首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carvacrol (1) and thymol (2) were converted to their alkyl 4-oxobutanoate derivatives (720) in three steps, and evaluated for tyrosinase inhibitory activity. The compounds showed structure-dependent activity, with all alkyl 4-oxobutanoates, except 7 and 20, showing better inhibitory activity than the precursor 4-oxobutanoic acids (5 and 6). In general, thymol derivatives exhibited a higher percent inhibitory activity than carvacrol derivatives at 500?μM. Derivatives containing three-carbon and four-carbon alkyl groups gave the strongest activity (carvacrol derivatives 912, IC50?=?128.8–244.1?μM; thymol derivatives 1619, IC50?=?102.3–191.4?μM).  相似文献   

2.
Six diphenolic compounds containing adamantane moiety were synthesized and evaluated as potent inhibitors on tyrosinase activity and melanin formation in melan-a cells. The inhibitory activity of 4-adamantyl resorcinol 1 was similar to that of 4-n-butyl resorcinol in both assays. However, dihydroxyl benzamide derivatives 6a–e showed different inhibitory patterns. All derivatives significantly suppressed the cellular melanin formation without tyrosinase inhibitory activities. These behaviors indicated that the introduction of amide bond changes the binding mode of dihydroxyl groups to tyrosinase. Among derivatives, 6d (3,4-dihydroxyl compound) and 6e (2,3-dihydroxyl compound) showed stronger inhibitory activities (IC50 = 1.25 μM and 0.73 μM, respectively) as compared to 4-n-butyl resorcinol (IC50 = 21.64 μM) and hydroquinone (IC50 = 3.97 μM). This study showed that the position of dihydroxyl substituent at aromatic ring is important for the intercellular inhibition of melanin formation, and also amide linkage and adamantane moiety enhance the inhibition.  相似文献   

3.
A new series of alkynyl glycoside analogues were designed and synthesized from cheap and a commercially available sugar by introduction of various alkynyl and alkyl groups at C-1 and C-6 positions of the sugar ring. The inhibitory abilities of alkynyl glycosides were investigated in vitro on mushroom tyrosinase for the catalysis of l-Tyrosine and l-DOPA as substrates and comparing with arbutin and kojic acid. Non-terminal alkyne compound 2d showed excellent tyrosinase inhibitory activity (IC50 54.0 μM) against l-Tyrosine comparable to arbutin (IC50 1.46 mM) while 2b exhibited potent activities (IC50 34.3 μM) against L-DOPA higher than kojic acid (IC50 0.11 mM) and arbutin (IC50 13.3 mM). Kinetic studies revealed that compound 2d was a non-competitive inhibitor with the best Ki value of 21 μM and formed an irreversible receptor complex with mushroom tyrosinase. The SARs results showed that the type of alkyne and alkyl groups at position C-6 on sugar and the stereoisomer played an important role in determining their inhibitory activities. The potent activity of alkynyl glycosides identified in this study highlight the importance of this scaffold and these compounds are very modestly potent to the development of new class for tyrosinase inhibitor.  相似文献   

4.
Thirteen (Z)-4-(substituted benzylidene)-3-phenylisoxazol-5(4H)-ones were designed to confirm the geometric effect of the double bond of the β-phenyl-α, β-unsaturated carbonyl scaffold on tyrosinase inhibitory activity. Compounds 1a1m, which all possessed the (Z)-β-phenyl-α, β-unsaturated carbonyl scaffold, were synthesized using a tandem reaction consisting of an isoxazolone ring formation and a Knoevenagel condensation, and three starting materials, ethyl benzoylacetate, hydroxylamine and benzaldehydes. Some of the compounds showed inhibitory activity against mushroom tyrosinase as potent as compounds containing the “(E)”-β-phenyl-α, β-unsaturated carbonyl scaffold. Compounds 1c and 1m showed greater inhibitory activity than kojic acid: IC50?=?32.08?±?2.25?μM for 1c; IC50?=?14.62?±?1.38?μM for 1m; and IC50?=?37.86?±?2.21?μM for kojic acid. A kinetic study indicated that 1m inhibited tyrosinase in a competitive manner and that it probably binds to the enzyme’s active site. In silico docking simulation supported binding of 1m (?7.6?kcal/mol) to the active site of tyrosinase with stronger affinity than kojic acid (?5.7?kcal/mol). Similar results were obtained using cell-based assays, and in B16F10 cells, compound 1m dose-dependently inhibited tyrosinase activity and melanogenesis. These results indicate the anti-melanogenic effect of compound 1m is due to the inhibition of tyrosinase and (Z)-isomer of the β-phenyl-α, β-unsaturated carbonyl scaffold can, like its congener the (E)-isomer, act as an excellent scaffold for tyrosinase inhibition.  相似文献   

5.
Here a new class of hydroxy- or methoxy-substituted 5-benzylidene(thio)barbiturates were designed, synthesized and their inhibitory effects on the diphenolase activity of mushroom tyrosinase were evaluated. The results showed that several compounds had more potent tyrosinase inhibitory activities than the widely used tyrosinase inhibitor kojic acid (IC50 = 18.25 μM). In particular, 3′,4′-dihydroxylated 1e was found to be the most potent inhibitor with IC50 value of 1.52 μM. The inhibition mechanism analysis revealed that the potential compounds 1e and 2e exhibited such inhibitory effects on tyrosinase by acting as the irreversible inhibitors. Structure–activity relationships’ (SARs) analysis also suggested that further development of such compounds might be of interest.  相似文献   

6.
Two series of novel kojic acid analogues (4aj) and (5ad) were designed and synthesized, and their mushroom tyrosinase inhibitory activities was evaluated. The result indicated that all the synthesized derivatives exhibited excellent tyrosinase inhibitory properties having IC50 values in the range of 1.35 ± 2.15–17.50 ± 2.75 μM, whereas standard inhibitor kojic acid have IC50 values 20.00 ± 1.08 μM. Specifically, 5-phenyl-3-[5-hydroxy-4-pyrone-2-yl-methylmercap-to]-4-(2,4-dihydroxyl-benzylamino)-1,2,4-triazole (4f) exhibited the most potent tyrosinase inhibitory activity with IC50 value of 1.35 ± 2.15 μM. The kinetic studies of the compound (4f) demonstrated that the inhibitory effects of the compound on the tyrosinase were belonging to competitive inhibitors. Meanwhile, the structure-activity relationship was discussed.  相似文献   

7.
A novel series of chromone-isatin derivatives 6a6p were designed, synthesized and characterized by 1H NMR, 13C NMR and HRMS. These novel synthetic compounds were evaluated for inhibitory activity against yeast α-glucosidase enzyme. The results of biological test have shown that all tested compounds exhibited excellent to potent inhibitory activity in the range of IC50?=?3.18?±?0.12–16.59?±?0.17?μM as compared to the standard drug acarbose (IC50?=?817.38?±?6.27?μM). Compound 6j (IC50?=?3.18?±?0.12?μM) with a hydroxyl group at the 7-position of chromone and a 4-bromobenzyl group at the N1-positions of isatin, was found to be the most active compound among the series. Furthermore, molecular docking study was performed to help understand binding interactions of the most active analogs with α-glucosidase enzyme. These results indicated that this class of compounds had potential for the development of anti-diabetic agents.  相似文献   

8.
With the aim to find out structural features for the tyrosinase inhibitory activity, in the present communication we report the synthesis and pharmacological evaluation of a new series of phenylcoumarin derivatives with different number of hydroxyl or ether groups and bromo substituent in the scaffold. The synthesized compounds 5-12 were evaluated as mushroom tyrosinase inhibitors showing, two of them, lower IC50 than the umbelliferone. Compound 12 (IC50 = 215 μM) is the best tyrosinase inhibitor of this series.  相似文献   

9.
Three novel butyrolactones (13) and butanoates (46), namely taraxiroside A–F, were isolated from Taraxacum officinale along with twenty-two known compounds (728). Their chemical structures were elucidated by interpretation of spectroscopic data and comparison with those of literatures. All isolates were evaluated for their α-glucosidase inhibitory activities. Novel compounds 16 (IC50 145.3–181.3?μM) showed inhibitory activities similar to that of acarbose (IC50 179.9?μM). Compound 7 and 12 were the most potent inhibitor with IC50 values of 61.2 and 39.8?μM respectively. Compounds 2 and 12 showed as mixed-type inhibition, whereas compound 7 and acarbose showed competitive inhibition.  相似文献   

10.
A series of bezofuran appended 1,5-benzothiazepine compounds 7a–v was designed, synthesized and evaluated as cholinesterase inhibitors. The biological assay experiments showed that most of the compounds displayed a clearly selective inhibition for butyrylcholinesterase (BChE), while a weak or no effect towards acetylcholinesterase (AChE) was detected. All analogs exhibited varied BChE inhibitory activity with IC50 value ranging between 1.0?±?0.01 and 72?±?2.8?μM when compared with the standard donepezil (IC50, 2.63?±?0.28?μM). Among the synthesized derivatives, compounds 7l, 7m and 7k exhibited the highest BChE inhibition with IC50 values of 1.0, 1.0 and 1.8?μM, respectively. The results from a Lineweaver-Burk plot indicated a mixed-type inhibition for compound 7l with BChE. In addition, docking studies confirmed the results obtained through in vitro experiments and showed that most potent compounds bind to both the catalytic anionic site (CAS) and peripheral anionic site (PAS) of BChE active site. The synthesized compounds were also evaluated for their in vitro antibacterial and antifungal activities. The results indicated that the compounds possessed a broad spectrum of activity against the tested microorganisms and showed high activity against both gram positive and gram negative bacteria and fungi.  相似文献   

11.
MMP-2/MMP-8 is established as one of the most important metalloenzymes for targeting cancer. A series of dihydropyrazothiazole derivatives (E1E18) bearing a salicylaldehyde group linked to Pyrazole ring were designed, synthesized, and evaluated for their pharmacological activity as MMP-2/MMP-8 inhibitors. Among them, compound E17 exhibited most potent inhibitory activity (IC50?=?2.80?μM for MMP-2 and IC50?=?5.6?μM for MMP-8), compared to the positive drug CMT-1 (IC50?=?1.29?μM). Compounds (E1E18) were scrutinized by CoMFA and CoMSIA techniques of Three-dimensional quant. structure-activity relationship (3D-QSAR), as well as a docking simulation. Moreover, treatment with compound E4 could induce MCF-7 cell apoptosis. Overall, the biological profile of E1E18 may provide a research basis for the development of new agents against cancer.  相似文献   

12.
Ten azo compounds including azo-resveratrol (5) and azo-oxyresveratrol (9) were synthesized using a modified Curtius rearrangement and diazotization followed by coupling reactions with various phenolic analogs. All synthesized compounds were evaluated for their mushroom tyrosinase inhibitory activity. Compounds 4 and 5 exhibited high tyrosinase inhibitory activity (56.25% and 72.75% at 50 μM, respectively). The results of mushroom tyrosinase inhibition assays indicate that the 4-hydroxyphenyl moiety is essential for high inhibition and that 3,5-dihydroxyphenyl and 3,5-dimethoxyphenyl derivatives are better for tyrosinase inhibition than 2,5-dimethoxyphenyl derivatives. Particularly, introduction of hydroxyl or methoxy group into the 4-hydroxyphenyl moiety diminished or significantly reduced mushroom tryosinase inhibition. Among the synthesized azo compounds, azo-resveratrol (5) showed the most potent mushroom tyrosinase inhibition with an IC50 value of IC50 = 36.28 ± 0.72 μM, comparable to that of resveratrol, a well-known tyrosinase inhibitor.  相似文献   

13.
To further investigate on the structure-activity relationships of immunosuppressive Astin C, seventeen analogues 117 were designed and synthetized via amino acid substitution strategy by the solid-phase peptide synthesis method for the first time. In comparison with Astin C (IC50?=?12.6?±?3.3?μM), only compounds 2 (IC50?=?38.4?±?16.2?μM), 4 (IC50?=?51.8?±?12.7?μM), 5 (IC50?=?65.2?±?15.6?μM), and 8 (IC50?=?61.8?±?12.4?μM) exhibited immunosuppressive activity in the Lymph node cells of mice. These results showed that the Astin C analogues containing D-amino acid residues, hydrophobic long-chain alkyl substituents, and aryl substituents performed better than those carrying hydrophilic amino acid residues and short-chain alkyl substituents. Moreover compounds 15, 16, and 17 had no immunosuppressive activity, which suggested that cis-3,4-dichlorinated proline played an important role in the immunosuppressive activity of Astin C.  相似文献   

14.
A series of coumarinyl-pyrazolinyl substituted thiazoles derivatives were synthesized and their inhibitory effects on the DPPH and mushroom tyrosinase were evaluated. The results showed that all of the synthesized compounds exhibited significant mushroom tyrosinase inhibitory activities. In particular, 3-(5-(4-(benzyloxy)-3-methoxyphenyl)-1-(4-(4-bromophenyl)thiazol-2-yl)-4,5-dihydro-1H-pyrazol-3-yl)-2H-chromen-2-one (7j) exhibited the most potent tyrosinase inhibitory activity with IC50 value 0.00458 ± 0.00022 μM compared with the IC50 value of kojic acid is 16.84 ± 0.052 μM. The inhibition mechanism analyzed by Lineweaver–Burk plots revealed that the type of inhibition of compound 7j on tyrosinase was noncompetitive. The docking study against tyrosinase enzyme was also performed to determine the binding affinity of the compounds. The compound 7a showed the highest binding affinity (−10.20 kcal/mol) with active binding site of tyrosinase. The initial structure activity relationships (SARs) analysis suggested that further development of such compounds might be of interest. The statistics of our results endorses that compound 7j may serve as a structural template for the design and development of novel tyrosinase inhibitors.  相似文献   

15.
In our ongoing effort of discovering anticancer and chemopreventive agents, a series of 2-arylindole derivatives were synthesized and evaluated toward aromatase and quinone reductase 1 (QR1). Biological evaluation revealed that several compounds (e.g., 2d, IC50?=?1.61?μM; 21, IC50?=?3.05?μM; and 27, IC50?=?3.34?μM) showed aromatase inhibitory activity with half maximal inhibitory concentration (IC50) values in the low micromolar concentrations. With regard to the QR1 induction activity, 11 exhibited the highest QR1 induction ratio (IR) with a low concentration to double activity (CD) value (IR?=?8.34, CD?=?2.75?μM), while 7 showed the most potent CD value of 1.12?μM. A dual acting compound 24 showed aromatase inhibition (IC50?=?9.00?μM) as well as QR1 induction (CD?=?5.76?μM) activities. Computational docking studies using CDOCKER (Discovery Studio 3.5) provided insight in regard to the potential binding modes of 2-arylindoles within the aromatase active site. Predominantly, the 2-arylindoles preferred binding with the 2-aryl group toward a small hydrophobic pocket within the active site. The C-5 electron withdrawing group on indole was predicted to have an important role and formed a hydrogen bond with Ser478 (OH). Alternatively, meta-pyridyl analogs may orient with the pyridyl 3′-nitrogen coordinating with the heme group.  相似文献   

16.
The natural product embelin was found to have PAI-1 inhibitory activity with the IC50 value of 4.94 μM. Based on the structure of embelin, a series of analogues were designed, synthesized, and evaluated for their ability to inhibit PAI-1. The SAR study on these compounds disclosed that the inhibitory potency largely depended on the hydroxyl groups at C2 and C5, and the length of the alkyl chains at C3 and C6. Compound 11 displayed the best PAI-1 inhibitory potency with the IC50 value of 0.18 μM.  相似文献   

17.
Nine rotenoids were isolated from the hexane and dichloromethane extracts of Derris trifoliata stems and were tested for nitric oxide (NO) inhibitory activity using RAW264.7 cells. The result indicated that 12a-hydroxyrotenone (7) possessed very potent NO inhibitory activity with an IC50 value of 0.002 μM, followed by 1 (deguelin, IC50=0.008 μM), 9 (12a-hydroxyelliptone, IC50=0.010 μM) and 2 (α-toxicarol, IC50=0.013 μM), respectively. In addition, the DPPH scavenging activity of rotenoids was also investigated. It was found that 6a,12a-dehydrodeguelin (5) possessed the highest activity against DPPH with an IC50 value of 7.4 μM, followed by deguelin (1, IC50=27.4 μM). All compounds did not show any cytotoxicity at their IC50 values for NO inhibitory activity.Structure–activity relationships (SARs) of these rotenoids against NO release are as follows: (1) hydroxylation at C12a dramatically increased activity, (2) prenylation at furan ring increased activity markedly and (3) hydrogenation of a double bond at C6a–C12a conferred higher activity. For the DPPH radical scavenging effect, it was found that (1) introduction of a double bond at C6a–C12a increased activity and (2) hydroxylation of C11 at the D-ring decreased activity. As regards active compounds of Derris trifoliata stems, the isolated compounds are responsible for the NO inhibitory effect, especially 7, 1, 9 and 2, whereas 5 and 1 are those for the DPPH scavenging activity.  相似文献   

18.
In the course of a primary screening of 614 microbial actinomycete extracts for the discovery of tyrosinase inhibitors, the EtOAc extract of the fermentation broth of the strain Streptomyces sp. CA-129531 isolated from a Martinique sample, exhibited in cell free and cell-based assays the most promising activity (IC50 value of 63 μg/mL). Scaled-up production in a bioreactor led to the isolation of one new trichostatic acid analogue, namely trichostatic acid B (1), along with six known trichostatin derivatives (27), four diketopiperazines (811), two butyrolactones (1213) and one hydroxamic acid siderophore (14). Among them, trichostatin A (4) showed a Ki value of 6.1 μM and six times stronger anti-tyrosinase activity (IC50 2.18 μΜ) than kojic acid (IC50 14.07 μΜ) used as a positive control. Deoxytrichostatin A (6) displayed also strong inhibitory activity against tyrosinase (IC50 19.18 μΜ). Trichostatin A production in bioreactor started together with the exponential phase of growth (day 4) and the maximum concentration was reached at day 9 (2.67 ± 0.13 μg/mL). Despite the cytotoxicity of some individual components, the EtOAc extract showed no cytotoxic effect on HepG2, A2058, A549, MCF-7 and MIA PaCa-2 cell lines, (IC50 >2.84 mg/mL) and against BG fibroblasts at the concentrations where the whitening effect was exerted, reassuring its safety and great tyrosinase inhibitory potential.  相似文献   

19.
1,3,4-Thiadiazole derivatives bearing Schiff base moieties were designed, synthesized, and their tyrosinase inhibitory activities were evaluated. Some compounds displayed potent tyrosinase inhibitory activities, especially, 4-(((5-mercapto-1,3,4-thiadiazol-2-yl)-imino)methyl)-2-methoxy-phenol (14) exhibited superior inhibitory effect to the other compounds with an IC50 value of 0.036 μM. The structure–activity relationships (SARs) were preliminarily discussed and docking studies showed compound 14 had strong binding affinity to mushroom tyrosinase. Hydroxy might be the active groups. The inhibition kinetics study revealed that compounds (13 and 14) inhibited tyrosinase by acting as uncompetitive inhibitors. The LD50 value of the compound 14 was 5000 mg/kg.  相似文献   

20.
Tyrosinase is a key enzyme during the production of melanins in plants and animals. A class of novel N-aryl-N′-substituted phenylthiourea derivatives (3a–i, 6ak) were designed, synthesized and their inhibitory effects on the diphenolase activity of mushroom tyrosinase were evaluated. The results showed some 4,5,6,7-tetrahydro-2-[[(phenylamino)thioxomethyl]amino]-benzo[b]thiophene-3-carboxylic acid derivatives (3a–i) exhibited moderate inhibitory potency on diphenolase activity of tyrosinase. When the scaffold of 4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylic acid was replaced with 2-(1,3,4-thiadiazol-2-yl)thio acetic acid, the inhibitory activity of compounds (6ak) against tyrosinase was improved obviously; especially, the inhibitory activity of compound 6h (IC50 = 6.13 μM) is significantly higher than kojic acid (IC50 = 33.3 μM). Moreover, the analysis on inhibition mechanism revealed that compound 6h might plays the role as a noncompetitive inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号