首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The structures of fluoride methemoglobin and acid methemoglobin have been compared by X-ray difference Fourier techniques. Despite the close similarity in ligand bulk and iron spin in these complexes, small but significant differences in tertiary structure are found. The globin structure is clearly extremely sensitive to small changes in the nature of the ligand.  相似文献   

2.
The measurement of infrared spectra for cyanide liganded to hemeproteins and hemins has been investigated. The hemeproteins included human methemoglobin A, lamprey methemoglobin, metchlorocruorin, horse metmyoglobin, and horseradish peroxidase. The hemins were dicyanide and monopyridine monocyanide species of deuteroporphyrin IX iron(III) and its 2,4-divinyl(proto) and 2,4-diacetyl derivatives. C-N stretch bands of low intensity detected near 2100 cm-1 exhibit changes in frequency, width, intensity, and isotope shift with changes in cyanide compound structure. Infrared band parameters are particularly sensitive to a change in oxidation state (Fe2+ versus Fe3+) and are affected to a lesser extent by changes in porphyrin ring substituent, ligand trans to the cyanide, and protein structure. Evidence of multiple conformers (i.e. multiple C-N stretch bands) was found for several hemeproteins. The cyanide infrared spectra provide direct evidence for cyanide binding as a metal cyanide (Fe--C identical to N) and against HCN being the ligand in nitrile-like bonding (Fe--N identical to C--H) in all the hemeprotein and hemin cyanides studied. With the reduced horseradish peroxidase cyanide, differences between infrared spectra for D2O and H2O solutions can result from hydrogen bonding between a protein amino acid residue and the distal atom of the cyanide (Fe--C identical to N...H+--R). The binding of cyanide to reduced iron (Fe2+) of a hemeprotein was only observed in the case of the reduced peroxidase. These findings demonstrate that cyanide infrared spectra can not only determine when cyanide is bound to a metalloprotein but can also provide information on how the cyanide is bonded to metal and on characteristics of the ligand binding site.  相似文献   

3.
We have compared the structures of horse azide methemoglobin and methemoglobin (MetHb) at 2.8 Å resolution by X-ray difference Fourier analysis. Of four low-spin liganded Hb derivatives (nitric oxide Hb, carbon monoxide Hb, cyanide MetHb, and azide MetHb), azide MetHb is closest in structure to MetHb. In azide MetHb the ligands are co-ordinated end-on at angles of about 125 ° to the heme axes, which is similar to the stereochemistry assumed by azide in binding to free heme. Because of its bent binding geometry, azide encounters less interference in binding and perturbs the protein structure less than carbon monoxide and cyanide, which are smaller, but prefer linear axial co-ordination to heme. Steric interactions between ligand and protein are greater on the β chain, where the E helix is pushed away from the heme relative to MetHb, than on the α chain. Iron position is the same and heme stereochemistry and position are very similar in azide MetHb and MetHb.  相似文献   

4.
Using the method of magneto-optical rotation (MOR) various porphyrin derivatives, hemin and heme compounds, and a number of methemoglobin complexes were investigated. The spectra were recorded from 450-600 nm; with methemoglobin also in the Soret region. 1. The metalfree porphyrin derivatives (deutero-, meso-, hemato- and protoporphyrins) were measured in strongly acidic aqueous solution. The derivatives thus present as di-cations yield highly resolved MORspectra, where the Q-bands (Oo leads to; Oo leads to 1) originated from the pi-pi transitions of the porphyrin display the curve shape characteristic of an A-term, this proving the presence of the D4h symmetry. An exception is the protoporphyrin, in which the pi-electron system of the porphyrin is perturbed by the influence of pi-electrons of the vinyl group, causing poor resolution, line broadening, and shift of the Q-bands into the lower-energy spectral region. 2. With iron porphyrins (hemin, heme and their complexes) the charge of the iron and the nature of axial ligands determine the position and intensity of the O-bands in the MOR spectrum. Low-spin complexes have a higher symmetry than the high-spin complexes. Whereas with hemin (S = 5/2), the iron located outside the heme plane strongly disturbs the porphyrin pi-system, the high symmetry of porphyrin is greatly retained in the case of heme. This can be explained by the enhanced binding distance between the bivalent iron and the porphyrin to great for a strong coupling between the microsymmetry of the iron and the macrosymmetry of the porphyrin pi-system.  相似文献   

5.
To clarify the influence of protein surrounding on the heme reactivity in heme proteins the effect of interaction between a porphyrin ring and pi-acceptor molecule, 1,2,4-trimethyl-pyridinium (TMP), on the affinity of deuteroheme to axial ligands (imidazole and cyanide) has been studied as a model system. It is shown that TMP induces the fourfold decrease in equilibrium constant of imidazole to deuteroheme. From the analysis of the two stages for cyanide binding it is concluded that TMP decreases the binding constant of the first cyanide by 40 times and does not apparently influence the second ligand binding. The effect of TMP on the reactivity of deuteroheme to axial ligands is interpreted as a result of a decrease in the electron density on the iron orbitals which is due to the altered pi-eleectron density in the porphyrin pi-system through the donor-acceptor interaction with TMP molecules. The possible significance of the contacts between the porphyrin and neighboring amino acid residues in determining heme affinity to axial ligands is discussed.  相似文献   

6.
The observed static difference spectrum produced by inositol hexaphosphate binding to methemoglobin is the sum of a very fast and a slow spectral transition. The more rapid absorbance change is too fast to be measured by stopped flow techniques, whereas the slow change exhibits a half-time in the range 1 to 6 s. From the pH dependence of the rapidly formed difference spectrum and from a series of heme ligand binding studies, the rapid phase is interpreted to reflect a localized tertiary conformational change which immediately accompanies inositol hexaphosphate binding and results in a selective increase in spin and reactivity of the beta chain heme groups. In contrast, the slow phase appears to reflect a first order isomerization process which involves only a small portion (less than 10%) of the hemoglobin molecules and results primarily in a marked alteration of the spectral properties of the alpha chains with little change in spin. While the rapid spectral transition cannot be directly related to the overall quaternary transition which occurs during oxygen binding to ferrous deoxyhemoglobin, the slow spectral transition may represent the abortive formation of a deoxyhemoglobin A-like conformation which is inhibited in both rate and extent by the presence of water molecules bound to the heme iron atoms.  相似文献   

7.
R D Hershberg  B Chance 《Biochemistry》1975,14(17):3885-3891
The binding of formate ion, a substrate for the peroxidatic reaction of catalase, has been investigated by magnetic resonance techniques. Comparative studies of formate binding to ferric myoglobin have also been performed. The nuclear magnetic relaxation (NMR) rate of formate and water protons is enhanced by the presence of ferric horse liver catalase. The enhancement is not changed significantly by the addition of cyanide, indicating that water and formate are still bound in the presence of cyanide. Formate proton to heme iron distances determined by magnetic resonance techniques indicate that formate does not directly bind to the heme iron of catalase or myoglobin but to the globin, and NMR relaxation occurs as a result of outersphere mechanisms. Evidence that water forms an innersphere complex with the iron atom of the catalase heme is presented. In similar experiments with ferric myoglobin, the addition of cyanide caused a large decrease in the enhancement of the proton relaxation rate of both formate and water, indicating the displacement of water and formate from the heme and the vicinity of the heme, respectively. Broad, high-spin, ferric ion electron paramagnetic resonance absorptions of catalase and myoglobin at room temperature obtained in the presence and absence of formate show that formate does not alter appreciably the heme environment of catalase or myoglobin or the spin state of the heme iron. Studies on the binding of formate to catalase as monitored by changes in the heme absorption spectrum in the visible region show one-to-one stoichiometry with heme concentration. However, the small changes observed in the visible region of the optical spectrum on addition of formate ion are attributed to a secondary effect of formate on the heme environment, rather than direct binding of formate to the heme moiety.  相似文献   

8.
Crystals of horse methemoglobin shatter when soaked in crystallization buffer containing high concentrations of imidazole. By using less than saturating concentrations of imidazole, a stable imidazole derivative of crystalline methemoglobin was prepared and analyzed by X-ray difference Fourier techniques. Both subunits of imidazole methemoglobin show extensive, but different, changes in tertiary structure. Many of the tertiary structural changes observed in the transition from deoxyhemoglobin to methemoglobin are amplified in the transition from methemoglobin to imidazole methemoglobin. Unlike all other ligands that have been examined, imidazole only partially enters the ligand pocket and does not occupy the usual ligand site distal to pyrrole II. The position of the imidazole is on a possible pathway for entrance of smaller diatomic ligands from the solvent into the heme pocket. The extent of imidazole binding of the α-hemes and β-hemes is about 25% and 45%, respectively. An explanation for this difference in occupancy is suggested, involving steric interaction of the distal histidine and phenylalanine CD4 in each subunit. This structural hypothesis may have implications for the kinetics of ligand binding.  相似文献   

9.
Neuroglobin (Ngb) is a globin present in the brain and retina of mammals. This hexacoordinated hemoprotein binds small diatomic molecules, albeit with lower affinity compared with other globins. Another distinctive feature of most mammalian Ngb is their ability to form an internal disulfide bridge that increases ligand affinity. As often seen for prosthetic heme b containing proteins, human Ngb exhibits heme heterogeneity with two alternative heme orientations within the heme pocket. To date, no details are available on the impact of heme orientation on the binding properties of human Ngb and its interplay with the cysteine oxidation state. In this work, we used 1H NMR spectroscopy to probe the cyanide binding properties of different Ngb species in solution, including wild-type Ngb and the single (C120S) and triple (C46G/C55S/C120S) mutants. We demonstrate that in the disulfide-containing wild-type protein cyanide ligation is fivefold faster for one of the two heme orientations (the A isomer) compared with the other isomer, which is attributed to the lower stability of the distal His64–iron bond and reduced steric hindrance at the bottom of the cavity for heme sliding in the A conformer. We also attribute the slower cyanide reactivity in the absence of a disulfide bridge to the tighter histidine–iron bond. More generally, enhanced internal mobility in the CD loop bearing the disulfide bridge hinders access of the ligand to heme iron by stabilizing the histidine–iron bond. The functional impact of heme disorder and cysteine oxidation state on the properties of the Ngb ligand is discussed.  相似文献   

10.
By use of X-ray absorption near-edge structure (XANES), circular dichroism, and visible absorption spectroscopies, dromedary carbonmonoxyhemoglobin has been characterized structurally and functionally. By consideration of the experimental results the following view emerges: (i) the quaternary structure is not the unique factor determining the tertiary environment around the heme, and (ii) the multiplicity of interactions between hemoglobin and solvent components induces a large number of globin conformations, which somehow affect the conformation of the heme such that the structural parameters (i.e., the doming of porphyrins, the movements of the iron relative to the heme plane, the distortion of the ligand field, and the change in the Fe-C-O angle) can be uncoupled.  相似文献   

11.
The structure of horse methemoglobin reconstituted with deuteroheme, in which the heme vinyl substituents are replaced by hydrogens, has been compared with that of native horse methemoglobin by X-ray difference Fourier techniques. The tertiary structures of the two molecules are almost completely identical, with the exception of small perturbations in the globin which occur in direct response to the missing vinyls. These perturbations are, however, highly localized and do not propagate beyond the immediate vicinity of the hemes. Contrary to expectation, complete removal of these heme vinyls results in much less drastic structural changes than does replacement by ethyl substituents, as in methemoglobin reconstituted with mesoheme.  相似文献   

12.
Equilibrium constants for the binding of cyanide to the ferric heme c octapeptide in 20% ethylene glycol, 50% buffer were measured spectrophotometrically. The equilibrium constant for cyanide binding at 20 degrees C and pH 7.4 is 3.47 X 10(7), which is approximately 15-fold lower than that observed for cyanide binding to methemoglobin or metmyoglobin. Equilibrium constants at several temperatures exhibited an apparent van't Hoff relationship, yielding thermodynamic values of delta H degrees = -79,000 J/mol (-18,900 cal/mol) and delta S degrees = J/degrees K mol (-30.1 e.u.). Comparison of the ratio of equilibrium constants for cyanide ligation to methemoglobin the heme octapeptide with the ratio of equilibrium constants for azide ligation to methemoglobin and the heme octapeptide suggests that cyanide binding to the methemoproteins is much smaller than expected by comparison to azide binding. The differences in the ratios, the thermodynamic values, and the preferred binding geometries suggest that CN- ligation, like CO ligation, is sterically hindered. A comparison of these ratios to similar ratios for CO, O2, and NO binding suggests that the Fe-CN bond angle is less subject to distortion than the Fe-CO bond and/or additional binding interactions contribute to N3- but not to CN-binding to the protein.  相似文献   

13.
The crystal structure of erythrocruorin has been refined by constrained crystallographic refinement at 1·4 Å resolution in the following ligand states: aquomet (Fe3+, high spin), cyanomet (Fe3+, low spin), deoxy (Fe2+, high spin) and carbonmonoxy (Fe2+, low spin). The final R-value at this resolution is better than 0·19 for each of these models. The positional errors of the co-ordinates are less than 0·1 Å.The root-mean-square differences between the deoxygenated and the ligated erythrocruorin are about 0·1 Å, being largest for cyanomet-erythrocruorin. The changes in tertiary structures propagate from the location of primary events and often fade out at the molecular surface. Helix E passing the distal side of the haem group is affected most by the direct contact with the ligand bound to the haem iron.Steric hindrance by the distal residue IleE11 forces the cyanide and carbonmonoxide ligands to bind at an angle to the haem axis. The strain at the ligand is partially relieved by movement of the haem deeper into the haem pocket and rearrangement of neighbouring residues.The differences in iron location with respect to the mean haem plane are spin-dependent but unexpectedly small (the largest value is 0·15 Å between deoxy and carbonmonoxy-erythrocruorin). Spin state changes seem to have little influence on the porphyrin stereochemistry; it is determined primarily by the chemical properties of the ligand and its interaction with the haem and the globin. These non-covalent interactions are largely responsible for the initiation of the structural changes on ligand binding.  相似文献   

14.
The asymmetric 3-ethyl-2-methylporphyrin iron complex was synthetized and inserted into apomyoglobin. UV-visible spectroscopic studies demonstrated the capacity of iron to coordinate different exogenous axial ligands in ferrous and ferric forms. The position of synthetic heme into the hydrophobic pocket of the reconstituted myoglobin was investigated by ((1))H NMR spectroscopy. In absence of exogenous ligand, signals of the synthetic prosthetic group were not detected, suggesting a rotational disorder of the synthetic porphyrin into the heme pocket. This direct interconversion behavior is favored since site-specific interactions between the poorly substituted heme and protein in the chiral hydrophobic cavity were weak. Complexion of cyanide to the iron allowed to quench partially the heme reorientation and two interconvertible forms, around the meso-Cα-Cγ axis, were detected in solution.  相似文献   

15.
Aplysia limacina myoglobin. Crystallographic analysis at 1.6 A resolution   总被引:4,自引:0,他引:4  
The crystal structure of the ferric form of myoglobin from the mollusc Aplysia limacina has been refined at 1.6 A resolution, by restrained crystallographic refinement methods. The crystallographic R-factor is 0.19. The tertiary structure of the molecule conforms to the common globin fold, consisting of eight alpha-helices. The N-terminal helix A and helix G deviate significantly from linearity. The distal residue is recognized as Val63 (E7), which, however, does not contact the heme directly. Moreover the sixth (distal) co-ordination position of heme iron is not occupied by a water molecule at neutrality, i.e. below the acid-alkaline transition point of A. limacina myoglobin. The heme group sits in its crevice in the conventional orientation and no signs of heme isomerism are evident. The iron atom is 0.26 A out of the porphyrin plane, with a mean Fe-N (porphyrin) distance of 2.01 A. The co-ordination bond to the proximal histidine has a length of 2.05 A, and forms an angle of 4 degrees with the heme normal. A plane containing the imidazole ring of the proximal His intersects the heme at an angle of 29 degrees with the (porphyrin) 4N-2N direction. Inspection of the structure of pH 9.0 indicates that a hydroxyl ion is bound to the Fe sixth co-ordination position.  相似文献   

16.
The reaction between iron and cobalt tetrasulfonated phthalocyanines and globin results in the formation of the green complexes, as has been proved by difference spectroscopy. Spectrophotometric titration data indicate the formation of those complexes at the molar ratio 1:1. The complexes of ferrous, ferric and cobaltous tetrasulfonated phthalocyanines with globin have been isolated from the reaction mixtures by separation on Sephadex G-50 and precipitation of the protein fractions with ammonium sulfate. The visible spectra of these complexes are characterised by the main intensive peak at 641 nm, 678 nm, and 675 nm for ferric, ferrous and cobaltous derivatives, respectively. The new globin complexes have the property of reversible combination with oxygen and coordination with cyanide ions. It is evidence from the results of the spectrophotometric titrations of hemoglobin and methemoglobin with cobaltous tetrasulfonated phthalocyanine that iron protoporphyrins are displaced by this cobalt derivative; this suggests that phthalocyanine and porphyrin are bonded in a similar manner.  相似文献   

17.
The catalytic activity of heme-regulated phosphodiesterase from Escherichia coli (Ec DOS) on cyclic di-GMP is markedly enhanced upon binding of gas molecules, such as O2 and CO, to the heme iron complex in the sensor domain. Arg97 interacts directly with O2 bound to Fe(II) heme in the crystal structure of the isolated heme-bound sensor domain with the PAS structure (Ec DOS-PAS) and may thus be critical in ligand recognition. To establish the specific role of Arg97, we generated Arg97Ala, Arg97Glu, and Arg97Ile mutant Ec DOS-PAS proteins and examined binding to O2, CO, and cyanide, as well as redox potentials. The autoxidation rates of the Arg97Ala and Arg97Glu mutant proteins were up to 2000-fold higher, while the O2 dissociation rate constant for dissociation from the Fe(II)-O2 heme complex of the Arg97Ile mutant was 100-fold higher than that of the wild-type protein. In contrast, the redox potential values of the mutant proteins were only slightly different from that of the wild type (within 10 mV). Accordingly, we propose that Arg97 plays critical roles in recognition of the O2 molecule and redox switching by stabilizing the Fe(II)-O2 complex, thereby anchoring O2 to the heme iron and lowering the autoxidation rate to prevent formation of Fe(III) hemin species not regulated by gas molecules. Arg97 mutations significantly influenced interactions with the internal ligand Met95, during CO binding to the Fe(II) complex. Moreover, the binding behavior of cyanide to the Fe(III) complexes of the Arg mutant proteins was similar to that of O2, which is evident from the Kd values, suggestive of electrostatic interactions between cyanide and Arg97.  相似文献   

18.
Human apohemoglobin (globin) was spin-labeled at the beta-93 sulfhydryl groups with 2,2,5,5-tetramethyl-3-aminopyrrolidine-I-oxyl. Spin-labeled globin exhibited an EPR spectra that is less immobilized than that of spin-labeled hemoglobin, indicating the conformational difference in the vicinity of the label between hemoglobin and globin. Spectrophotometric titration of spin-labeled globin with protohemin showed that 1 mol of globin (on the tetramer basis) combines with 4 mol of hemin, producing a holomethemoglobin spectrophotometrically indistinguishable from native methemoglobin. The EPR spectrum was also changed strikingly upon the addition of protohemin. This change, however, was not proportional to the amount of hemin added, but marked changes occurred after 3 to 4 mol of hemin were mixed with 1 mol of spin-labeled globin. The EPR spectrum of spin-labeled hemoglobin thus prepared was identical with that prepared by direct spin labeling to methemoglobin. These results suggest the preferential binding of hemin to alpha-globin chains in the course of heme binding by globin. This assumption was further confirmed by preparing spin-labeled semihemoglobin in which only one kind of chain contained hemin (alpha h betaO SL and alpha O beta h SL). The EPR spectrum of the alpha h beta O SL molecule showed a slightly immobilized EPR spectrum, similar to that of spin-labeled globin mixed with 50% of the stoichiometric amount of hemin. On the other hand, the alpha O beta h SL molecule showed a distinctly different EPR signal from that of globin half-saturated with hemin, and showed an intermediate spectrum between those of beta h SL and alpha h beta h SL. These results indicate that heme binding to globin chains brings about a major conformational change in the protein moiety and that chain-chain association plays a secondary role. We conclude that hemin binds preferentially to alpha-globin chains and that the conformation of globin changes rapidly to that of methemoglobin after all four hemes are attached to globin heme pockets.  相似文献   

19.
Blair-Johnson M  Fiedler T  Fenna R 《Biochemistry》2001,40(46):13990-13997
The 1.9 A X-ray crystal structure of human myeloperoxidase complexed with cyanide (R = 0.175, R(free) = 0.215) indicates that cyanide binds to the heme iron with a bent Fe-C-N angle of approximately 157 degrees, and binding is accompanied by movement of the iron atom by 0.2 A into the porphyrin plane. The bent orientation of the cyanide allows the formation of three hydrogen bonds between its nitrogen atom and the distal histidine as well as two water molecules in the distal cavity. The 1.85 A X-ray crystal structure of an inhibitory complex with thiocyanate (R = 0.178, R(free) = 0.210) indicates replacement of chloride at a proximal helix halide binding site in addition to binding in the distal cavity in an orientation parallel with the heme. The thiocyanate replaces two water molecules in the distal cavity and is hydrogen bonded to Gln 91. The 1.9 A structures of the complexes formed by bromide (R = 0.215, R(free) = 0.270) and thiocyanate (R = 0.198, R(free) = 0.224) with the cyanide complex of myeloperoxidase show how the presence of bound cyanide alters the binding site for bromide in the distal heme cavity, while having little effect on thiocyanate binding. These results support a model for a single common binding site for halides and thiocyanate as substrates or as inhibitors near the delta-meso carbon of the porphyrin ring in myeloperoxidase.  相似文献   

20.
We report geometry optimization results on heme compound I (ferryl-oxo + porphyrin cation radical), compound II (ferryl-oxo) and ferric-hydroxo species with thiolate or imidazole axial ligands. We also examine protonated forms of compound I and compound II species, prompted by recent reports that, in at least two different hemoproteins, compound II may in fact contain a hydroxo rather than an oxo ligand. We propose that the stable compound I and compound II species of hemoproteins (e.g., peroxidases and myoglobin) most likely contain a hydroxo rather than the oxo ligand traditionally assumed, whereas the extremely transient compound I species of monooxygenase hemoproteins (P450) would contain an oxo atom. We show evidence impacting the previously accepted notion in hemoprotein computational chemistry that non-covalent interactions and medium polarization effects are essential in properly describing the electronic structure of heme-thiolate high-valent complexes. On a different note, we find that the charge density on the iron remains essentially the same throughout the catalytic cycles of heme-containing oxygenases and peroxidases, despite clear changes in bond lengths and spin densities suggestive of various iron oxidation states. The iron thus appears to simply relay the electron flux between the porphyrin and the axial dioxygen/superoxo/peroxo/oxo/hydroxo ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号