subunit T bind near Cys190 of tropomyosin, about one-third of the way along the molecule, with the rest of subunit T extending toward the COOH terminus. This arrangement implies that tropomyosin filaments lie on the actin helix with their COOH termini toward the Z-line. The shape of the complex suggests that troponin may interact with tropomyosin over a considerable portion of its length, and may therefore be important in the dynamics of the switching process.  相似文献   

12.
Cardiac troponin C is the Ca2+-dependent switch for heart muscle contraction. Troponin C is associated with various other proteins including troponin I and troponin T. The interaction between the subunits within the troponin complex is of critical importance in understanding contractility. Following a Ca2+ signal to begin contraction, the inhibitory region of troponin I comprising residues Thr128-Arg147 relocates from its binding surface on actin to troponin C, triggering movement of troponin-tropomyosin within the thin filament and thereby freeing actin-binding site(s) for interactions with the myosin ATPase of the thick filament to generate the power stroke. The structure of calcium-saturated cardiac troponin C (C-domain) in complex with the inhibitory region of troponin I was determined using multinuclear and multidimensional nuclear magnetic resonance spectroscopy. The structure of this complex reveals that the inhibitory region adopts a helical conformation spanning residues Leu134-Lys139, with a novel orientation between the E- and H-helices of troponin C, which is largely stabilized by electrostatic interactions. By using isotope labeling, we have studied the dynamics of the protein and peptide in the binary complex. The structure of this inhibited complex provides a framework for understanding into interactions within the troponin complex upon heart contraction.  相似文献   

13.
The molecular packing of magnesium paracrystals of α-tropomyosin has been examined by electron microscopy. Previous work (Caspar et al., 1969) had shown that these structures are composed of antiparallel arrays of molecules and we have now studied the relative positions of the molecules by matching the banding patterns of paracrystals positively stained with uranyl acetate to the sequence of the molecule. The overlap between the C-termini of the molecules in the unit cell is 175 ± 2 residues and the overlap of the N-termini lies in the range 107 to 122 residues. In the long overlap region (between C-termini), and probably also in the short overlap region, the molecular packing is such that the periodic zones of negative charge present in the sequence (Stewart & McLachlan, 1975) lie opposite one another. We propose that magnesium bridges between opposing negative charges contribute strongly to the stability of the structure. We confirm earlier work (Stewart, 1975b) on the absolute orientation of the molecules in the paracrystal: the troponin binding site on tropomyosin is approximately 130 Å from the C-terminus, and Cys190 is within 10 to 15 Å units of the C-C dyad.  相似文献   

14.
The relative reactivities of lysine residues of tropomyosin complexed with troponin have been measured in order to locate the binding site of troponin on tropomyosin in a complex between the two native proteins. The lysines were labeled with acetic anhydride using a competitive labeling procedure and the relative reactivities of tropomyosin lysine containing peptides were compared to those from tropomyosin labeled in the absence of troponin (S. E. Hitchcock-DeGregori, S. F. Lewis, and T. M.-T. Chou, (1985) Biochemistry 24, 3305-3314). Analysis of about two-thirds of the lysines indicates that troponin affects the reactivities of lysines along the length of the tropomyosin, indicating long-range effects. The inferred binding site is more extensive than previously reported, about 25 nm, extending from res. 136 to the carboxy-terminus and to res. 30 beyond the end-to-end overlap in the amino-terminal region of the next tropomyosin molecule.  相似文献   

15.
Cardiac troponin I(129-149) binds to the calcium saturated cardiac troponin C/troponin I(1-80) complex at two distinct sites. Binding of the first equivalent of troponin I(129-149) was found to primarily affect amide proton chemical shifts in the regulatory domain, while the second equivalent perturbed amide proton chemical shifts within the D/E linker region. Nitrogen-15 transverse relaxation rates showed that binding the first equivalent of inhibitory peptide to the regulatory domain decreased conformational exchange in defunct calcium binding site I and that addition of the second equivalent of inhibitory peptide decreased flexibility in the D/E linker region. No interactions between the inhibitory peptide and the C-domain of cardiac troponin C were detected by these methods demonstrating that the inhibitory peptide cannot displace cTnI(1-80) from the C-domain.  相似文献   

16.
Troponin contains a globular Ca(2+)-binding domain and an elongated tail domain composed of the N terminus of subunit troponin T (TnT). The tail domain anchors troponin to tropomyosin and actin, modulates myosin function, and is a site of cardiomyopathy-inducing mutations. Critical interactions between tropomyosin and troponin are proposed to depend on tail domain residues 112-136, which are highly conserved across phyla. Most cardiomyopathy mutations in TnT flank this region. Three such mutations were examined and had contrasting effects on peptide TnT-(1-156), promoting folding and thermal stability assessed by circular dichroism (F110I) or weakening folding and stability (T104V and to a small extent R92Q). Folding of both TnT-(1-156) and whole troponin was promoted by replacing bovine TnT Thr-104 with human TnT Ala-104, further indicating the importance of this cardiomyopathy site residue for protein folding. Mutation F110I markedly stabilized the troponin tail but weakened binding of holo-troponin to actin-tropomyosin 8-fold, suggesting that loss of flexibility impairs troponin tail function. The effect of the F110I mutation on troponin-tropomyosin binding to actin was much less, indicating this flexibility is particularly important for the interactions of troponin with tropomyosin. We suggest that most cardiomyopathic mutations in the troponin tail alter muscle function indirectly, by perturbing interactions between troponin and tropomyosin requisite for the complex effects of these proteins on myosin.  相似文献   

17.
The potential for using paramagnetic lanthanide ions to partially align troponin C in solution as a tool for the structure determination of bound troponin I peptides has been investigated. A prerequisite for these studies is an understanding of the order of lanthanide ion occupancy in the metal binding sites of the protein. Two-dimensional [(1)H, (15)N] HSQC NMR spectroscopy has been used to examine the binding order of Ce(3+), Tb(3+), and Yb(3+) to both apo- and holo-forms of human cardiac troponin C (cTnC) and of Ce(3+) to holo-chicken skeletal troponin C (sTnC). The disappearance of cross-peak resonances in the HSQC spectrum was used to determine the order of occupation of the binding sites in both cTnC and sTnC by each lanthanide. For the lanthanides tested, the binding order follows that of the net charge of the binding site residues from most to least negative; the N-domain calcium binding sites are the first to be filled followed by the C-domain sites. Given this binding order for lanthanide ions, it was demonstrated that it is possible to create a cTnC species with one lanthanide in the N-domain site and two Ca(2+) ions in the C-domain binding sites. By using the species cTnC.Yb(3+).2 Ca(2+) it was possible to confer partial alignment on a bound human cardiac troponin I (cTnI) peptide. Residual dipolar couplings (RDCs) were measured for the resonances in the bound (15)N-labeled cTnI(129-148) by using two-dimensional [(1)H, (15)N] inphase antiphase (IPAP) NMR spectroscopy.  相似文献   

18.
Ca2+ binding to fast skeletal muscle troponin C reincorporated into troponin C-depleted (CDTA-treated) myofibrils has been measured directly by using 45Ca and indirectly by using a fluorescent probe. Direct Ca2(+)-binding measurements have shown that the Ca2+ affinity of the low-affinity sites is enhanced in the absence of ATP and conversely reduced when myosin is selectively extracted from myofibrils, compared to the Ca2+ affinity in the presence of ATP. Fluorescence intensity changes of a dansylaziridine label at the Met-25 residue of troponin C have shown the same Ca2(+)-sensitivity whether or not ATP is present, while much lower Ca2(+)-sensitivity is seen in the myosin-extracted myofibrils. Since the Met-25 residue is in the amino terminal side alpha-helix of Ca2(+)-binding site I and far from Ca2(+)-binding site II in the primary structure, Ca2+ binding to site II has been evaluated by assuming that the fluorescence change monitors Ca2+ binding to site I alone. Ca2+ binding to site II thus estimated has shown high positive cooperativity only in the presence of ATP and has been found to be nearly proportional to the activation of myofibrillar ATPase, suggesting that Ca2(+)-binding site II is directly involved in the activation of myofibrillar ATPase activity. On the other hand, Ca2(+)-binding site I has been suggested to regulate the interaction of weakly binding cross-bridges with the thin filament, since the fluorescence change in the presence of ATP is saturated at the free Ca2+ concentration required for the activation of myofibrillar ATPase.  相似文献   

19.
R E Reid 《Biochemistry》1987,26(19):6070-6073
The sequential solid-phase synthesis of a peptide analogue of bovine brain calmodulin calcium binding site III covering residues 81-113 of the natural sequence is described. Methionine-109 is replaced by a leucine residue to avoid complications in the synthesis and purification. In an attempt to relate the structure of the calcium binding sites in the naturally occurring calcium binding protein to the calcium affinity of these sites, the synthetic analogue is examined for calcium binding by circular dichroism spectroscopy. The calcium binding characteristics are compared to those of a synthetic analogue of the homologous calcium binding site III in rabbit skeletal troponin C. The Kd of the calmodulin site III fragment for Ca2+ is determined as 878 microM whereas the Kd of the troponin C fragment is 30 times smaller at 28 microM. Structural changes induced in the peptides by Ca2+ and trifluoroethanol are similar. This study supports our contention that the single synthetic calcium binding site is a reasonable model for the study of the structure-activity relationships of the calcium binding sites in calcium-regulated proteins such as calmodulin and troponin C.  相似文献   

20.
We have cloned and characterized the troponin C gene, pat-10 of the nematode Caenorhabditis elegans. At the amino acid level nematode troponin C is most similar to troponin C of Drosophila (45% identity) and cardiac troponin C of vertebrates. Expression studies demonstrate that this troponin is expressed in body wall muscle throughout the life of the animal. Later, vulval muscles and anal muscles also express this troponin C isoform. The structural gene for this troponin is pat-10 and mutations in this gene lead to animals that arrest as twofold paralyzed embryos late in development. We have sequenced two of the mutations in pat-10 and both had identical two mutations in the gene; one changes D64 to N and the other changes W153 to a termination site. The missense alteration affects a calcium-binding site and eliminates calcium binding, whereas the second mutation eliminates binding to troponin I. These combined biochemical and in vivo studies of mutant animals demonstrate that this troponin is essential for proper muscle function during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号