首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Histological and histochemical methods have been employed to study the formation and growth of the exoskeleton in relation to the moulting cycle of the crab Menippe rumphii (Fabricius). In the premoult condition the epidermal cells secrete a two-layered cuticle. Later these layers are widened by the secretions coming from the reserve cells, tegumental glands, and the Leydig cells. The fully formed cuticle of the intermoult crab is divisible into four layers, epicuticle, exocuticle, mesocuticle, and endocuticle.Histochemical observations on different cells have revealed that the tegumental glands secrete both neutral and acid mucopolysaccharides. The reserve cells are positive to PAS, BPB, Sudan Black B and Alizarin Red S techniques indicating the presence of carbohydrates, proteins, lipids, and mineral calcium. The Leydig cells are loaded with enzymes, including alkaline phosphatase, acid phosphatase, lipase, and phenoloxidase. Other histochemical tests have been employed to investigate the formation of different layers of the cuticle.  相似文献   

2.
Incorporation of tritiated leucine, tyrosine and glucosamine into the integument of larval Drosophila melanogaster was followed by electron-microscope autoradiography. Tritiated leucine, tyrosine, and glucosamine were incorporated into the endocuticle by apposition, giving rise to a distinct band of label in the endocuticle at a level which depended on the time between labelling and fixation. The labelled amino acids, but not glucosamine, were also detected in the epicuticle and both above and below the distinct labelled band in the endocuticle. The results indicate that the epicuticle grows within the third instar by intussusception of new materials which are transported from the epidermal cells through the endocuticle to the epicuticle. Breakdown of cuticle which was radioactively labelled by feeding larvae tritiated precursors was also followed by autoradiography. The results indicate that the breakdown products from the old cuticle may be reutilized in the synthesis of new cuticle.  相似文献   

3.
The cuticle of the cephalobaenid pentastomid Reighardia sternae is described at various stages of the moult-intermoult cycle. The intermoult cuticle comprises four layers: an outer epicuticle; an underlying dense layer, the protein epicuticle; a fibrillar endocuticle; and a denser subcuticle. The overall similarity between the structure and composition of these layers and those of insects is discussed. However, the orientation of the chitin-protein fibres in the endocuticle does not show the rotating structure characteristic of many arthropod species, but this does appear in the sclerotized hooks. It is suggested that this comparatively loose, poorly oriented endocuticular structure produces a highly extensible cuticle which is precisely adapted to the specialized, endoparasitic habit of this species. Events at ecdysis, particularly the secretion of moulting fluid and the deposition of cuticulin, follow the insect pattern precisely. The phyletic significance of these observations is discussed.  相似文献   

4.
The structure, histochemistry, and possible functional properties of the cuticle in two parasitic copepods Pennella elegans Gnanamuthu and Caligus savala Gnanamuthu have been studied: the former is partially embedded in the host while the latter is an ectoparasite capable of free swimming.In Pennella elegans the cuticle of the embedded anterior region of the body is soft, colourless, and lacks an outer epicuticle while that of the posterior exposed part is pigmented and hard. Conspicuous in the cuticle of the ventral region of the head are pore canals which, though not chitinized, are functional even in the intermoult stage: these canals may be involved in the transport of nutrient materials from the host. The horns, which serve to fix the parasite firmly in the host tissues, are covered by cuticle in which the epicuticle and outer layers of the procuticle are hardened by formation of disulphide linkages. The cuticle of the neck region is not hardened and the procuticle in this region shows transverse regions of dense and light zones probably related to the coiling of the neck during penetration. The epicuticle is two layered in the cuticle of the exposed posterior region, the inner epicuticle and outer region of the procuticle being partially hardened by phenolic tanning so confer rigidity and resistance. The cuticle of the plumes is soft and devoid of an outer lipid epicuticle and so possibly adapted for a respiratory function.In Caligus savala, the epicuticle is two layered, and the procuticle has pigmented, calcified, and uncalcified layers. The cuticle is hardened by phenolic tanning as well as by calcification thus recalling the cuticular organization of decapod crustaceans.  相似文献   

5.
The histological structure of cephalothoracic and abdominal integuments has been studied in the hermit crab Pagurus bernhardus (L.). In the branchial region of the carapace, the integument shows a similar structure as described hitherto in a number of other decapod species; there are a thin epicuticle, an exocuticle, and a relatively thick endocuticle, followed by a layer of columnar epithelium and underlying connective tissue. This pattern is repeated on the inner surface of the carapace fold but with generally thinner cuticular layers. Within the connective tissue there are tegumental glands, haemocytes, and some reserve inclusions. The abdominal integument shows a modified cuticle structure which is probably related to its specific function as an adhesive organ attaching the hermit crab to the inner surface of the gastropod shell. The cuticle is uncalcified and it shows deep wrinkles and grooves. Endocuticle and exocuticle are thick and layered whereas the epicuticle is very thin. Large funnel-shaped ducts with secretions occur frequently in the abdominal integument. The cells that are responsible for these secretions are described. The chemical nature of integumental structures has been studied with histochemical tests.  相似文献   

6.
The abdominal cuticles of Rhodnius prolixus (fifth instar) and Boophilus microplus (adult female) expand dramatically and rapidly during feeding. In the unfed stage of both species the epicuticle of the abdomen is deeply folded, and when rapid stretching takes place the epicuticle unfolds and the underlying procuticle stretches so that the thickness of the cuticle is halved. The cuticles contained only trace amounts of protein soluble in water and aqueous KCl but substantial quantities were extracted with 7 M aqueous urea. The proteins were analysed for their amino acid composition and investigated by gel electrophoresis and isoelectric focusing.In solubility, amino acid composition, molecular weight distribution, and isoelectric points, the proteins isolated from both species resembled one another closely. They had higher molecular weights and higher isoelectric points than did the proteins from flexible, non-stretching cuticles and unlike them had high alanine and histidine and low aspartic acid and glutamic acid contents. Their amino acid composition was very similar to that of the whole cuticle. The proteins were not associated with neutral sugars. Both the Rhodnius and Boophilus cuticles had low chitin contents, 11·2 and 3·8% respectively (on a water-free basis). The composition of the cuticles and the properties of the proteins are discussed in relation to the stretching which they undergo.  相似文献   

7.
In the crayfish, Astacus astacus, susceptible to the crayfish plague fungus, penetration of the cuticle by the parasite occurred in the soft cuticle. The zoospore lysed the surface lipid layer, tore it away, and formed an infection peg (germ tube) that penetrated through the epicuticle. A septum was formed in the infection peg, and a hypha was formed below the inner epicuticular surface. In the endocuticle, hyphae grew preferrentially parallel to the surface, occassionally perpendicular to it. Growth direction in relation to cuticle architecture is discussed. Subsequently, some hyphae started to penetrate out through the epicuticle. This process was preceded by the swelling of the hyphal tip touching the inner side of the epicuticle. The hypha penetrating out through the epicuticle was much thicker than the infection peg. Histolytic activity, combined with mechanical penetration, seems to be evident in all stages and levels except in the outward penetration of the epicuticular lipid surface layer, where only mechanical rupture could be seen. Differences in the protoplasmic ultrastructure were found between the spore and the penetrant hyphae. Penetration of the cuticle of a resistant crayfish was essentially identical to that in susceptible ones. However, inward penetration of intact epicuticle was too scarce to allow for ultrastructural studies.  相似文献   

8.
The histological and histochemical aspects of the integument have been described and discussed during the intermoult period of Ocypoda platytarsis. Histological observations revealed that the cuticle comprises of four layers namely epicuticle, exocuticle, endocuticle and membranous layers. Various types of cells in the subepidermal tissue have also been elucidated.  相似文献   

9.
Cuticle segments from the thorax, abdomen, and jumping legs of the house cricket. Acheta domesticus, were examined using histological techniques for light microscopy, scanning and transmission electron microscopy, and direct examination of frozen-fractured cuticle. The surface of untreated cuticle is covered by a lipid film which obscures fine surface detail. Standard EM preparative procedures, as well as washing the cuticle with ethanol before examination, remove this film exposing previously covered openings to dermal gland ducts and wax canals. An epicuticle, exocuticle, mesocuticle, endocuticle, and a deposition layer were present in all transverse sections of cuticle. Light microscopy showed that the exocuticle and mesocuticle are heavily impregnated with lipids, whereas there is little lipid associated with the endocuticle. Frozen-fractured cuticle clearly shows the ‘plywood’ structure of the meso- and endocuticle, while the exocuticle fractures as if it were a solid sheet. The epicuticle is composed of a dense homogeneous layer, cuticulin, outer epicuticle, and the outer membrane. Superficial wax was detected only in cuticle samples prepared using vinylcyclohexane dioxide as a polar dehydrant. The results were used to construct a comprehensive model of the cuticle of A. domesticus.  相似文献   

10.
The hindgut and foregut in terrestrial isopod crustaceans are ectodermal parts of the digestive system and are lined by cuticle, an apical extracellular matrix secreted by epithelial cells. Morphogenesis of the digestive system was reported in previous studies, but differentiation of the gut cuticle was not followed in detail. This study is focused on ultrastructural analyses of hindgut apical matrices and cuticle in selected intramarsupial developmental stages of the terrestrial isopod Porcellio scaber in comparison to adult animals to obtain data on the hindgut cuticular lining differentiation. Our results show that in late embryos of stages 16 and 18 the apical matrix in the hindgut consists of loose material overlaid by a thin intensely ruffled electron dense lamina facing the lumen. The ultrastructural resemblance to the embryonic epidermal matrices described in several arthropods suggests a common principle in chitinous matrix differentiation. The hindgut matrix in the prehatching embryo of stage 19 shows characteristics of the hindgut cuticle, specifically alignment to the apical epithelial surface and a prominent electron dense layer of epicuticle. In the preceding embryonic stage – stage 18 – an electron dense lamina, closely apposed to the apical cell membrane, is evident and is considered as the first epicuticle formation. In marsupial mancae the advanced features of the hindgut cuticle and epithelium are evident: a more prominent epicuticular layer, formation of cuticular spines and an extensive apical labyrinth. In comparison to the hindgut cuticle of adults, the hindgut cuticle of marsupial manca and in particular the electron dense epicuticular layer are much thinner and the difference between cuticle architecture in the anterior chamber and in the papillate region is not yet distinguishable. Differences from the hindgut cuticle in adults imply not fully developed structure and function of the hindgut cuticle in marsupial manca, possibly related also to different environments, as mancae develop in marsupial fluid. Bacteria, evenly distributed within the homogenous electron dense material in the hindgut lumen, were observed only in one specimen of early marsupial manca. The morphological features of gut cuticle renewal are evident in the late marsupial mancae, and are similar to those observed in the exoskeleton.  相似文献   

11.
Phenoloxidase has been localized in the epicuticle, exocuticle, and epidermal cells of the mole crab, Emerita asiatica Milne Edwards. The enzyme activity in different moulting stages is in the order of freshmoult > premoult > intermoult = postmoult. The phenoloxidase of the freshmoult cuticle oxidizes pyrogallol and epinephrine (adrenaline) more effectively than the other phenols studied. There is no monophenolase activity. The possible metabolic pathway has been suggested based on the specificity of the enzyme and the chromatographic identification of the extracted phenols. Phenoloxidase shows different pH optima in different buffers. The protein pattern in the various moulting stages of the cuticle differs and the results are discussed in relation to sclerotization.  相似文献   

12.
13.
《Experimental mycology》1989,13(3):274-288
Germination on complex media induced conidia of the entomopathogenMetarhizium anisopliae to produce infection structures (appressoria and penetration hyphae) when the germ tube contacted a hard surface. The morphology of the infection structures and their rate of formation are very similar to those observed for blowfly cuticle. Differentiation frequencies were greater (more than 70% as compared with less than 40%) on hydrophobic surfaces [Teflon, polyvinyl chloride, polystyrene, polypropylene, polyester (GelBond), aluminum foil] than on hydrophilic surfaces (agarose-coated polyester and cellophane). Differentiation frequencies were similar on both positively and negatively charged surfaces. Differentiationin vitro was stimulated by low levels of complex nitrogenous nutrients. Analysis of one- or multicomponent media suggested that amino acids and the lipid component of epicuticle act in combination with the hydrophobic cuticle surface to stimulate differentiation during pathogenesis. Thigmotropic and chemical stimuli for production of appressoria appear to be translated primarily during the second round of nuclear division because inhibitors of DNA and RNA synthesis do not prevent germination but block differentiation if applied before the second nuclear division. Inhibition of protein synthesis blocked both germination and differentiation.  相似文献   

14.
Sclerotized cuticle segments from the thorax, dorsal abdomen, and ventral abdomen of the alpine, weta Hemideina maori (Saussure) (Orthoptera: Stenopelmatidae) were examined by light microscopy and by scanning and transmission electron microscopy. An epicuticle, exocuticle (outer and inner), mesocuticle, endocuticle, and deposition layer are present in transverse sections. The epicuticle is further composed of a cuticulin layer and inner epicuticle, the latter being finely laminated and containing narrow wax canals that terminate below the cuticle surface. Openings to dermal gland ducts are visible on the surface as are large setae and smaller sensory pegs. Frozen fractured cuticle reveals the presence of horizontal ducts or channels that run laterally within the cuticle. The structure of weta cuticle is compared with that of the common house cricket and arthropods in general.  相似文献   

15.
Comparative ultrastructural studies of the integument in terrestrial isopod crustaceans show that specific environmental adaptations of different eco-morphotypes are reflected in cuticle structure. The biphasic molting in isopods is a valuable experimental model for studies of cuticular matrix secretion and degradation in the same animal. The aim of this review is to show structural and functional adaptations of the tergal cuticle in terrestrial isopods inhabiting cave habitats. Exoskeletal cuticle thickness, the number of cuticular layers, epicuticle structure, mineralization, pigmentation and complexity of sensory structures are compared, with greater focus on the well-studied cave trichoniscid Titanethes albus. A large number of thinner cuticular layers in cave isopods compared to fewer thicker cuticular layers in related epigean species of similar body-sizes is explained as a specific adaptation to the cavernicolous life style. The epicuticle structure and composition are compared in relation to their potential waterproofing capacity in different environments. Cuticle mineralization is described from the functional point of view as well as from the aspect of different calcium storage sites and calcium dynamics during the molt cycle. We also discuss the nature and reduction of pigmentation in the cave environment and outline perspectives for future research.  相似文献   

16.
The structure of the integument and the muscle attachments of the marine heterotardigradeE. sigismundi (M. Schultze) was studied by electron microscopy. The cuticle consists of several layers: an outer tripartite (or multilayered) epicuticle, perhaps with an outermost coat; a homogeneous inner epicuticle; a trilaminated layer; an intracuticle; and a fibrous procuticle. These features resemble the cuticle described in Eutardigrada; in contrast, areas on the legs and near the claws, with an outer multilayered epicuticle and a striated layer (inner epicuticle), are — as far as investigated — more similar to the cuticle in Heterotardigrada. The epidermis consists of a single cell layer without glands. The muscle attachments are in line with the general pattern described in the eutardigradeMacrobiotus hufelandi and in Arthropoda.  相似文献   

17.
C Bordereau 《Tissue & cell》1982,14(2):371-396
The physogastric termite queen is the most striking example in insects of growth in size without cuticular moulting. This phenomenon has been studied with electron microscopy and histochemical tests in two species of higher termites, Cubitermes fungifaber and Macrotermes bellicosus. The abdominal hypertrophy (physogastry) is allowed by growth of the arthrodial membranes of the swarming imago. The growth is slow (over several years) but important: the cuticular dry weight is multiplied by 20 in C. fungifaber, by 100-150 in M. bellicosus. The termite queen cuticle arises from the transformation of the cuticle of the swarming imago or imaginal cuticle (unfolding and growing of the epicuticle, stretching of the endocuticle, resorption of the subcuticle) and from the secretion of a new endocuticle or royal endocuticle. The termite queen is the first example known in insects of epicuticular growth. In the physogastric queen, three cuticular types are observed: the rigid cuticle of the sclerites, the soft cuticle of the arthrodial membranes and the partially rigid cuticle of special structures, the neosclerites, which show both rigidity and growth. The fibrillar architecture varies according to the abdominal zones and the position within the cuticle. It appears to be determined by the forces arising from the musculature and the anisometric abdominal growth. The king does not become physogastric, although its cuticle is also modified.  相似文献   

18.
The moulting cycle and growth of the larval integument of Drosophila melanogaster has been studied by light and electron microscopy. Growth during the first, second and third larval instars is accompanied by 3.0-, 3.4- and 3.7-fold increases in surface area, respectively. Growth in surface area occurs continuously during the larval stages, with no detectable relationship to the moulting cycle. Measurements of the thickness of the cuticular layers show that the endocuticle grows in thickness by apposition and in surface area by stretching. The pre-apolytic epicuticle remains at fairly constant thickness during the increase in surface area, indicating that it grows by intussusception of new components. Post-apolytic epicuticle becomes thinner and increases in surface area by stretching. The epicuticle and pre-ecdysial endocuticle are traversed by filaments, but these do not penetrate the endocuticle secreted after ecdysis. We suggest that the filaments transport breakdown products from the old cuticle inward to the epidermis for reutilization. The growth and deposition of cuticle in two larval growth mutants, lethal (2) giant larvae and Chubby Tubby, involves mechanisms similar to those found in wild-type larvae, but in Chubby Tubby the endocuticle contains inclusions which are ultrastructurally similar to dense epicuticle.  相似文献   

19.
For cytophysiological work it is important to have ways of demonstrating proteins and amino acids and especially of characterizing basic and non-basic proteins. The author presents a review of the more usually employed histochemical reactions for amino acids and proteic compounds in general, with several modifications which increase their sensitivity, or specificity and localization. The author describes the histochemical arginine reaction, recently introduced by him, by means of which the characterization of basic and non-basic proteins can be easily accomplished in every laboratory without costly apparatus; this reaction serves also for the demonstration of proteins in general. The application of protein histochemical tests for quantitative purposes is discussed in connection with the characterization of the basic proteins and the determination of the relative concentration and the active metabolic changes of proteic compounds.  相似文献   

20.
PORE CANALS AND RELATED STRUCTURES IN INSECT CUTICLE   总被引:6,自引:4,他引:2       下载免费PDF全文
The fine structure and the distribution of an esterase have been studied in the cuticle of Galleria larvae, Tenebrio larvae and pupae, and in the wax-secreting cuticle of the honey bee, and compared with those in the cuticle of the caterpillar of Calpodes. In Galleria and Tenebrio the pore canals are spaces passing through the lamellate endocuticle from the epithelium to the epicuticle. They contain a filament from the cells which may be concerned in their formation. The shape of the pore canal is probably determined by the orientation of the fibres making up the lamellae in the endocuticle and is not a regular helix. The pore canals also contain numerous filaments of another sort which pass on through the epicuticle and are believed to be the origin of the surface wax. They are particularly abundant in the pore canals of the honey bee wax-secreting cuticle and extend into the cell in long pockets surrounded by an envelope of the plasma membrane. The esterase is probably concerned with the final stage of wax synthesis, for its distribution is similar to that of the lipid filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号