首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Daphnia often occur in species complexes that consist of two or more co-occurring species and their hybrids. Hybrid individuals are often capable of sexual reproduction and so backcrossing with introgression occurs. To better understand hybridization and backcrossing frequency, we sought to develop PCR-based, species-specific markers in the Daphnia galeata–hyalina species complex using amplified fragment length polymorphism (AFLP). This technique produces large numbers of reproducible markers for assessing diversity across the nuclear genome and provides several advantages over mtDNA and microsatellite approaches. We examined 28 clones of D. galeata, D. hyalina, and their hybrids isolated from Lake Constance on the Swiss-German border. Using a single AFLP primer combination we found five potential species-specific markers, defined as bands that occurred in >80% of one parental species and <20% of the other. Two bands appeared to be co-dominant and were present (homozygous) in D. galeata, absent in D. hyalina, and heterozygous in the hybrid. We conclude AFLP could provide enough PCR-based, species-specific markers to identify species, hybrids, and backcrosses from even small amounts of tissue (i.e. resting eggs).  相似文献   

3.
The idea that species boundaries can be semipermeable to gene flow is now widely accepted but the evolutionary importance of introgressive hybridization remains unclear. Here we examine the genomic contribution of gene flow between two hybridizing chipmunk species, Tamias ruficaudus and T. amoenus. Previous studies have shown that ancient hybridization has resulted in complete fixation of introgressed T. ruficaudus mitochondrial DNA (mtDNA) in some populations of T. amoenus, but the extent of nuclear introgression is not known. We used targeted capture to sequence over 10,500 gene regions from multiple individuals of both species. We found that most of the nuclear genome is sorted between these species and that overall genealogical patterns do not show evidence for introgression. Our analysis rules out all but very minor levels of interspecific gene flow, indicating that introgressive hybridization has had little impact on the overall genetic composition of these species outside of the mitochondrial genome. Given that much of the evidence for introgression in animals has come from mtDNA, our results underscore that unraveling the importance introgressive hybridization during animal speciation will require a genome‐wide perspective that is still absent for many species.  相似文献   

4.
An increasing number of studies of hybridization in recent years have revealed that complete reproductive isolation between species is frequently not finalized in more or less closely related organisms. Most of these species do, however, seem to retain their phenotypical characteristics despite the implication of gene flow, highlighting the remaining gap in our knowledge of how much of an organism's genome is permeable to gene flow, and which factors promote or prevent hybridization. We used AFLP markers to investigate the genetic composition of three populations involving two interfertile Rhododendron species: two sympatric populations, of which only one contained hybrids, and a further hybrid‐dominated population. No fixed differences between the species were found, and only 5.8% of the markers showed some degree of species differentiation. Additionally, 45.5% of highly species‐differentiating markers experienced significant transmission distortion in the hybrids, which was most pronounced in F1 hybrids, suggesting that factors conveying incompatibilities are still segregating within the species. Furthermore, the two hybrid populations showed stark contrasting composition of hybrids; one was an asymmetrically backcrossing hybrid swarm, while in the other, backcrosses were absent, thus preventing gene flow.  相似文献   

5.
Analysing genomic variation within and between sister species is a first step towards understanding species boundaries. We focused on two sister species of cold‐resistant leaf beetles, Gonioctena quinquepunctata and G. intermedia, whose ranges overlap in the Alps. A previous study of DNA sequence variation had revealed multiple instances of mitochondrial genome introgression in this region, suggesting recent hybridization between the two species. To evaluate the extent of gene exchange resulting from these hybridization events, we sampled individuals of both species inside and outside the hybrid zone and analysed genomic variation among them using RAD‐seq markers. Individual levels of introgression in the nuclear genome were estimated first by defining species‐specific SNPs (displaying a fixed difference between species) a priori and second by using model‐based methods. Both types of analyses indicated little gene exchange, if any, between species at the level of the nuclear genome. Whereas the first method suggested slightly more gene flow, we argue that it has likely overestimated introgression in the phylogeographic context of this study. We conclude that strong intrinsic barriers prevent genetic exchange at the level of the nuclear genome between the two species. The apparent discrepancy observed between introgression occurring in the nuclear and mitochondrial genomes could be explained by selection acting in favour of the latter. Also, these results have consequences for the phylogeographic study of each species, since we can assume that genetic diversity in the overlapping portion of their ranges is not the product of introgression.  相似文献   

6.
Mitochondrial genome (mito‐genome) introgression among metazoans is commonplace, and several biological processes may promote such introgression. We examined two proposed processes for the mito‐genome introgression between Rana chensinensis and R. kukunoris: natural hybridization and sex‐biased dispersal. We sampled 477 individuals from 28 sites in the potential hybrid zone in the western Tsinling Mountains. Mitochondrial gene (cytb) trees were used to examine the introgression events. Microsatellite DNA loci, cytb and morphological data were used to identify hybrids and to examine the extent of natural hybridization. We detected rampant bidirectional introgressions, both ancient and recent, between the two species. Furthermore, we found a wide hybrid zone, and frequent and asymmetric hybridization. The hybrid zone cline analysis revealed a clear mitochondrial–nuclear discordance; while most nuclear markers displayed similar and steep clines, cytb had a displaced cline centre and a more gradual and wider cline. We also detected strong and asymmetric historical maternal gene flow across the hybrid zone. This widespread hybridization and detected low mito‐nuclear conflicts may, at least partially, explain the high frequency of introgression. Lastly, microsatellite data and population genetic methods were used to assess sex‐biased dispersal. A weak pattern of female‐biased dispersal was detected in both species, suggesting it may not play an important role in the observed introgression. Our data are consistent with the hybridization hypothesis, but support for the sex‐biased dispersal hypothesis is weak. We further suggest that selective advantages of the R. kukunoris‐type mito‐genome in thermal adaptation may also contribute to the introgression between the two species.  相似文献   

7.
Adaptation to different environments can promote population divergence via natural selection even in the presence of gene flow – a phenomenon that typically occurs during ecological speciation. To elucidate how natural selection promotes and maintains population divergence during speciation, we investigated the population genetic structure, degree of gene flow and heterogeneous genomic divergence in three closely related Japanese phytophagous ladybird beetles: Henosepilachna pustulosa, H. niponica and H. yasutomii. These species act as a generalist, a wild thistle (Cirsium spp.) specialist and a blue cohosh (Caulophyllum robustum) specialist, respectively, and their ranges differ accordingly. The two specialist species widely co‐occur but are reproductively isolated solely due to their high specialization to a particular host plant. Genomewide amplified fragment‐length polymorphism (AFLP) markers and mitochondrial cytochrome c oxidase subunit I (COI) gene sequences demonstrated obvious genomewide divergence associated with both geographic distance and ecological divergence. However, a hybridization assessment for both AFLP loci and the mitochondrial sequences revealed a certain degree of unidirectional gene flow between the two sympatric specialist species. Principal coordinates analysis (PCoA) based on all of the variable AFLP loci demonstrated that there are genetic similarities between populations from adjacent localities irrespective of the species (i.e. host range). However, a further comparative genome scan identified a few fractions of loci representing approximately 1% of all loci as different host‐associated outliers. These results suggest that these three species had a complex origin, which could be obscured by current gene flow, and that ecological divergence can be maintained with only a small fraction of the genome is related to different host use even when there is a certain degree of gene flow between sympatric species pairs.  相似文献   

8.
An adapted amplified fragment length polymorphism (AFLP) protocol is presented for detection of hybrid instability in the genome of interspecific hybrids between Drosophila buzzatii and D. koepferae species. Analyses of 15 AFLP instability markers (new bands detected in hybrids) show that up to 81% are the result of transposable element (TE) activity. Twenty TEs associated with AFLP instability markers have been detected by this method in backcross hybrids and segmental hybrids, demonstrating its validity in detecting transposition events occurring during the hybridization process. New insertions of Helena TE have been observed in the hybrid genome after hybridization of the TGTCG22 instability marker by FISH. The AFLP marker technique proved to be an efficient method that improves upon traditional and bioinformatic tools previously used to detect TE mobilization. This newly adapted AFLP protocol may also be applied to a large number of organisms outside the Drosophila genus, making it of interest to evolutionary and population genetic researchers working with species where the knowledge of the genome is scarce.  相似文献   

9.
Cytisus scoparius is a global invasive species that affects local flora and fauna at the intercontinental level. Its natural distribution spans across Europe, but seeds have also been moved among countries, mixing plants of native and non‐native genetic origins. Hybridization between the introduced and native gene pool is likely to threaten both the native gene pool and the local flora. In this study, we address the potential threat of invasive C. scoparius to local gene pools in vulnerable heathlands. We used nuclear single nucleotide polymorphic (SNP) and simple sequence repeat (SSR) markers together with plastid SSR and indel markers to investigate the level and direction of gene flow between invasive and native heathland C. scoparius. Analyses of population structures confirmed the presence of two gene pools: one native and the other invasive. The nuclear genome of the native types was highly introgressed with the invasive genome, and we observed advanced‐generation hybrids, suggesting that hybridization has been occurring for several generations. There is asymmetrical gene flow from the invasive to the native gene pool, which can be attributed to higher fecundity in the invasive individuals, measured by the number of flowers and seed pods. Strong spatial genetic structure in plastid markers and weaker structure in nuclear markers suggest that seeds spread over relatively short distances and that gene flow over longer distances is mainly facilitated by pollen dispersal. We further show that the growth habits of heathland plants become more vigorous with increased introgression from the invaders. Implications of the findings are discussed in relation to future management of invading C. scoparius.  相似文献   

10.
To examine the processes that maintain genetic diversity among closely related taxa, we investigated the dynamics of introgression across a contact zone between two lineages of California voles (Microtus californicus). We tested the prediction that introgression of nuclear loci would be greater than that for mitochondrial loci, assuming ongoing gene flow across the contact zone. We also predicted that genomic markers would show a mosaic pattern of differentiation across this zone, consistent with genomes that are semi‐permeable. Using mitochondrial cytochrome b sequences and genome‐wide loci developed via ddRAD‐seq, we analyzed genetic variation for 10 vole populations distributed along the central California coast; this transect included populations from within the distributions of both parental lineages as well as the putative contact zone. Our analyses revealed that (1) the two lineages examined are relatively young, having diverged ca. 8.5–54 kya, (2) voles from the contact zone in Santa Barbara County did not include F1 or early generation backcrossed individuals, and (3) there appeared to be little to no recurrent gene flow across the contact zone. Introgression patterns for mitochondrial and nuclear markers were not concordant; only mitochondrial markers revealed evidence of introgression, putatively due to historical hybridization. These differences in genetic signatures are intriguing given that the contact zone occurs in a region of continuous vole habitat, with no evidence of past or present physical barriers. Future studies that examine specific isolating mechanisms, such as microhabitat use and mate choice, will facilitate our understanding of how genetic boundaries are maintained in this system.  相似文献   

11.
Closely related marine species with large overlapping ranges provide opportunities to study mechanisms of speciation, particularly when there is evidence of gene flow between such lineages. Here, we focus on a case of hybridization between the sympatric sister‐species Haemulon maculicauda and H. flaviguttatum, using Sanger sequencing of mitochondrial and nuclear loci, as well as 2422 single nucleotide polymorphisms (SNPs) obtained via restriction site‐associated DNA sequencing (RADSeq). Mitochondrial markers revealed a shared haplotype for COI and low divergence for CytB and CR between the sister‐species. On the other hand, complete lineage sorting was observed at the nuclear loci and most of the SNPs. Under neutral expectations, the smaller effective population size of mtDNA should lead to fixation of mutations faster than nDNA. Thus, these results suggest that hybridization in the recent past (0.174–0.263 Ma) led to introgression of the mtDNA, with little effect on the nuclear genome. Analyses of the SNP data revealed 28 loci potentially under divergent selection between the two species. The combination of mtDNA introgression and limited nuclear DNA introgression provides a mechanism for the evolution of independent lineages despite recurrent hybridization events. This study adds to the growing body of research that exemplifies how genetic divergence can be maintained in the presence of gene flow between closely related species.  相似文献   

12.
Efficacy of two dominant molecular markers, namely, amplified fragment length polymorphism (AFLP) and three endonuclease (TE)-AFLP, were assessed in 20 individuals of the biodiesel species Pongamia pinnata. Four primer combinations generated a total of 254 and 194 bands in AFLP and TE-AFLP, respectively. Both techniques could unequivocally identify each accession used in this study. The Jaccard’s similarity coefficient ranged from 0.30 to 0.90 for AFLP and from 0.25 to 0.85 for TE-AFLP. The correlation coefficient between AFLP and TE-AFLP dendrogram was 0.56 which was low but significant (P < 0.001). Values of effective multiplex ratio, marker index, and resolving power were markedly higher in AFLP than in TE-AFLP. However, the band intensities across different lanes were uniform in TE-AFLP leading to easy and accurate scoring of gels which resulted in slightly higher bootstrap values with TE-AFLP data as compared to AFLP data. Inferences based on TE-AFLP data had similar level of biological relevance as compared to AFLP data when location and diameter of trees were taken in to consideration. However, the easy scorability of TE-AFLP profiles is extremely important and especially desirable in studies requiring genotyping of large number of individuals distributed across many gels.  相似文献   

13.
DNA sequence data from mitochondrial cytochrome‐b (Cytb) and Y‐linked structural maintenance of chromosomes (SmcY) genes were combined with 478 nuclear loci obtained from amplified fragment length polymorphisms (AFLP) to assess the extent of hybridization and genetic spatial structure of populations in two hybridizing species of ground squirrel (Ictidomys parvidens and Ictidomys tridecemlineatus). Based on AFLP analyses of 134 individuals from 28 populations, 10 populations were identified that possessed hybrid individuals. Overall estimates of FST values revealed strong support for population structure in the Cytb data set; however, analyses of the SmcY gene and the AFLP data indicated ongoing gene flow between species. Pairwise FST comparisons of populations were not significant for the SmcY gene; although they were significant for the Cytb gene, indicating that these populations were structured and that gene flow was minimal. Therefore, gene flow between I. parvidens and I. tridecemlineatus appeared to be restricted to populations that exhibited hybridization. In addition, the fragmented nature of the geographic landscape suggested limited gene flow between populations. As a result, the distributional pattern of interspersed parental and hybrid populations were compatible with a mosaic hybrid zone model. Because ground squirrels display female philopatry and male‐biased dispersal, the ecology of these species is compatible with this hypothesis.  相似文献   

14.
Birches (Betula spp.) hybridize readily, confounding genetic signatures of refugial isolation and postglacial migration. We aimed to distinguish hybridization from range‐shift processes in the two widespread and cold‐adapted species B. nana and B. pubescens, previously shown to share a similarly east–west‐structured variation in plastid DNA (pDNA). We sampled the two species throughout their ranges and included reference samples of five other Betula species and putative hybrids. We analysed 901 individual plants using mainly nuclear high‐resolution markers (amplified fragment length polymorphisms; AFLPs); a subset of 64 plants was also sequenced for two pDNA regions. Whereas the pDNA variation as expected was largely shared between B. nana and B. pubescens, the two species were distinctly differentiated at AFLP loci. In B. nana, both the AFLP and pDNA results corroborated the former pDNA‐based hypothesis that it expanded from at least two major refugia in Eurasia, one south of and one east of the North European ice sheets. In contrast, B. pubescens showed a striking lack of geographic structuring of its AFLP variation. We identified a weak but significant increase in nuclear (AFLP) gene flow from B. nana into B. pubescens with increasing latitude, suggesting hybridization has been most frequent at the postglacial expansion front of B. pubescens and that hybrids mainly backcrossed to B. pubescens. Incongruence between pDNA and AFLP variation in B. pubescens can be explained by efficient expansion from a single large refugium combined with leading‐edge hybridization and plastid capture from B. nana during colonization of new territory already occupied by this more cold‐tolerant species.  相似文献   

15.
Greater and lesser spotted eagles (Aquila clanga, A. pomarina) are two closely related forest eagles overlapping in breeding range in east-central Europe. In recent years a number of mixed pairs have been observed, some of which fledged hybrid young. Here we use mitochondrial (control region) DNA sequences and AFLP markers to estimate genetic differentiation and possible gene flow between these species. In a sample of 83 individuals (61 pomarina, 20 clanga, 2 F1-hybrids) we found 30 mitochondrial haplotypes which, in a phylogenetic network, formed two distinct clusters differing on average by 3.0% sequence divergence. The two species were significantly differentiated both at the mitochondrial and nuclear (AFLP) genetic level. However, five individuals with pomarina phenotype possessed clanga-type mtDNA, suggesting occasional gene flow. Surprisingly, AFLP markers indicated that these mismatched birds (originating from Germany, E Poland and Latvia) were genetically intermediate between the samples of individuals in which mtDNA haplotype and phenotype agreed. This indicates that mismatched birds were either F1 or recent back-cross hybrids. Mitochondrial introgression was asymmetrical (no pomarina haplotype found in clanga so far), which may be due to assortative mating by size. Gene flow of nuclear markers was estimated to be about ten times stronger than for mtDNA, indicating a sex-bias in hybrid fertility in accordance with Haldanes rule. Hybridization between the two species may be more frequent and may occur much further west than hitherto assumed. This is supported by the recent discovery of a mixed pair producing at least one fledgling in NE Germany.  相似文献   

16.
Because of introgressive hybridization, closely related species can be more similar to each other in areas of range overlap (parapatry or sympatry) than in areas where they are geographically isolated from each other (allopatry). Here, we report the reverse situation based on nuclear genetic divergence between two fir species, Abies chensiensis and Abies fargesii, in China, at sites where they are parapatric relative to where they are allopatric. We examined genetic divergence across 126 amplified fragment length polymorphism (AFLP) markers in a set of 172 individuals sampled from both allopatric and parapatric populations of the two species. Our analyses demonstrated that AFLP divergence was much greater between the species when comparisons were made between parapatric populations than between allopatric populations. We suggest that selection in parapatry may have largely contributed to this increased divergence.  相似文献   

17.
The wild flowering cherry Prunus lannesiana var. speciosa is highly geographically restricted, being confined to the Izu Islands and neighboring peninsulas in Japan. In an attempt to elucidate how populations of this species have established we investigated the genetic diversity and differentiation in seven populations (sampling 408 individuals in total), using three kinds of genetic markers: chloroplast DNA (cpDNA), amplified fragment length polymorphisms (AFLPs), and 11 nuclear SSR polymorphic loci. Eight haplotypes were identified based on the cpDNA sequence variations, 64 polymorphic fragments were scored for the AFLP markers, and a total of 154 alleles were detected at the 11 nuclear SSR loci. Analysis of molecular variance showed that among-population variation accounted for 16.55, 15.04 and 7.45% of the total detected variation at the cpDNA, AFLPs, and SSR loci, respectively. Thus, variation within populations accounted for most of the genetic variance for all types of markers, although the genetic differentiation among populations was also highly significant. For cpDNA variation, no clear structure was found among the populations, except that of the most distant island, although an “isolation by distance” pattern was found for each marker. Both neighbor-joining trees and structure analysis indicate that the genetic relationships between populations reflect geological variations between the peninsula and the islands and among the islands. Furthermore, hybridization with related species may have affected the genetic structure, and some genetic introgression is likely to have occurred.  相似文献   

18.
Abstract The diploid Oryza species with C‐genome type possesses abundant genes useful for rice improvement and provides parental donors of many tetraploid species with the C‐genome (BBCC, CCDD). Despite extensive studies, the phylogenetic relationship among the C‐genome species and the taxonomic status of some taxa remain controversial. In this study, we reconstructed the phylogeny of three diploid species with C‐genome (Oryza officinalis, O. rhizomatis, and O. eichingeri) based on sequences of 68 nuclear single‐copy genes. We obtained a fully resolved phylogenetic tree, clearly indicating the sister relationship of O. officinalis and O. rhizomatis, with O. eichingeri being the more divergent lineage. Incongruent phylogenies of the C‐genome species found in previous studies might result from lineage sorting, introgression/hybridization and limited number of genetic markers used. We further applied a recently developed Bayesian species delimitation method to investigate the species status of the Sri Lankan and African O. eichingeri. Analyses of two datasets (68 genes with a single sample, and 10 genes with multiple samples) support the distinct species status of the Sri Lankan and African O. eichingeri. In addition, we evaluated the impact of the number of sampled individuals and loci on species delimitation. Our simulation suggests that sampling multiple individuals is critically important for species delimitation, particularly for closely related species.  相似文献   

19.
Rf1 is a nuclear gene that controls fertility restoration in cases of cytoplasmic male sterility caused by the Owen cytoplasm in sugar beet. In order to isolate the gene by positional cloning, a BAC library was constructed from a restorer line, NK198, with the genotype Rf1Rf1. The library contained 32,180 clones with an average insert size of 97.8 kb, providing 3.4 genome equivalents. Five AFLP markers closely linked to Rf1 were used to screen the library. As a result, we identified eight different BAC clones that were clustered into two contigs. The gap between the two contigs was filled by chromosome walking. To map the Rf1 region in more detail, we developed five cleaved amplified polymorphic sequence (CAPS) markers from the BAC DNAs identified, and carried out genotyping of 509 plants in the mapping population with the Rf1-flanking AFLP and CAPS markers. Thirteen plants in which recombination events had occurred in the vicinity of the Rf1 locus were identified and used to map the molecular markers relative to each other and to Rf1. In this way, we were able to restrict the possible location of the Rf1 gene to a minimum of six BAC clones spanning an interval of approximately 250 kb. The first two authors contributed equally to this work.  相似文献   

20.
Species hybridization, and thus the potential for gene flow, was once viewed as reproductive mistake. However, recent analysis based on large datasets and newly developed models suggest that gene exchange is not as rare as originally suspected. To investigate the history and speciation of the closely related species Drosophila subobscura, D. madeirensis, and D. guanche, we obtained polymorphism and divergence data for 26 regions throughout the genome, including the Y chromosome and mitochondrial DNA. We found that the D. subobscura X/autosome ratio of silent nucleotide diversity is significantly smaller than the 0.75 expected under neutrality. This pattern, if held genomewide, may reflect a faster accumulation of beneficial mutations on the X chromosome than on autosomes. We also detected evidence of gene flow in autosomal regions, while sex chromosomes remain distinct. This is consistent with the large X effect on hybrid male sterility seen in this system and the presence of two X chromosome inversions fixed between species. Overall, our data conform to chromosomal speciation models in which rearrangements are proposed to serve as gene flow barriers. Contrary to other observations in Drosophila, the mitochondrial genome appears resilient to gene flow in the presence of nuclear exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号