首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The feeding rate effects were studied on the growth performance of gynogenetic diploid larvae of sterlet Acipenser ruthenus during the first 4 weeks of exogenous feeding. The experimental rearing was conducted from 7 to 38 days post‐hatch (dph) in a circulation system. This was set up in four groups with three replicates (440 individuals/replicate), viz: AC‐control larvae fed Artemia sp., CFC‐control larvae fed compound feed, AG‐gynogenetic larvae fed Artemia sp., and CFG‐gynogenetic larvae fed compound feed. The larvae were reared in glass tanks (44 L volume, 10 individuals/L) with the temperature maintained at 18 ± 0.5°C, photoperiod of 12L:12D and water flow regime of 1‐L/min and fed 50%, 25%, 25%, and 9% of their total biomass/day during feeding. Highest TL and WBW of gynogenetic diploid larvae (AG) were observed with 50.6 ± 1.2 mm and 607.3 ± 36.1 mg (n = 30) at 38 dph. Highest TL and WBW of control larvae (AC) were recorded with 49.5 ± 3.8 mm and 600.8 ± 88.0 mg (n = 30), respectively, with 73.1% ± 11.4% survival; the lowest survival rate was at 46.4% ± 7.1% (n = 30) for the CFG group. The results indicate that the gynogenetic and normal larvae of sterlet fed with live food (Artemia nauplii) from 7 dph can achieve higher growth and survivability compared to the larvae fed with formulated test feed. Results of this study suggest that the effective rearing of sterlet larvae from 7 to 38 dph strongly depends upon the types of feed rather than the genome manipulation performed.  相似文献   

2.
Ocean warming and acidification are serious threats to marine life; however, their individual and combined effects on large pelagic and predatory fishes are poorly understood. We determined the effects of projected future temperature and carbon dioxide (CO2) levels on survival, growth, morphological development and swimming performance on the early life stages of a large circumglobal pelagic fish, the yellowtail kingfish Seriola lalandi. Eggs, larvae and juveniles were reared in cross‐factored treatments of temperature (21 and 25°C) and pCO2 (500 and 985 μatm) from fertilisation to 25 days post hatching (dph). Temperature had the greatest effect on survival, growth and development. Survivorship was lower, but growth and morphological development were faster at 25°C, with surviving fish larger and more developed at 1, 11 and 21 dph. Elevated pCO2 affected size at 1 dph, but not at 11 or 21 dph, and did not affect survival or morphological development. Elevated temperature and pCO2 had opposing effects on swimming performance at 21 dph. Critical swimming speed (Ucrit) was increased by elevated temperature but reduced by elevated pCO2. Additionally, elevated temperature increased the proportion of individuals that responded to a startle stimulus, reduced latency to respond and increased maximum escape speed, potentially due to the more advanced developmental stage of juveniles at 25°C. By contrast, elevated pCO2 reduced the distance moved and average speed in response to a startle stimulus. Our results show that higher temperature is likely to be the primary driver of global change impacts on kingfish early life history; however, elevated pCO2 could affect critical aspects of swimming performance in this pelagic species. Our findings will help parameterise and structure fisheries population dynamics models and improve projections of impacts to large pelagic fishes under climate change scenarios to better inform adaptation and mitigation responses.  相似文献   

3.
It is widely known that water temperature affects the swimming capacity of fish. But the effect of the rearing temperature on the swimming ability of the fish at later stages, has not had similar attention. In this study, four populations of zebrafish, were reared in different water temperatures (22, 25, 28 and 31°C) and after being acclimatized in a common temperature (26.5°C) for over a month, they were subjected to swimming trials in order to evaluate the maximum relative critical velocity (RU crit ) in each case. Fish that were reared in 22°C showed statistically significant lower performance than the ones reared in 31°C (7.72 ± 0.17 vs. 8.79 ± 0.28, means ± S.E.). Possible explanations for the observed differentiation could be the effect of early life temperature on fish muscle ontogeny or on body shape.  相似文献   

4.
We studied the effect of intraspecific hybridization on swimming performance in sterlet, hypothesizing that such hybridization increases the performance by inducing the hybrid vigor. A total of 12 purebred and hybrid crosses were reproduced from Danube (D) and Volga (V) populations of Acipenser ruthenus. Within each cross, one group of fish was exposed to temperature challenges mimicking the temperature variation in the natural environment during summer. Temperature challenges comprised a constant increase from 19°C to 24°C and then return to 19°C within 12 hr (dT<1°C/hr), and were carried out every third day over the experimental period of 20 days. As a control, fish from each cross were kept at a constant temperature of 19°C. Critical swimming speed (Ucrit) was assessed on day 0 (29 days post hatch, dph), 10 (39 dph) and 20 (49 dph). The critical swimming speeds ranged from 5.12 cm/s (1.63 TL/s) to 16.44 cm/s (2.4 TL/s) during the experimental period (29–49 dph). There were no significant differences observed in Ucrit between repeatedly temperature challenged and control groups, indicating that the temperature challenge did not alter the swimming performance. The critical swimming speed showed positive relationship with total body length. Comparing intraspecific hybrid crosses with purebred crosses, no significant difference in swimming performance was observed. It is thus concluded that swimming performance is a family specific trait. There is no indication that intraspecific hybridization affects swimming performance nor that close‐to‐natural temperature regimes increase swimming performance.  相似文献   

5.
6.
In this study, the complete foxl2 complementary (c)DNA sequence was isolated by simple modular‐architecture research tool (SMART)er rapid amplification of cDNA ends (RACE). Two year‐old female spotted scat, Scatophagus argus, were reared at different temperatures (23, 26 and 29° C) for 6 weeks, or fed with different concentrations of dietary fish oil (0, 2 or 6%) for 8 weeks. Ovarian development, serum oestradiol‐17β (E2) levels, as well as ovarian foxl2 expression were measured. At the end of experiment, ovarian foxl2 messenger (m)RNA expression in fish reared at 23 and 26° C was significantly higher than that in fish reared at 29° C, and that in 2 and 6% fish oil groups was also significantly higher than that in control group (P < 0·05). Serum E2 levels exhibited the same trend with foxl2 mRNA expression in temperature treatment groups and fish oil fed groups. There was a significant positive correlation between stage of oocytes and foxl2 expressions. Results showed that from 23 to 29° C, the optimal temperature for ovarian development in S. argus was 23–26° C, and 6% fish oil supplementation could effectively promote ovarian development. Optimal temperature and fish oil supplement might increase ovarian foxl2 mRNA expressions to promote ovarian development in S. argus.  相似文献   

7.
  1. Neochetina eichhorniae is the most widely established biocontrol agent on water hyacinth populations around South Africa. However, some N. eichhorniae populations have failed to adequately control their host population, specifically those exposed to cold conditions.
  2. The aim of this study was to determine whether two climatically distinct populations of N. eichhorniae in South Africa differ in their low‐temperature physiology, which tests whether local‐climate adaptation has occurred.
  3. We estimated weevil CTmin, LLT50, SCP, and SCP mortality using standard approaches. Contrary to expectation based on climatic thermal profiles at the two sites, weevils from the warm locality ((mean ± SE) CTmin = 5.0 °C ± 0.2, LLT50 = ?11.3 °C ± 0.03, SCP = ?15.8 °C ± 0.6) were able to maintain activity and tolerate colder temperatures than the weevils from the colder site (CTmin = 6.0 °C ± 0.5, LLT50 = ?10.1 °C ± 0.1, SCP = ?12.9 °C ± 0.8).
  4. These contradictory outcomes are likely explained by the poor nutrient quality of the plants at the cold site, driving low‐temperature performance variation that overrode any macroclimate variation among sites. The cold site weevils may also have adapted to survive wide‐temperature variability, rather than perform well under very cold conditions. In contrast, the mass‐reared population of insects from the warm site has likely adapted to the consistent conditions that they experience over many years in confinement.
  相似文献   

8.
In order to elucidate the role of Cyp19a in sex differentiation of Schizothorax kozlovi, the full length cDNA of Cyp19a was cloned from the mature ovary of S. kozlovi by using rapid amplification of cDNA ends method, and then its relative mRNA expression levels among tissues and temperature groups were determined by using quantitative real-time PCR. The complete Cyp19a cDNA of 1795 bp of S. kozlovi was obtained, which encoded 517 amino acids and belonged to gonadal aromatase. Its deduced amino acid sequence had the above 70 % identity compared with gonadal aromatase genes of teleost fishes, but only 62–67 % when compared with brain aromatase genes of fishes. It was expressed only in heart and gonad, but no expression in other tissues, presenting relatively high tissue specificity. It also exhibited sex-specific expression pattern in gonads, but no sex differences in heart. Comparing with the Cyp19a expression levels at 12 days post hatching (dph), significant temperature effects were revealed in low temperature group (10 °C) at 18 dph, and in high temperature group (26 °C) at 40 dph. It suggested that gonadal aromatase Cyp19a gene may play important roles on the feminization or masculinization of S. kozlovi affected by temperature during the early developmental stage.  相似文献   

9.
Temperature-dependent sex determination has been demonstrated in some species of fish, and a high temperature during the period of sex differentiation typically produces a male-dominant population. This research investigated the gonadal sex differentiation and effect of rearing temperature on the sex ratio in larval black rockfish Sebastes schlegeli, which is a viviparous species. Two types of gonads were histologically distinguishable in fish 20 mm in total length (TL). The putative ovary started forming an ovarian cavity, while the putative testis was not clearly differentiated until 51 mm TL. In a temperature-controlled experiment, the proportions of females were 45% at 10°C, 46% at 14°C, 50% at 18°C, 63% at 22°C, and 83% (significantly different from 1:1 sex ratio) at 24°C. These results suggest that morphological sex differentiation in black rockfish occurs at approximately 20 mm in TL, and it is possible that high temperatures (24°C) induce not a male- but a female-dominant population in this species.  相似文献   

10.
Climate change alters the abiotic constraints faced by plants, including increasing temperature and water stress. These changes may affect flower development and production of flower rewards, thus altering plant–pollinator interactions. Here, we investigated the consequences of increased temperature and water stress on plant growth, floral biology, flower‐reward production, and insect visitation of a widespread bee‐visited species, Borago officinalis. Plants were grown for 5 weeks under three temperature regimes (21, 24, and 27°C) and two watering regimes (well‐watered and water‐stressed). Plant growth was more affected by temperature rise than water stress, and the reproductive growth was affected by both stresses. Vegetative traits were stimulated at 24°C, but impaired at 27°C. Flower development was mainly affected by water stress, which decreased flower number (15 ± 2 flowers/plant in well‐watered plants vs. 8 ± 1 flowers/plant under water stress). Flowers had a reduced corolla surface under temperature rise and water stress (3.8 ± 0.5 cm2 in well‐watered plants at 21°C vs. 2.2 ± 0.1 cm2 in water‐stressed plants at 27°C). Both constraints reduced flower‐reward production. Nectar sugar content decreased from 3.9 ± 0.3 mg/flower in the well‐watered plants at 21°C to 1.3 ± 0.4 mg/flower in the water‐stressed plants at 27°C. Total pollen quantity was not affected, but pollen viability decreased from 79 ± 4% in the well‐watered plants at 21°C to 25 ± 9% in the water‐stressed plants at 27°C. Flowers in the well‐watered plants at 21°C received at least twice as many bumblebee visits compared with the other treatments. In conclusion, floral modifications induced by abiotic stresses related to climate change affect insect behavior and alter plant–pollinator interactions.  相似文献   

11.
Oomyzus sokolowskii, an important parasitoid of Plutella xylostella, has great potential for use in biological control. Storage at suboptimal temperature is valuable for increasing the shelf‐life of insect parasitoids. In this study, O. sokolowskii larvae were reared at 30/25, 25/25 and 25/20°C light/dark (65 ± 5% RH, 16 : 8 h L : D) until pupation. The pupae were then cold‐stored at 4 ± 1°C (60 ± 5% RH, full darkness). The pupae were removed out from the storage at 10, 20, 30 and 40 days after storage (DAS) and maintained at 25 ± 2°C until adults emerged or pupae died. Quality of the emerging adults and their F1 offspring were assessed. Incidence of parasitism by O. sokolowskii was higher at 30/25°C than at 25/20°C. Cold storage of O. sokolowskii pupae greatly affected the fitness of the parasitoid: adult emergence rates were lower in the 40 DAS treatment than in other treatments; when O. sokolowskii larvae developed at 25/25°C, female proportions of the emerged adults were lower in the 40 DAS treatment than in the 0 and 10 DAS treatments. Larval rearing temperature mildly affected the adult emergence rate, post‐storage developmental time and female proportion with a few exceptions. Number of parasitoids emerged per host pupa, and incidence of parasitism by the females were neither affected by larval rearing temperature nor cold storage duration. Trans‐generational effects on F1 offspring were evident in adult emergence rate, egg‐adult developmental time and female proportion which were negatively affected by long duration of storage (40 days), but not by larval rearing temperature with a few exceptions. In conclusion, O. sokolowskii pupae could be stored at 4°C for up to 30 days without significant fitness loss.  相似文献   

12.
13.
14.
Preservation in 30% ethanol and freezing to a temperature of ?20 ± 2° C is an appropriate method for measurement of fish eggs, larvae and juveniles. Egg diameter of the common carp Cyprinus carpio increased insignificantly by 1·32% after preservation compared with live size. The total length (LT) of 1 day post‐hatching (dph) larvae as well as the standard length (LS) of 16 dph larvae of C. carpio increased significantly (2·95 and 1·50%, respectively) after preservation. Egg diameter as well as the LT of 1 dph larvae of barbel Barbus barbus increased significantly after preservation, by 1·74 and 1·96%, respectively over their original size. The standard length (LS) of 14 dph larvae of B. barbus as well as juveniles of B. barbus, crucian carp Carassius carassius, common nase Chondrostoma nasus and tench Tinca tinca decreased significantly after preservation (?0·56 to ?5·54%), whereas their body mass increased significantly (11·46–18·57%). Preserved eggs of C. carpio and B. barbus were hard, round and transparent. The larvae and juveniles of examined fishes, preserved in frozen ethanol, were straight, flexible and easily measurable after 60 days. Integrity of body surface and fins, as well as preservation of colours were much better in larvae or juveniles frozen and thawed only once than in specimens frozen and thawed thrice. Cooling in 30% ethanol to a temperature of 6 ± 2° C and freezing in water to a temperature of ?20 ± 2° C are not appropriate preservation methods for eggs and larvae of C. carpio (1 and 16 dph).  相似文献   

15.
16.
Synopsis The present study investigated the effects of water temperature (18, 21, and 25 °C) on the histological process of gonadal sex differentiation of two commercially important atherinid fishes from South America, Odontesthes argentinensis (sea pejerrey) and Patagonina hatcheri (Patagonian freshwater pejerrey). In both species, female gonadal sex differentiation began with the formation of lateral stromal cell outgrowths and the appearance of meiotic oocytes. The male gonads remained quiescent for about twice as long as the female gonads, with differentiation becoming evident by the formation of the main sperm duct and of cysts of germ cells at the periphery of the gonads. Meiosis in males occurred relatively long after somatic differentiation of the testis. The ovaries of O. argentinensis differentiated at 28 days (20.3 mm) at 25 °C, 42 days (24.0 mm) at 21 °C, and 56 days (23.8 mm) at 18 °C. In the males, differentiation was observed at 98 days at 25 and 21 °C (39.4 mm and 40.4 mm, respectively), but at 112 days under 18 °C (40.7 mm). In P. hatcheri, differentiation of females occurred at 21 days (17.8 mm) at 25 °C, 28 days (20.8 mm) at 21 °C, and 35 days (23.2 mm) at 18 °C. Male differentiation became evident at 56 days under 25 and 21 °C (30.8 and 32.7 mm, respectively), and at 70 days (37.7 mm) at 18 °C. The sex-ratios of O. argentinensis reared at 18 or 21 °C were female-biased whereas those at 25 °C were not; groups reared at 18 °C had significantly more females than groups from the same progeny reared at 25 °C. In contrast, the sex-ratios in all groups of P. hatcheri did not differ significantly from 1:1 and no significant differences were found between groups of the same progeny reared at different temperatures. These results suggest the occurrence of thermolabile sex determination (TSD) in O. argentinensis whereas in P. hatcheri gonadal sex appears to be strongly genetically determined.  相似文献   

17.
Many populations of shortnose sturgeon, Acipenser brevirostrum, in the southeastern United States continue to suffer from poor juvenile recruitment. High summer water temperatures, which may be exacerbated by anthropogenic activities, are thought to affect recruitment by limiting available summer habitat. However, information regarding temperature thresholds of shortnose sturgeon is limited. In this study, the thermal maximum method and a heating rate of 0.1°C min−1 was used to determine critical and lethal thermal maxima for young-of-the-year (YOY) shortnose sturgeon acclimated to temperatures of 19.5 and 24.1°C. Fish used in the experiment were 0.6 to 35.0 g in weight and 64 to 140 days post hatch (dph) in age. Critical thermal maxima were 33.7°C (±0.3) and 35.1°C (±0.2) for fish acclimated to 19.5 and 24.1°C, respectively. Critical thermal maxima significantly increased with an increase in acclimation temperature (p < 0.0001). Lethal thermal maxima were 34.8°C (±0.1) and 36.1°C (±0.1) for fish acclimated to 19.5 and 24.1°C, respectively. Lethal thermal maxima were significantly affected by acclimation temperature, the log10 (fish weight), and the interaction between log10(fish weight) and acclimation temperature (p < 0.0001). Thermal maxima were used to estimate upper limits of safe temperature, thermal preferences, and optimal growth temperatures of YOY shortnose sturgeon. Upper limits of safe temperature were similar to previous temperature tolerance information and indicate that summer temperatures in southeastern rivers may be lethal to YOY shortnose sturgeon if suitable thermal refuge cannot be found.  相似文献   

18.
Temperature modulates the metabolism in both fish and bacteria and therefore the effect of probiotic bacteria on its host may vary accordingly. The current study aim was to evaluate the effect of probiotic supplementation (Bacillus sp., Lactobacillus sp., Enterococcus sp., Pediococcus sp.) in juvenile seabass, Dicentrarchus labrax, when reared under different temperatures (17, 20 and 23°C). A control diet was tested against a probiotic‐supplemented diet, with a concentration of 3 × 109 CFU probiotic/kg diet. Antioxidant responses (TG, GSH, GSSG, GR, CAT and GSTs) and lipid peroxidation (LPO) were evaluated after 70 days of dietary probiotic supplementation. An effect of temperature was observed on LPO, which increased significantly in fish reared at 17°C (p < .05) compared to the 20 and 23°C groups. Total glutathione (TG) was significantly higher in the probiotic treatments in fish reared at 17 and 20°C (p < .05). In addition, a probiotic temperature interaction was observed for TG, reduced glutathione (GSH) levels, and for reduction of the oxidized glutathione ratio (GSH/GSSG; p < .05). In conclusion, the current study showed a strong temperature effect on oxidative stress responses, with an anti‐oxidant role of dietary probiotic supplementation at different rearing temperatures.  相似文献   

19.
The embryonic development of the Japanese eel Anguilla japonica and pike eel Muraenesox cinereus was morphologically investigated with laboratory‐reared specimens to clarify the characteristics of somitogenesis. In A. japonica, somites were first observed at 18 h post fertilization (hpf) when epiboly reached 90%. Somitogenesis progressed at a rate of 1·6 h?1 at mean ± s.d . 22·6 ± 0·7° C and completed at 107 hpf (3 days post hatching; dph) when total number of somites (ST) reached 114, which corresponds to the species' number of vertebrae (112–119). In M. cinereus, somites were first observed at 14 hpf when epiboly completed. Somitogenesis progressed at a rate of 1·9 h?1 at mean ± s.d . 24·4 ± 0·2° C and completed at 90 hpf (2 dph) with 149 ± 4 ST, which corresponds to the species' number of vertebrae (142–158). Both species hatched before somitogenesis was completed, at 37 hpf with 47 ST and 42 hpf with 82 ± 4 ST, respectively. The formation of other organs such as the heart, mouth and pectoral fin bud occurred during somitogenesis. Comparison with the development of zebrafish Danio rerio indicates a prolongation of somitogenesis in A. japonica and M. cinereus. Their somitogenesis rates, however, correspond well with that of D. rerio estimated at the same temperature and their developmental stages at hatching are almost equivalent to other fishes having similar yolk sizes. Therefore, the prolongation of somitogenesis in A. japonica and M. cinereus may be accounted for solely by the increased numbers of somites to be formed, not by a slow somitogenesis rate or an acceleration in organogenesis.  相似文献   

20.
Length‐weight relationships were determined for four fish species [Acentrogobius viridipunctatus (Valenciennes, 1837); Acentrogobius caninus (Valenciennes, 1837); Glossogobius olivaceus (Temminck & Schlegel, 1845); and Lutjanus ophuysenii (Bleeker, 1860)] belonging to two families. Samples were collected from 2002 to 2010 by cage net (50 × 15 × 15 cm, mesh size 0.5 cm) from Zhanjiang mangrove in China (20°36′N; 110°54′E). The total length ranged is between 2.3 and 18.1 cm and weighted between 0.3 and 90.2 g. The allometric coefficient (b) of length‐weight relationship varied from 2.72 for Zenarchopterus buffonis to 3.48 for Acentrogobius viridipunctatus. Length‐weight relationships for these four fish species were determined for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号