共查询到20条相似文献,搜索用时 0 毫秒
1.
Katherine M. Renwick Caroline Curtis Andrew R. Kleinhesselink Daniel Schlaepfer Bethany A. Bradley Cameron L. Aldridge Benjamin Poulter Peter B. Adler 《Global Change Biology》2018,24(1):424-438
A number of modeling approaches have been developed to predict the impacts of climate change on species distributions, performance, and abundance. The stronger the agreement from models that represent different processes and are based on distinct and independent sources of information, the greater the confidence we can have in their predictions. Evaluating the level of confidence is particularly important when predictions are used to guide conservation or restoration decisions. We used a multi‐model approach to predict climate change impacts on big sagebrush (Artemisia tridentata), the dominant plant species on roughly 43 million hectares in the western United States and a key resource for many endemic wildlife species. To evaluate the climate sensitivity of A. tridentata, we developed four predictive models, two based on empirically derived spatial and temporal relationships, and two that applied mechanistic approaches to simulate sagebrush recruitment and growth. This approach enabled us to produce an aggregate index of climate change vulnerability and uncertainty based on the level of agreement between models. Despite large differences in model structure, predictions of sagebrush response to climate change were largely consistent. Performance, as measured by change in cover, growth, or recruitment, was predicted to decrease at the warmest sites, but increase throughout the cooler portions of sagebrush's range. A sensitivity analysis indicated that sagebrush performance responds more strongly to changes in temperature than precipitation. Most of the uncertainty in model predictions reflected variation among the ecological models, raising questions about the reliability of forecasts based on a single modeling approach. Our results highlight the value of a multi‐model approach in forecasting climate change impacts and uncertainties and should help land managers to maximize the value of conservation investments. 相似文献
2.
Empirical and mechanistic models have both been used to assess the potential impacts of climate change on species distributions, and each modeling approach has its strengths and weaknesses. Here, we demonstrate an approach to projecting climate‐driven changes in species distributions that draws on both empirical and mechanistic models. We combined projections from a dynamic global vegetation model (DGVM) that simulates the distributions of biomes based on basic plant functional types with projections from empirical climatic niche models for six tree species in northwestern North America. These integrated model outputs incorporate important biological processes, such as competition, physiological responses of plants to changes in atmospheric CO2 concentrations, and fire, as well as what are likely to be species‐specific climatic constraints. We compared the integrated projections to projections from the empirical climatic niche models alone. Overall, our integrated model outputs projected a greater climate‐driven loss of potentially suitable environmental space than did the empirical climatic niche model outputs alone for the majority of modeled species. Our results also show that refining species distributions with DGVM outputs had large effects on the geographic locations of suitable habitat. We demonstrate one approach to integrating the outputs of mechanistic and empirical niche models to produce bioclimatic projections. But perhaps more importantly, our study reveals the potential for empirical climatic niche models to over‐predict suitable environmental space under future climatic conditions. 相似文献
3.
Jordi Margalef‐Marrase María ngeles Prez‐Navarro Francisco Lloret 《Global Change Biology》2020,26(5):3134-3146
In recent decades, many forest die‐off events have been reported in relation to climate‐change‐induced episodes, such as droughts and heat waves. To understand how these extreme climatic events induce forest die‐off, it is important to find a tool to standardize the climatic conditions experienced by different populations during a specific climatic event, taking into account the historic climatic conditions of the site where these populations live (bioclimatic niche). In this study, we used estimates of climatic suitability calculated from species distribution models (SDMs) for such purpose. We studied forest die‐off across France during the 2003 heatwave that affected Western Europe, using 2,943 forest inventory plots dominated by 14 single tree species. Die‐off severity was estimated by Normalized Difference Vegetation Index (NDVI) loss using Moderate‐resolution Imaging Spectroradiometer remote sensor imagery. Climatic suitability at the local level during the historical 1979–2002 period (HCS), the episode time (2003; ECS) and suitability deviance during the historical period (HCS‐SD) were calculated for each species by means of boosted regression tree models using the CHELSA climate database and occurrences extracted from European forest inventories. Low HCS‐SD and high mean annual temperature explained the overall regional pattern of vulnerability to die‐off across different monospecific forests. The combination of high historical and low episode climatic suitability also contributed significantly to overall forest die‐off. Furthermore, we observed different species‐specific relationships between die‐off vulnerability and climatic suitability: Sub‐Mediterranean and Mediterranean species tended to be vulnerable in historically more suitable localities (high HCS), whereas Euro‐Siberian species presented greater vulnerability when the hot drought episode was more intense. We demonstrated that at regional scale, past climatic legacy plays an important role in explaining NDVI loss during the episode. Moreover, we demonstrated that SDMs‐derived indexes, such as HCS, ECS and HCS‐SD, could constitute a tool for standardizing the ways that populations and species experience climatic variability across time and space. 相似文献
4.
Steven I. Higgins Robert B. O'Hara Christine Römermann 《Journal of Biogeography》2012,39(12):2091-2095
Why species are found where they are is a central question in biogeography. The most widely used tool for understanding the controls on distribution is species distribution modelling. Species distribution modelling is now a well‐established method in both the theoretical and applied ecological literature. In this special issue we examine the current state of the art in species distribution modelling and explore avenues for including more biological processes in such models. In particular we focus on physiological, demographic, dispersal, competitive and ecological‐modulation processes. This overview highlights opportunities for new species distribution model concepts and developments, as well as a statistical agenda for implementing such models. 相似文献
5.
6.
Large shifts in species ranges have been predicted under future climate scenarios based primarily on niche‐based species distribution models. However, the mechanisms that would cause such shifts are uncertain. Natural and anthropogenic fires have shaped the distributions of many plant species, but their effects have seldom been included in future projections of species ranges. Here, we examine how the combination of climate and fire influence historical and future distributions of the ponderosa pine–prairie ecotone at the edge of the Black Hills in South Dakota, USA, as simulated by MC1, a dynamic global vegetation model that includes the effects of fire, climate, and atmospheric CO2 concentration on vegetation dynamics. For this purpose, we parameterized MC1 for ponderosa pine in the Black Hills, designating the revised model as MC1‐WCNP. Results show that fire frequency, as affected by humidity and temperature, is central to the simulation of historical prairies in the warmer lowlands versus woodlands in the cooler, moister highlands. Based on three downscaled general circulation model climate projections for the 21st century, we simulate greater frequencies of natural fire throughout the area due to substantial warming and, for two of the climate projections, lower relative humidity. However, established ponderosa pine forests are relatively fire resistant, and areas that were initially wooded remained so over the 21st century for most of our future climate x fire management scenarios. This result contrasts with projections for ponderosa pine based on climatic niches, which suggest that its suitable habitat in the Black Hills will be greatly diminished by the middle of the 21st century. We hypothesize that the differences between the future predictions from these two approaches are due in part to the inclusion of fire effects in MC1, and we highlight the importance of accounting for fire as managed by humans in assessing both historical species distributions and future climate change effects. 相似文献
7.
Guillermo Gea‐Izquierdo Antoine Nicault Giovanna Battipaglia Isabel Dorado‐Liñán Emilia Gutiérrez Montserrat Ribas Joel Guiot 《Global Change Biology》2017,23(7):2915-2927
Forest performance is challenged by climate change but higher atmospheric [CO2] (ca) could help trees mitigate the negative effect of enhanced water stress. Forest projections using data assimilation with mechanistic models are a valuable tool to assess forest performance. Firstly, we used dendrochronological data from 12 Mediterranean tree species (six conifers and six broadleaves) to calibrate a process‐based vegetation model at 77 sites. Secondly, we conducted simulations of gross primary production (GPP) and radial growth using an ensemble of climate projections for the period 2010–2100 for the high‐emission RCP8.5 and low‐emission RCP2.6 scenarios. GPP and growth projections were simulated using climatic data from the two RCPs combined with (i) expected ca; (ii) constant ca = 390 ppm, to test a purely climate‐driven performance excluding compensation from carbon fertilization. The model accurately mimicked the growth trends since the 1950s when, despite increasing ca, enhanced evaporative demands precluded a global net positive effect on growth. Modeled annual growth and GPP showed similar long‐term trends. Under RCP2.6 (i.e., temperatures below +2 °C with respect to preindustrial values), the forests showed resistance to future climate (as expressed by non‐negative trends in growth and GPP) except for some coniferous sites. Using exponentially growing ca and climate as from RCP8.5, carbon fertilization overrode the negative effect of the highly constraining climatic conditions under that scenario. This effect was particularly evident above 500 ppm (which is already over +2 °C), which seems unrealistic and likely reflects model miss‐performance at high ca above the calibration range. Thus, forest projections under RCP8.5 preventing carbon fertilization displayed very negative forest performance at the regional scale. This suggests that most of western Mediterranean forests would successfully acclimate to the coldest climate change scenario but be vulnerable to a climate warmer than +2 °C unless the trees developed an exaggerated fertilization response to [CO2]. 相似文献
8.
9.
Frédérik Saltré Anne Duputié Cédric Gaucherel Isabelle Chuine 《Global Change Biology》2015,21(2):897-910
Recent efforts to incorporate migration processes into species distribution models (SDMs) are allowing assessments of whether species are likely to be able to track their future climate optimum and the possible causes of failing to do so. Here, we projected the range shift of European beech over the 21st century using a process‐based SDM coupled to a phenomenological migration model accounting for population dynamics, according to two climate change scenarios and one land use change scenario. Our model predicts that the climatically suitable habitat for European beech will shift north‐eastward and upward mainly because (i) higher temperature and precipitation, at the northern range margins, will increase survival and fruit maturation success, while (ii) lower precipitations and higher winter temperature, at the southern range margins, will increase drought mortality and prevent bud dormancy breaking. Beech colonization rate of newly climatically suitable habitats in 2100 is projected to be very low (1–2% of the newly suitable habitats colonised). Unexpectedly, the projected realized contraction rate was higher than the projected potential contraction rate. As a result, the realized distribution of beech is projected to strongly contract by 2100 (by 36–61%) mainly due to a substantial increase in climate variability after 2050, which generates local extinctions, even at the core of the distribution, the frequency of which prevents beech recolonization during more favourable years. Although European beech will be able to persist in some parts of the trailing edge of its distribution, the combined effects of climate and land use changes, limited migration ability, and a slow life‐history are likely to increase its threat status in the near future. 相似文献
10.
Zheng Han Lishi Zhang Yunlei Jiang Haitao Wang Frdric Jiguet 《Diversity & distributions》2020,26(7):843-852
11.
Lan‐Anh T. Tran Quinten Bafort Frederique Steen Amelia Gmez Garreta Sofie DHondt Kathy Ann Miller Sofie Vranken Ante
uljevi Jennifer E. Smith Olivier De Clerck 《Journal of phycology》2021,57(1):370-378
Here, we report for the first time the presence of Dictyota cyanoloma in southern California. Dictyota cyanoloma is conspicuous in harbors and bays by its distinctive bright blue‐iridescent margins. This species was originally described from Europe, but subsequent studies have revealed that it represented an introduction from Australia. The current distribution of D. cyanoloma comprises southern Australia and the North East Atlantic, including the Mediterranean Sea and the Macaronesian islands. The presence of D. cyanoloma in southern California is supported by molecular cox1 and psbA gene sequences. A reconstruction of the invasive history based on nine polymorphic microsatellite markers reveals a close affinity of the Californian specimens with European populations. Dictyota cyanoloma in the United States appears to be (so far) restricted to the Californian coast from San Diego Bay in the south to Santa Catalina Island and Long Beach Harbor in the north. A correlative species distribution model suggests gradually declining habitat suitability north of the Southern Californian Bight and high suitability in Baja California, including the Gulf of California. Finally, its widespread abundance in bays and harbors suggests shipping is a likely transport mechanism. 相似文献
12.
Alexander Jueterbock Lennert Tyberghein Heroen Verbruggen James A. Coyer Jeanine L. Olsen Galice Hoarau 《Ecology and evolution》2013,3(5):1356-1373
The North-Atlantic has warmed faster than all other ocean basins and climate change scenarios predict sea surface temperature isotherms to shift up to 600 km northwards by the end of the 21st century. The pole-ward shift has already begun for many temperate seaweed species that are important intertidal foundation species. We asked the question: Where will climate change have the greatest impact on three foundational, macroalgal species that occur along North-Atlantic shores: Fucus serratus, Fucus vesiculosus, and Ascophyllum nodosum? To predict distributional changes of these key species under three IPCC (Intergovernmental Panel on Climate Change) climate change scenarios (A2, A1B, and B1) over the coming two centuries, we generated Ecological Niche Models with the program MAXENT. Model predictions suggest that these three species will shift northwards as an assemblage or “unit” and that phytogeographic changes will be most pronounced in the southern Arctic and the southern temperate provinces. Our models predict that Arctic shores in Canada, Greenland, and Spitsbergen will become suitable for all three species by 2100. Shores south of 45° North will become unsuitable for at least two of the three focal species on both the Northwest- and Northeast-Atlantic coasts by 2200. If these foundational species are unable to adapt to the rising temperatures, they will lose their centers of genetic diversity and their loss will trigger an unpredictable shift in the North-Atlantic intertidal ecosystem. 相似文献
13.
Stanislaus J. Schymanski Carsten F. Dormann Juliano Cabral Isabelle Chuine Catherine H. Graham Florian Hartig Michael Kearney Xavier Morin Christine Römermann Boris Schröder Alexander Singer 《Journal of Biogeography》2013,40(3):612-613
In a recent article (Dormann et al., 2012, Journal of Biogeography, 39, 2119–2131), we compared different approaches to species distribution modelling and depicted modelling approaches along an axis from purely ‘correlative’ to ‘forward process‐based’ models. In their correspondence, Kriticos et al. (2013, Journal of Biogeography, doi: 10.1111/j.1365‐2699.2012.02791.x ) challenge this view, claiming that our continuum representation neglects differences among models and does not consider the ability of fitted process‐based models to combine the advantages of both process‐based and correlative modelling approaches. Here we clarify that the continuum view resulted from recognition of the manifold differences between models. We also reinforce the point that the current trend towards combining different modelling approaches may lead not only to the desired combination of the advantages but also to the accumulation of the disadvantages of those approaches. This point has not been made sufficiently clear previously. 相似文献
14.
Laura Rodríguez Juan Jos García Francisco Carreo Brezo Martínez 《Diversity & distributions》2019,25(5):715-728
15.
Luke J. Sutton David L. Anderson Miguel Franco Christopher J. W. McClure Everton B. P. Miranda F. Hernn Vargas Jos de J. Vargas Gonzlez Robert Puschendorf 《Ecology and evolution》2021,11(1):481-497
Understanding species–environment relationships is key to defining the spatial structure of species distributions and develop effective conservation plans. However, for many species, this baseline information does not exist. With reliable presence data, spatial models that predict geographic ranges and identify environmental processes regulating distribution are a cost‐effective and rapid method to achieve this. Yet these spatial models are lacking for many rare and threatened species, particularly in tropical regions. The harpy eagle (Harpia harpyja) is a Neotropical forest raptor of conservation concern with a continental distribution across lowland tropical forests in Central and South America. Currently, the harpy eagle faces threats from habitat loss and persecution and is categorized as Near‐Threatened by the International Union for the Conservation of Nature (IUCN). Within a point process modeling (PPM) framework, we use presence‐only occurrences with climatic and topographical predictors to estimate current and past distributions and define environmental requirements using Ecological Niche Factor Analysis. The current PPM prediction had high calibration accuracy (Continuous Boyce Index = 0.838) and was robust to null expectations (pROC ratio = 1.407). Three predictors contributed 96% to the PPM prediction, with Climatic Moisture Index the most important (72.1%), followed by minimum temperature of the warmest month (15.6%) and Terrain Roughness Index (8.3%). Assessing distribution in environmental space confirmed the same predictors explaining distribution, along with precipitation in the wettest month. Our reclassified binary model estimated a current range size 11% smaller than the current IUCN range polygon. Paleoclimatic projections combined with the current model predicted stable climatic refugia in the central Amazon, Guyana, eastern Colombia, and Panama. We propose a data‐driven geographic range to complement the current IUCN range estimate and that despite its continental distribution, this tropical forest raptor is highly specialized to specific environmental requirements. 相似文献
16.
Phenological events, such as bud burst, are strongly linked to ecosystem processes in temperate deciduous forests. However, the exact nature and magnitude of how seasonal and interannual variation in air temperatures influence phenology is poorly understood, and model‐based phenology representations fail to capture local‐ to regional‐scale variability arising from differences in species composition. In this paper, we use a combination of surface meteorological data, species composition maps, remote sensing, and ground‐based observations to estimate models that better represent how community‐level species composition affects the phenological response of deciduous broadleaf forests to climate forcing at spatial scales that are typically used in ecosystem models. Using time series of canopy greenness from repeat digital photography, citizen science data from the USA National Phenology Network, and satellite remote sensing‐based observations of phenology, we estimated and tested models that predict the timing of spring leaf emergence across five different deciduous broadleaf forest types in the eastern United States. Specifically, we evaluated two different approaches: (i) using species‐specific models in combination with species composition information to ‘upscale’ model predictions and (ii) using repeat digital photography of forest canopies that observe and integrate the phenological behavior of multiple representative species at each camera site to calibrate a single model for all deciduous broadleaf forests. Our results demonstrate variability in cumulative forcing requirements and photoperiod cues across species and forest types, and show how community composition influences phenological dynamics over large areas. At the same time, the response of different species to spatial and interannual variation in weather is, under the current climate regime, sufficiently similar that the generic deciduous forest model based on repeat digital photography performed comparably to the upscaled species‐specific models. More generally, results from this analysis demonstrate how in situ observation networks and remote sensing data can be used to synergistically calibrate and assess regional parameterizations of phenology in models. 相似文献
17.
Patrick S. Fahey Rachael M. Fowler Todd G. B. McLay Frank Udovicic David J. Cantrill Michael J. Bayly 《Ecology and evolution》2021,11(1):664-678
AimTo infer relationships between populations of the semi‐arid, mallee eucalypt, Eucalyptus behriana, to build hypotheses regarding evolution of major disjunctions in the species'' distribution and to expand understanding of the biogeographical history of southeastern Australia.LocationSoutheastern Australia.Taxon Eucalyptus behriana (Myrtaceae, Angiospermae).MethodsWe developed a large dataset of anonymous genomic loci for 97 samples from 11 populations of E. behriana using double digest restriction site‐associated DNA sequencing (ddRAD‐seq), to determine genetic relationships between the populations. These relationships, along with species distribution models, were used to construct hypotheses regarding environmental processes that have driven fragmentation of the species’ distribution.ResultsGreatest genetic divergence was between populations on either side of the Lower Murray Basin. Populations west of the Basin showed greater genetic divergence between one another than the eastern populations. The most genetically distinct population in the east (Long Forest) was separated from others by the Great Dividing Range. A close relationship was found between the outlying northernmost population (near West Wyalong) and those in the Victorian Goldfields despite a large disjunction between them.ConclusionsPatterns of genetic variation are consistent with a history of vicariant differentiation of disjunct populations. We infer that an early disjunction to develop in the species distribution was that across the Lower Murray Basin, an important biogeographical barrier separating many dry sclerophyll plant taxa in southeastern Australia. Additionally, our results suggest that the western populations fragmented earlier than the eastern ones. Fragmentation, both west and east of the Murray Basin, is likely tied to climatic changes associated with glacial‐interglacial cycles although it remains possible that major geological events including uplift of the Mount Lofty Ranges and basalt flows in the Newer Volcanics Province also played a role. 相似文献
18.
Jan W. Arntzen 《Molecular ecology》2019,28(23):5145-5154
Classical theory states that hybrid zones will be stable in troughs of low population density where dispersal is hampered. Yet, evidence for moving hybrid zones is mounting. One possible reason that moving zones have been underappreciated is that they may drive themselves into oblivion and with just the superseding species remaining, morphological and genetic signals of past species replacement may be difficult to appreciate. Using genetic data (32 diagnostic single nucleotide polymorphisms) from a clinal hybrid zone of the common toad (Bufo bufo) and the spined toad (Bufo spinosus) in France for comparison, alleles of the latter species were documented in common toads in the south of Great Britain, at frequencies in excess of 10%. Because long distance dispersal across the Channel is unlikely, the conclusion reached was that the continental toad hybrid zone which previously extended into Britain, moved southwards and extirpated B. spinosus. Species distribution models for the mid‐Holocene and the present support that climate has locally changed in favour of B. bufo. The system bears resemblance with the demise of Homo neanderthalensis and the rise of Homo sapiens and provides an example that some paleoanthropologists demanded in support of a hominin “leaky replacement” scenario. The toad example is informative just because surviving pure B. spinosus and an extant slowly moving interspecific hybrid zone are available for comparison. 相似文献
19.
Rui F. Fernandes Julien Pottier Loïc Pellissier Antoine Guisan 《Journal of Biogeography》2015,42(7):1255-1266