首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infection of MPC-11 mouse plasmacytoma cells by vesicular stomatitis virus results in 30 to 35% reduction in [35S]methionine incorporation into total proteins within 30 min postinfection. By 6 h postinfection, total protein synthesis is reduced by 80 to 90%. However, even by 30 min postinfection, a differential suppression of the synthesis of individual host protein is observed. The synthesis of the immunoglobin G (IgG) heavy chain (H), and, in particular, the synthesis of IgG light chain (L), is considerably more resistant to vesicular stomatitis virus-induced inhibition than is the synthesis of the non-IgG proteins as a whole; e.g., when the synthesis of non-IgG proteins was reduced by 41%, the synthesis of the H and L chains was reduced by 28 and 7%, respectively. Furthermore, these alterations in the relative synthesis of the L chain, H chain, and non-IgG are comparable to the alterations previously observed in uninfected MPC-11 cells when the overall rate of polypeptide chain initiation was selectively reduced (D.L. Nuss and G. Koch, 1976). These results are discussed in terms of the strategy of virus-directed suppression of host mRNA translation.  相似文献   

2.
The synthesis of collagen under conditions in which polypeptide chain initiation is selectively inhibited by medium hypertonicity was compared to the synthesis of other proteins in chick embryo leg bone cells in monolayer cultures. Three different approaches showed that collagen synthesis is far more sensitive than the majority of other cellular proteins to the hypertonic initiation block. In marked contrast, the synthesis of an unidentified protein, migrating with an apparent molecular of 45,000 to 50,000 is particularly resistant to hypertonicity. The effects of hypertonic conditions were found to be readily reversible upon restoration of isotonicity. Since these suboptimal growth conditions can decrease the amount of collagen synthesized relative to total protein synthesis, they provide an experimental model for the study of the translational control of the synthesis of collagen and other proteins.  相似文献   

3.
It has become evident during recent years that a wide variety of proteins are synthesized on membrane-bound polysomes, very many of which are not ultimately secreted from the cell. The majority of proteins appear to go through some form of post-translational modification before the final appearance of an 'active' product, and in some cases the polypeptide chain may be modified before the completed protein molecule is released from the ribosome. This then raises the question concerning the possibility of the organization of the rough endoplasmic reticulum into individual domains, or compartments, each of which may have the responsibility of performing definite and well defined functions. During recent years the behaviour of two subfractions of the rough endoplasmic reticulum in a variety of cell types and under a variety of conditions has been studied in order to gain insight into a possible compartmentation of this organelle. Throughout the studies disruption of cells has been performed by nitrogen cavitation. This technique was chosen in order to provide conditions of homogenization which were extremely reproducible since shearing forces, mechanical damage and the effects of local heating were eliminated. Endoplasmic reticulum (ER) membranes isolated from the post-mitochondrial supernatant have been separated into subfractions by centrifugation on discontinuous sucrose gradients. By virtue of their high density imparted by the association of ribosomes, rough ER (RER) membranes penetrate 1.4 M sucrose accumulating above either 2.0 M sucrose (light rough -LR membranes) or a cushion of 2.3 M sucrose (heavy rough -HR membranes). Smooth (S) membranes, which are virtually devoid of ribosomes, collect above 1.4 M sucrose. The HR, LR and S subfractions in MPC-11 cells differ in a number of respects: RNA/protein and RNA/phospholipid ratios, polysome profiles and marker enzymes. When cells were homogenized in buffer containing 25 mM KCl then all three ER subfractions were observed, however, when the buffer contained 100 mM KCl then only the LR and S subfractions were observed in gradients, radioactivity equivalent to that in the HR fraction was not recovered in the other two subfractions. Four times as many light chain immunoglobulin polypeptides were found associated with polysomes of HR membranes compared to LR membranes. The nuclear associated ER (NER), though very active in protein synthesis, was only 20% as active in the synthesis of light chain as the combined LR/HR fraction. Studies with MPC-11 cells showed that the relative amounts of the three ER subfractions were related to the phase of the cell cycle.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
In vitro polypeptide synthesis using a combination of G1 membrane-bound polysomes and either G1 or G2 0.5M salt wash gave appreciable incorporation into light chain immunoglobulin. When G2 polysomes were used with G2 salt wash, light chain synthesis was much reduced, however, when G2 salt wash was replaced by that from G1 then the synthesis of light chain by G2 polysomes was stimulated. The results suggest that some factor present in the G1 phase was able to activate translation of light chain mRNA which is apparently quiescent in the G2 phase.  相似文献   

5.
Synthesis of the vesicular stomatitis virus membrane matrix protein and the glycoprotein is inhibited to a greater extent than the synthesis of the nucleocapsid protein, the nonstructural protein, and the large protein when the rate of peptide chain initiation is reduced by exposure of vesicular stomatitis virus-infected cells to hypertonic medium. It is concluded that the relative sensitivity of individual viral polypeptide synthesis to hypertonic initiation block is independent of the site of synthesis, i.e., whether on membrane-associated or free polyribosomes.  相似文献   

6.
Synthesis of the vesicular stomatitis virus membrane matrix protein and the glycoprotein is inhibited to a greater extent than the synthesis of the nucleocapsid protein, the nonstructural protein, and the large protein when the rate of peptide chain initiation is reduced by exposure of vesicular stomatitis virus-infected cells to hypertonic medium. It is concluded that the relative sensitivity of individual viral polypeptide synthesis to hypertonic initiation block is independent of the site of synthesis, i.e., whether on membrane-associated or free polyribosomes.  相似文献   

7.
The stimulatory effect of spermidine on the translation of poly(A)+ mRNA from lactating mouse mammary glands in a wheat germ system was studied. Spermidine stimulated total polypeptide synthesis about 2.5-fold relative to that occurring in the presence of an optimal concentration of Mg2+ alone. The size and the number of polysomes were about 1.6-times larger in the presence of spermidine than in its absence. A similar magnitude of increase in peptide chain initiation, 1.4-fold, was found when the extent of peptide chain initiation was measured by determining the residual polypeptide synthesis subsequent to the addition of inhibitor(s) of peptide chain initiation to the in vitro translation system with or without spermidine at various times of the incubation. Time-course study of the release of polypeptide from polysomes showed that spermidine stimulated this process to a much greater extent than peptide chain initiation, indicating that the polyamine also increases the rate of peptide chain elongation. The extent of stimulation of peptide chain elongation by spermidine was estimated to be about 1.5-fold when the disappearance of isotope-labeled nascent peptides from polysomes was measured by pulse-chase experiments. These results indicate that spermidine stimulates the cell-free translation of mammary mRNA by increasing the rates of both initiation and elongation of polypeptide synthesis to almost the same extent. The polyamine also reduced the relative amount of incomplete polypeptides, thereby increasing the yield of full-length translational products.  相似文献   

8.
The chloroplast protein synthesis factor responsible for the translocation step of polypeptide synthesis on chloroplast ribosomes (chloroplast elongation factor G [EF-G]) has been detected in whole cell extracts and in isolated chloroplasts from Euglena gracilis. This factor can be detected by its ability to catalyze translocation on 70 S prokaryotic ribosomes such as those from E. coli. Chloroplast EF-G is present in low levels when Euglena is grown in the dark and can be induced more than 20-fold when the organism is grown in the light. The induction of this factor by light is inhibited by cycloheximide, a specific inhibitor of protein synthesis on cytoplasmic ribosomes. However, inhibitors of chloroplast protein synthesis such as streptomycin or spectinomycin have no effect on the induction of this factor by light. Furthermore, chloroplast EF-G can be partially induced by light in an aplastidic mutant (strain W3BUL) which has neither significant plastid structure nor detectable chloroplast DNA. These data strongly suggest that the genetic information for chloroplast EF-G resides in the nuclear genome, and that this protein is synthesized on cytoplasmic ribosomes prior to compartmentalization within the chloroplasts.  相似文献   

9.
The relative molar synthesis of cardiac contractile proteins has been measured in the perfused heart under control haemodynamic conditions. This synthesis, of myosin heavy chains, individual light chains (1 and 2), actin and tropomyosin, was determined from isolated guinea-pig hearts perfused for 3h simultaneously with constant specific radioactivities and concentrations of [3H]lysine and [3H]phenylalanine.The data strongly suggest that all of the proteins studied were synthesized from the same precursor pools of lysine and phenylalanine, since the ratio of the specific activities of the two labels was the same in all of the proteins. Measurement of molar synthesis of each contractile protein was the same with either labelled amino acid. Under control haemodynamic-perfusion conditions, the relative molar synthesis of the contractile proteins was actin greater than heavy chains greater than light chain 2 greater than light chain 1 greater than tropomyosin.  相似文献   

10.
11.
The ratio of free to thylakoid-bound chloroplast ribosomes in Chlamydomonas reinhardtii undergoes periodic changes during the synchronous light-dark cycle. In the light, when there is an increase in the chlorophyll content and synthesis of thylakoid membrane proteins, about 20-30% of the chloroplast ribosomes are bound to the thylakoid membranes. On the other hand, only a few or no bound ribosomes are present in the dark when there is no increase in the chlorophyll content. The ribosome-membrane interaction depends not only on the developmental stage of the cell but also on light. Thus, bound ribosomes were converted to the free variety after cultures at 4 h in the light had been transferred to the dark for 10 min. Conversely, a larger number of chloroplast ribosomes became attached to the membranes after cultures at 4 h in the dark had been illuminated for 10 min. Under normal conditions, when there was slow cooling of the cultures during cell harvesting, chloroplast polysomal runoff occurred in vivo leading to low levels of thylakoid-bound ribosomes. This polysomal runoff could be arrested by either rapid cooling of the cells or the addition of chloramphenicol or erythromycin. Each of these treatments prevented polypeptide chain elongation on chloroplast ribosomes and thus allowed the polyosomes to remain bound to the thylakoids. Addition of lincomycin, an inhibitor of chain initiation on 70S ribosomes, inhibited the assembly of polysome-thylakoid membrane complex in the light. These results support a model in which initiation of mRNA translation begins in the chloroplast stroma, and the polysome subsequently becomes attached to the thylakoid membrane. Upon natural chain termination, the chloroplast ribosomes are released from the membrane into the stroma.  相似文献   

12.
Lysates from normally growing (25 degrees C) or heat shocked (37 degrees C, 45 min) Drosophila melanogaster embryos were obtained and the effect of analogues of the mRNA 5'-terminal cap, m7G(5')ppp(5')N structure and of potassium ions on their endogenous protein synthesis activity was studied. At optimal concentration of KCH3COO (75-80 mM), protein synthesis in normal lysates is strongly inhibited by cap analogues (m7GpppG, m7GDP, and m7GMP). At the same ionic conditions, heat shock lysates translate preferentially the heat shock messengers, and this translation is almost unaffected by the cap analogues. In contrast, residual synthesis of normal proteins in heat shock lysates was reduced by these compounds. By lowering the concentration of potassium ions it was possible to gradually reverse the inhibitory effect of the cap analogues in normal lysates and also to increase specifically the translation of normal mRNAs in heat shock lysates. Translation of normal mRNAs is also partial but specifically rescued by supplementing heat shock lysates with polypeptide chain initiation factors partially purified from rabbit reticulocytes. These data are consistent with the notion that the failure of normal mRNAs to be translated under heat shock conditions might be due, at least to some extent, to the inactivation of polypeptide chain initiation factor(s) involved in the recognition of the mRNA 5'-terminal cap structure.  相似文献   

13.
Butyrate inhibits mouse fibroblasts at a control point in the G1 phase   总被引:4,自引:0,他引:4  
Butyrate block 3T6 cells in the G1 phase of the cell cycle approximately 5--6 h prior to the start of the S phase. Serum factors are required before as well as after the butyrate-sensitive steps in G1 in order to allow cells to start DNA synthesis. 3T6 cells infected with SV40 or with polyoma virus are also blocked at the same stage in G1 in the presence of the fatty acid. However, events before as well as after the butyrate-sensitive step do not require serum in virus-infected cells. The sensitivity of the initiation of cellular DNA synthesis to increasing concentrations of butyrate is the same for serum-stimulated or for virus-infected cells. A similar and parallel effect on DNA synthesis is observed if cells are incubated in the presence of very small amounts of cycloheximide. After release of the cycloheximide-induced G1 arrest about 4--6 h have to pass before cells enter the S phase. Cells stably transformed by SV40 are considerably more resistant to low cycloheximide concentrations and to butyrate. These data are discussed in the light of the hypothesis that both low concentrations of cycloheximide and sodium butyrate block cells at a control point in G1 by interference with the synthesis of one or more rapidly turning over, cell cycle-specific proteins.  相似文献   

14.
A model for immunoglobulin G (IgG) production in the baculovirus-insect cell system was developed that incorporates polypeptide synthesis, oligomer assembly, protein aggregation, and protein secretion. In addition, the capacity of a chaperone to protect heavy and light chain polypeptides from protein aggregation was considered by including in vitro chaperone-peptide binding and dissociation kinetic constants from the literature. Model predictions were then compared to experiments in which the chaperone immunoglobulin heavy chain binding protein, BiP, was coexpressed by coinfecting insect cells with BiP-containing baculovirus. The model predicted a nearly twofold increase in intracellular and secreted IgG that was similar to the behavior observed experimentally after approximately 3 days of coexpressing heterologous IgG and BiP. However, immunoglobulin aggregation was still significant in both the model simulation and experiments, so the model was then used to predict the effect of strategies for improving IgG production even further. Increasing expression of the chaperone BiP by 10-fold over current experimental levels provided a 2.5-fold increase in secreted IgG production over IgG assembly without BiP. Alternatively, the expression of BiP earlier in the baculovirus infection cycle achieved a twofold increase in protein secretion without requiring excessive BiP production. The potential effect of cochaperones on BiP activity was considered by varying the BiP binding and release constants. The utilization of lower binding and release kinetic constants led to a severalfold increase in IgG secretion because the polypeptides were protected from aggregation for greater periods. An optimized strategy for chaperone action would include the rapid peptide binding of a BiP-ATP conformation along with the slow peptide release of a BiP-ligand conformation. However, even with an optimized chaperoning system, limitations in the secretion kinetics can result in the accumulation of intracellular IgG. Thus, the entire secretory pathway must be considered when enhanced secretion of heterologous proteins is desired. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 106-116, 1997.  相似文献   

15.
The importance of carbohydrate in the secretion of immunoglobulin A (IgA) has previously been suggested by results of studies with tunicamycin, which prevents N-linked glycosylation of all cell glycoproteins. To directly evaluate the role of individual oligosaccharides in the secretion of IgA, we have used site-directed mutagenesis to selectively eliminate the two N-linked attachment sites reported to be glycosylated in alpha heavy chains. Transfected wild-type and mutant alpha genes were expressed in kappa light-chain-producing MPC-11 variant myeloma cells, and secretion kinetics of the IgAs were compared. Removal of either or both glycosylation sites led to intracellular alpha heavy-chain degradation and a 90 to 95% inhibition of IgA secretion. These results reveal that both N-linked oligosaccharides of the alpha heavy chain are essential for intracellular stability and normal secretion of IgA. This suggests that the key function of carbohydrate here is to maintain proper conformation of the glycoprotein. We also found that when expressed in the MPC-11 variant cells, alpha heavy chains were glycosylated at a third, normally unused site.  相似文献   

16.
The procedure of analyzing hormone and growth factor requirements for the growth of MPC-11 cells and of developing a serum-free medium for this cell line has been described. In this medium, MPC-11 cells grow as fast as in serum-supplemented medium, up to 50 generation. MPC-11 cells grown in serum-supplemented medium secrete IgG2b and K light chain into the medium as they do in serum-containing medium.  相似文献   

17.
The effects of botulinum neurotoxins or their light and heavy chain subunits were investigated in digitonin-permeabilized adrenal chromaffin cells. Because these cells are permeable to proteins, the toxin had direct access to the cell interior. Botulinum type A neurotoxin and its light chain subunit inhibited Ca2+-dependent catecholamine secretion in a dose-dependent manner. The heavy chain subunit had no effect. Inhibition required introduction of the neurotoxin or light chain into the cell and was not seen when intact cells were incubated with these proteins. The inhibition of secretion by type A neurotoxin and light chain was incomplete, the maximal response being 65%. The inhibition was not overcome by increasing Ca2+ concentrations. The action of the light chain was irreversible and rapid. Botulinum type E neurotoxin also inhibited secretion in a dose-dependent manner. Its potency was increased 30-fold following mild trypsinization, which nicked the single chain protein to the dichain form. In contrast to the results seen with types A and E, botulinum type B neurotoxin did not inhibit secretion, while its light chain totally abolished secretion. Trypsinization of the neurotoxin produced the dichain form, which did not inhibit secretion. Reduction of the trypsinized neurotoxin with dithiothreitol produced inhibition equivalent to that seen with the purified light chain subunit. Isolated type A heavy chain had no effect on the inhibitory action of type A or B light chains. The data demonstrate that the ability of botulinum neurotoxins to inhibit secretion is confined to the light chain region of these proteins. Furthermore, while the botulinum neurotoxin types A, B, and E have similar macrostructures, they are not identical with respect to their biological activities.  相似文献   

18.
T H Alton  H F Lodish 《Cell》1977,12(1):301-310
As analyzed by two-dimensional polyacrylamide gel electrophoresis, no new proteins are synthesized during the first 60 min of differentiation of Dictyostelium discoideum. The major change observed is the cessation of synthesis of five polypeptides and the reduction in the relative rates of synthesis of several more. We show here that this specific inhibition of protein synthesis is under translational control; the mRNAs for these proteins persevere in the cell in a translatable form for as long as 4 hr of differentiation, but these proteins are not synthesized by the cells after 2 min of development. As determined by analysis of the subcellular distribution of ribosomes and messenger RNA, there is a precipitous drop in the overall rate of polypeptide chain initiation during the first 5 min of differentiation. To interrelate and explain these phenomena, we show that a recent kinetic analysis of mRNA translation can explain how a reduction in the activity of a component of the initiation machinery required for translation of all mRNAs, such as an initiation factor, could result in a reduction in the overall rate of chain initiation and also a preferential inhibition of translation of certain mRNAs.  相似文献   

19.
In this study we have analyzed the dynamic covariation of the mammalian cell proteome with respect to functional phenotype during fed-batch culture of NS0 murine myeloma cells producing a recombinant IgG(4) monoclonal antibody. GS-NS0 cells were cultured in duplicate 10 L bioreactors (36.5 degrees C, 15% DOT, pH 7.0) for 335 h and supplemented with a continuous feed stream after 120 h. Cell-specific growth rate declined continuously after 72 h of culture. Cell-specific recombinant monoclonal antibody production rate (qP) varied sixfold through culture. Whilst qP correlated with relative recombinant heavy chain mRNA abundance up to 216 h, qP subsequently declined, independent of recombinant heavy chain or light chain mRNA abundance. GS-NS0 cultures were sampled at 48 h intervals between 24 and 264 h of culture for proteomic analyses. Total protein abundance and nascent polypeptide synthesis was determined by 2D PAGE of unlabeled proteins visualized by SYPRO Ruby and autoradiography of (35)S-labeled polypeptides, respectively. Covariation of nascent polypeptide synthesis and abundance with biomass-specific cell growth, glucose and glutamate consumption, lactate and Mab production rates were then examined using two partial least squares regression models. Most changes in polypeptide synthesis or abundance for proteins previously identified by mass spectrometry were positively correlated with biomass-specific growth rate. We conclude that the substantial transitions in cell physiology and qP that occur during culture utilize a relatively constant complement of the most abundant host cell machines that vary primarily with respect to induced changes in cell growth rate.  相似文献   

20.
The effect of the tumor promoter okadaic acid on cell cycle progression and on vimentin expression in MPC-11 mouse plasmacytoma cells was compared with that of the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Cell cycle progression of asynchronously grown MPC-11 cells was inhibited by both agents, but, in contrast to the G1 phase arrest caused by TPA, okadaic acid gave rise to G2/M phase and S phase arrest. This effect of okadaic acid was delayed significantly compared to the TPA-caused arrest. Furthermore, okadaic acid was able to induce vimentin expression to an extent comparable to the TPA response. However, vimentin expression was markedly delayed in okadaic acid-treated relative to TPA-treated cells. Another protein phosphatase inhibitor, calyculin A, also induced cell cycle changes and vimentin expression at concentrations at or above 1 × 10?9M. Based on these observations, we suggest an involvement of protein phosphatase 1 (possibly also phosphatase 2A and/or other phosphatases) in both the G2/M cell cycle block and the induction of vimentin expression in MPC-11 cells by okadaic acid. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号