首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A hyalinocyte-mediated encapsulation reaction is elicited by sporocysts of Renicola buchanani infecting the anterior mantle region of Cerithidea californica. Three phases of capsule formation are recognized: (1) an initial aggregating of hyalinocytes around each sporocyst in which pseudopodia from encapsulating cells loosely interdigitate with the parasite's tegumental microvilli, (2) the infiltrating of numerous hyalinocytes to form a dense matrix of cells which lies in close contact with the sporocyst's tegument, and (3) the horizontal flattening of hyalinocytes against the sporocyst's surface to form a tightly adhering capsule four to eight cell layers deep. Sporocysts are not harmed as a consequence of encapsulation. Capsule formation in response to R. buchanani sporocysts is considered a type of leucocytic encapsulation, specifically designated hyalinocytic encapsulation.  相似文献   

3.
The main objective of this study was to investigate the effects of Synbiotic2000? Forte on the intestinal motility and interstitial cells of Cajal (ICC) in traumatic brain injury (TBI) mouse model. Kunming mice were randomly divided into sham operation group (S group), enteral nutrition group with TBI (E group), and Synbiotic2000? Forte group with TBI (P group). The contractile activity of the intestinal smooth muscle, densities and ultrastructure of the ICC, kit protein concentration, weight, and defecation of mice were monitored and analyzed. TBI markedly suppressed contractile activity of the intestinal smooth muscle (P < 0.01), which led to a reduction of defecation (P < 0.01) and weight (P < 0.01). However, application of Synbiotic2000? Forte significantly improved contractile activity of the small intestine (P < 0.01), which may be related to protective effects to the interstitial cells of Cajal, smooth muscle cells, and enteric neurons. TBI impaired ICC networks and densities (P < 0.01), events that were protected by the application of Synbiotic2000? Forte. Synbiotic2000? Forte may attenuate TBI-mediated inhibition of the kit protein pathway. Synbiotic2000? Forte may improve intestinal motility and protect the ICC in the TBI mouse. These findings provide a novel support for the application of Synbiotic2000? Forte in intestinal motility disturbance after TBI.  相似文献   

4.
Functionally contracting smooth muscle is an essential part of the engineered intestine that has not been replicated in vitro. The purpose of this study is to produce contracting smooth muscle in culture by maintaining the native smooth muscle organization. We employed intact smooth muscle strips and compared them to dissociated smooth muscle cells in culture for 14 days. Cells isolated by enzymatic digestion quickly lost maturity markers for smooth muscle cells and contained few enteric neural and glial cells. Cultured smooth muscle strips exhibited periodic contraction and maintained neural and glial markers. Smooth muscle strips cultured for 14 days also exhibited regular fluctuation of intracellular calcium, whereas cultured smooth muscle cells did not. After implantation in omentum for 14 days on polycaprolactone scaffolds, smooth muscle strip constructs expressed high levels of smooth muscle maturity markers as well as enteric neural and glial cells. Intact smooth muscle strips may be a useful component for engineered intestinal smooth muscle.  相似文献   

5.
MethodsConditional gene targeting generated SMC-specific Nrp1 knockout mice (Nrp1SMKO) in which Cre recombinase is driven by the smooth muscle-specific myosin heavy chain (smMHC) promoter.ResultsSMC-specific Nrp1 deficiency resulted in a significant reduction in intestinal length by 6 months, and, by 18 months, in severe constipation, and enlargement of the intestine consistent with chronic intestinal pseudo-obstruction. These effects were associated with significant thinning of the intestinal smooth muscle, and decreased intestinal contractility. Expression of contractile proteins was reduced in Nrp1SMKO mice, including the smMHC isoform, SMB, whereas we observed a significant increase in the expression of the small-conductance calcium-activated potassium channel 3 (SK3/KCa2.3), implicated in negative regulation of smooth muscle contraction.ConclusionsNrp1 deficiency in visceral SMC results in adult-onset defects in gastrointestinal contractility and motility and causes a shift to a less contractile SMC phenotype. These findings indicate a new role for Nrp1 in the maintenance of the visceral SMC contractile phenotype required for normal GI motility in aged mice.  相似文献   

6.
7.
The Hedgehog (Hh) pathway plays multiple patterning roles during development of the mammalian gastrointestinal tract, but its role in adult gut function has not been extensively examined. Here we show that chronic reduction in the combined epithelial Indian (Ihh) and Sonic (Shh) hedgehog signal leads to mislocalization of intestinal subepithelial myofibroblasts, loss of smooth muscle in villus cores and muscularis mucosa as well as crypt hyperplasia. In contrast, chronic over-expression of Ihh in the intestinal epithelium leads to progressive expansion of villus smooth muscle, but does not result in reduced epithelial proliferation. Together, these mouse models show that smooth muscle populations in the adult intestinal lamina propria are highly sensitive to the level of Hh ligand. We demonstrate further that Hh ligand drives smooth muscle differentiation in primary intestinal mesenchyme cultures and that cell-autonomous Hh signal transduction in C3H10T1/2 cells activates the smooth muscle master regulator Myocardin (Myocd) and induces smooth muscle differentiation. The rapid kinetics of Myocd activation by Hh ligands as well as the presence of an unusual concentration of Gli sties in this gene suggest that regulation of Myocd by Hh might be direct. Thus, these data indicate that Hh is a critical regulator of adult intestinal smooth muscle homeostasis and suggest an important link between Hh signaling and Myocd activation. Moreover, the data support the idea that lowered Hh signals promote crypt expansion and increased epithelial cell proliferation, but indicate that chronically increased Hh ligand levels do not dampen crypt proliferation as previously proposed.  相似文献   

8.
Lymphatic absorption is a highly regulated process driven by both an extrinsic mechanism (external force) and an intrinsic mechanism (lymphatic vessel contractility). The lymphatic muscle is a specialized smooth muscle with unique mechanical properties. To understand the molecular mechanism and relative contribution of smooth muscle contraction in lymphatic absorption, we analyzed mice with a smooth muscle-specific deletion of Mylk, a critical gene for smooth muscle contraction. Interestingly, the knockout mice were significantly resistant to anesthesia reagents. Upon injection in the feet with FITC-dextran, the mutant mice displayed a 2-fold delay of the absorption peak in the peripheral circulation. Examining the ear lymphatic vessels of the mutant mice revealed a reduction in the amount of fluid in the lumens of the lymphangions, suggesting an impairment of lymph formation. The Mylk-deficient lymphatic muscle exhibited a significant reduction of peristalsis and of myosin light chain phosphorylation in response to depolarization. We thus concluded that MLCK and myosin light chain phosphorylation are required for lymphatic vessel contraction. Lymphatic contractility is not an exclusive requirement for lymphatic absorption, and external force appears to be necessary for absorption.  相似文献   

9.
Supraphysiological mechanical stretching in smooth muscle results in decreased contractile activity. However, the mechanism is unclear. Previous studies indicated that intestinal motility dysfunction after edema development is associated with increased smooth muscle stress and decreased myosin light chain (MLC) phosphorylation in vivo, providing an ideal model for studying mechanical stress-mediated decrease in smooth muscle contraction. Primary human intestinal smooth muscle cells (hISMCs) were subjected to either control cyclical stretch (CCS) or edema (increasing) cyclical stretch (ECS), mimicking the biophysical forces in non-edematous and edematous intestinal smooth muscle in vivo. ECS induced significant decreases in phosphorylation of MLC and MLC phosphatase targeting subunit (MYPT1) and a significant increase in p21-activated kinase (PAK) activity compared with CCS. PAK regulated MLC phosphorylation in an activity-dependent biphasic manner. PAK activation increased MLC and MYPT1 phosphorylation in CCS but decreased MLC and MYPT1 phosphorylation in hISMCs subjected to ECS. PAK inhibition had the opposite results. siRNA studies showed that PAK1 plays a critical role in regulating MLC phosphorylation in hISMCs. PAK1 enhanced MLC phosphorylation via phosphorylating MYPT1 on Thr-696, whereas PAK1 inhibited MLC phosphorylation via decreasing MYPT1 on both Thr-696 and Thr-853. Importantly, in vivo data indicated that PAK activity increased in edematous tissue, and inhibition of PAK in edematous intestine improved intestinal motility. We conclude that PAK1 positively regulates MLC phosphorylation in intestinal smooth muscle through increasing inhibitory phosphorylation of MYPT1 under physiologic conditions, whereas PAK1 negatively regulates MLC phosphorylation via inhibiting MYPT1 phosphorylation when PAK activity is increased under pathologic conditions.  相似文献   

10.
Differentiation and dedifferentiation, accompanied by proliferation play a pivotal role for the phenotypic development of vascular proliferative diseases (VPD), such as restenosis. Increasing evidence points to an essential role of regulated nucleoporin expression in the choice between differentiation and proliferation. However, whether components of the Ran GTPase cycle, which is of pivotal importance for both nucleocytoplasmic transport and for mitotic progression, are subject to similar regulation in VPD is currently unknown. Here, we show that differentiation of human coronary artery smooth muscle cell (CASMC) to a contractile phenotype by stepwise serum depletion leads to significant reduction of RanGAP1 protein levels. The inverse event, dedifferentiation of cells, was assessed in the rat carotid artery balloon injury model, a well-accepted model for neointima formation and restenosis. As revealed by temporospatial analysis of RanGAP1 expression, neointima formation in rat carotid arteries was associated with a significant upregulation of RanGAP1 expression at 3 and 7 days after balloon injury. Of note, neointimal cells located at the luminal surface revealed persistent RanGAP1 expression, as opposed to cells in deeper layers of the neointima where RanGAP1 expression was less or not detectable at all. To gain first evidence for a direct influence of RanGAP1 levels on differentiation, we reduced RanGAP1 in human coronary artery smooth muscle cells by siRNA. Indeed, downregulation of the essential RanGAP1 protein by 50% induced a differentiated, spindle-like smooth muscle cell phenotype, accompanied by an upregulation of the differentiation marker desmin. Reduction of RanGAP1 levels also resulted in a reduction of mitogen induced cellular migration and proliferation as well as a significant upregulation of the cyclin-dependent kinase inhibitor p27KIP1, without evidence for cellular necrosis. These findings suggest that RanGAP1 plays a critical role in smooth muscle cell differentiation, migration and proliferation in vitro and in vivo. Appropriate modulation of RanGAP1 expression may thus be a strategy to modulate VPD development such as restenosis.  相似文献   

11.

Background

The dystrophin gene, which is mutated in Duchenne muscular dystrophy (DMD), encodes a large cytoskeletal protein present in muscle fibers. While dystrophin in skeletal muscle has been extensively studied, the function of dystrophin in vascular smooth muscle is less clear. Here, we have analyzed the role of dystrophin in injury-induced arterial neointima formation.

Methodology/Principal Findings

We detected a down-regulation of dystrophin, dystroglycan and β-sarcoglycan mRNA expression when vascular smooth muscle cells de-differentiate in vitro. To further mimic development of intimal lesions, we performed a collar-induced injury of the carotid artery in the mdx mouse, a model for DMD. As compared with control mice, mdx mice develop larger lesions with increased numbers of proliferating cells. In vitro experiments demonstrate increased migration of vascular smooth muscle cells from mdx mice whereas the rate of proliferation was similar in cells isolated from wild-type and mdx mice.

Conclusions/Significance

These results show that dystrophin deficiency stimulates neointima formation and suggest that expression of dystrophin in vascular smooth muscle cells may protect the artery wall against injury-induced intimal thickening.  相似文献   

12.
Gut-dwelling helminthes induce potent IL-4 and IL-13 dominated type 2 T helper cell (TH2) immune responses, with IL-13 production being essential for Nippostrongylus brasiliensis expulsion. This TH2 response results in intestinal inflammation associated with local infiltration by T cells and macrophages. The resulting increased IL-4/IL-13 intestinal milieu drives goblet cell hyperplasia, alternative macrophage activation and smooth muscle cell hypercontraction. In this study we investigated how IL-4-promoted T cells contributed to the parasite induced effects in the intestine. This was achieved using pan T cell-specific IL-4 receptor alpha-deficient mice (iLckcreIL-4Rα−/lox) and IL-4Rα-responsive control mice. Global IL-4Rα−/− mice showed, as expected, impaired type 2 immunity to N. brasiliensis. Infected T cell-specific IL-4Rα-deficient mice showed comparable worm expulsion, goblet cell hyperplasia and IgE responses to control mice. However, impaired IL-4-promoted TH2 cells in T cell-specific IL-4Rα deficient mice led to strikingly reduced IL-4 production by mesenteric lymph node CD4+ T cells and reduced intestinal IL-4 and IL-13 levels, compared to control mice. This reduced IL-4/IL-13 response was associated with an impaired IL-4/IL-13-mediated smooth muscle cell hypercontractility, similar to that seen in global IL-4Rα−/− mice. These results demonstrate that IL-4-promoted T cell responses are not required for the resolution of a primary N. brasiliensis infection. However, they do contribute significantly to an important physiological manifestation of helminth infection; namely intestinal smooth muscle cell-driven hypercontractility.  相似文献   

13.
14.
1. The region of most active mitosis per mm. of cross-section in the intestine is the entodermal epithelial tube. The mitotic figures primarily follow the path of a right-handed helix. In one of the twenty embryos the mitotic figures describe the path of a right-handed helix. 2. The region of least active or relatively passive growth per mm. of cross-section is the mesenchyme, derived from the splanchnic mesoderm surrounding the epithelial tube. 3. The rapid expansion, due to epithelial growth in a rotating spiral manner, of the intestinal lumen is greater than the activity manifest in the surrounding mesenchyme. This causes a pressure in the latter resulting in a flattening and elongation of the mesenchymal cells. The successive changes in shape of these cells through the spherical, ellipsoidal, and spindle cellular phases are seen. The mesenchymal wall decreases in thickness, due to tension caused by epithelial tubular dilation. 4. The rotating spiral growth of the epithelial cells causes the formation of a series of mesenchymal cellular and fibrillar concentric rings due to the centripetal force of the former. 5. The circular, smooth muscle cells are differentiated in the outer, more condensed margins of the ring. At these points the developing tensional stresses are greater than within the ring. 6. The inner circular smooth muscle coat is the first one differentiated and is incident to the rapid growth of the epithelial tube in diameter. The former soon tends to restrict the growth of the epithelial tube in diameter. The tube, pursuing the lines of least resistance, grows in length. During the period of rapid growth in length the outer longitudinal muscle coat is in the process of formation. 7. The tensional stresses to which the elongated strained mesenchymal cells are subjected appear to be a dynamic stimulus to smooth muscle differentiation. 8. From this study of a closely graded and progressive series of sections of intestinal development, the conclusion is drawn that muscle tissue is not self-differentiating, in the strict sense of the term, but that the tension of differential growth acts as the stimulus to smooth muscle differentiation.  相似文献   

15.
Mechanisms responsible for excellent marbling in Japanese black cattle, Wagyu, remain to be established. Because both muscle cells and intramuscular adipocytes are developed from mesenchymal progenitor cells during early muscle development, we hypothesized that intramuscular progenitor cells in Wagyu cattle have attenuated myogenic capacity in favor of adipogenesis, leading to high marbling but reduced muscle growth. Biceps femoris muscle biopsy samples were obtained from both Angus (n=3) and Wagyu (n=3) cattle at 12 months of age. Compared with Angus, the density of satellite cells was much lower in Wagyu muscle (by 45.8±10%, P<0.05). Consistently, the formation of myotubes from muscle-derived progenitor cells was also lower (by 64.2±12.9%, P<0.05), but adipogenic capacity was greater in Wagyu. The average muscle fiber diameter was larger in Wagyu (by 23.9±6.8%, P=0.089) despite less muscle mass, suggesting less muscle fiber formation in Wagyu compared with Angus cattle. Because satellite cells are derived from fetal myogenic cells, the reduction in satellite cell density together with lower muscle fiber formation suggests that myogenesis was attenuated during early muscle development in Wagyu cattle. Given the shared pool of mesenchymal progenitor cells, the attenuated myogenesis likely shifts progenitor cells to adipogenesis during early development, which may contribute to high intramuscular adipocyte formation in Wagyu cattle.  相似文献   

16.
Mesenchymal cells transdifferentiation and extracellular matrix deposition are involved in the fibrotic process of Crohn’s disease (CD). Mesenchymal smooth muscle cells (SMCs) de-differentiation, driven by Platelet-derived growth factor (PDGF) that counteracts Transforming growth factor (TGF-β) has been studied in vascular muscle. The role of SMCs in intestinal fibrogenesis is still not clearly elucidated. Aim of the study was to evaluate the possible myogenic contribution to CD fibrotic process through the comparative analysis of histological, morphometric and molecular alterations occurring in human smooth muscle. Full thickness specimens were obtained from CD (non-involved and stenotic tracts) and healthy (control) ileum. Tissues were processed for histological and immunohistochemical (IHC) analyses and SMCs were isolated from the muscularis propria for morphofunctional and molecular (qPCR) analyses. CD stenotic ileum showed a significant increased thickness of all layers compared to CD non-involved and control ileum. IHC revealed an overexpression of α-smooth muscle actin and collagens I-III throughout all intestinal layers only in stenotic tracts. The two growth factors, PDGF and TGF-β, showed a progressive increase in expression in the muscle layer from CD non-involved to stenotic tracts. Freshly isolated SMCs presented alterations in CD non-involved tracts that progressively increased in the stenotic tracts consisting in a statistical increase in mRNA encoding for PDGF-β and collagen III, paralleled to a decrease in TGF-β and Tribbles-like protein-3 mRNA, and altered morphofunctional parameters consisting in progressive decreases in cell length and contraction to acetylcholine. These findings indicate that intrinsic myogenic alterations occur in CD ileum, that they likely precede stricture formation, and might represent suitable new targets for anti-fibrotic interventions.Key words: Fibrosis, Crohn’s disease, ileal smooth muscle cells, stricture formation, PDGF, TGF-β  相似文献   

17.
Amphibian metamorphosis is accompanied by extensive intestinal remodeling. This process, mediated by thyroid hormone (TH) and its nuclear receptors, affects every cell type. Gut remodeling in Xenopus laevis involves epithelial and mesenchymal proliferation, smooth muscle thickening, neuronal aggregation, formation of intestinal folds, and shortening of its length by 75%. Transgenic tadpoles expressing a dominant negative TH receptor (TRDN) controlled by epithelial-, fibroblast-, and muscle-specific gene promoters were studied. TRDN expression in the epithelium caused abnormal development of virtually all cell types, with froglet guts displaying reduced intestinal folds, thin muscle and mesenchyme, absence of neurons, and reduced cell proliferation. TRDN expression in fibroblasts caused abnormal epithelia and mesenchyme development, and expression in muscle produced fewer enteric neurons and a reduced inter-muscular space. Gut shortening was inhibited only when TRDN was expressed in fibroblasts. Gut remodeling results from both cell-autonomous and cell-cell interactions.  相似文献   

18.
It has been proposed that the urokinase receptor (u-PAR) is essential for the various biological roles of urokinase-type plasminogen activator (u-PA) in vivo, and that smooth muscle cells require u-PA for migration during arterial neointima formation. The present study was undertaken to evaluate the role of u-PAR during this process in mice with targeted disruption of the u-PAR gene (u-PAR−/−). Surprisingly, u-PAR deficiency did not affect arterial neointima formation, neointimal cell accumulation, or migration of smooth muscle cells. Indeed, topographic analysis of arterial wound healing after electric injury revealed that u-PAR−/− smooth muscle cells, originating from the uninjured borders, migrated over a similar distance and at a similar rate into the necrotic center of the wound as wild-type (u-PAR+/+) smooth muscle cells. In addition, u-PAR deficiency did not impair migration of wounded cultured smooth muscle cells in vitro. There were no genotypic differences in reendothelialization of the vascular wound. The minimal role of u-PAR in smooth muscle cell migration was not because of absent expression, since wild-type smooth muscle cells expressed u-PAR mRNA and functional receptor in vitro and in vivo. Pericellular plasmin proteolysis, evaluated by degradation of 125I-labeled fibrin and activation of zymogen matrix metalloproteinases, was similar for u-PAR−/− and u-PAR+/+ cells. Immunoelectron microscopy of injured arteries in vivo revealed that u-PA was bound on the cell surface of u-PAR+/+ cells, whereas it was present in the pericellular space around u-PAR−/− cells. Taken together, these results suggest that binding of u-PA to u-PAR is not required to provide sufficient pericellular u-PA–mediated plasmin proteolysis to allow cellular migration into a vascular wound.  相似文献   

19.
Abstract. Cytodifferentiation of smooth muscle cells has been analyzed immunocytochemically during rat intestinal development and in chimaeric intestines by using monoclonal antibodies reacting specifically with smooth muscle actin species ( CGA7 [10] and anti-α SM-1 [40]). As development proceeds, the various intestinal muscle layers differentiate in the following order: (1) cells expressing smooth muscle actin appear within the mesenchyme of the 15-day fetal rat intestine, in the circular muscle-forming area, the differentiation of cells in the presumptive longitudinal muscle layer starting with a 48-h delay; (2) smooth muscle fibers appear within the connective tissue core of the villi shortly after birth, in parallel with a progressive formation of the muscularis mucosae, which becomes clear-cut only in the course of the 2nd week after birth; (3) a distinct cell layer in the innermost part of the circular muscle layer arises during the perinatal period. Thereafter, the fluorescence pattern remains unchanged until the adult stage. Chimaeric intestines were constructed by the association of 14-day fetal intestinal epithelium and cultured fetal rat or human skin fibroblasts. These fibroblastic cells did not express actin at the time at which they were associated. The immunocytochemical analysis of smooth muscle actin in the hybrid intestines, which had developed as intracoelomic grafts for 12 days, revealed that the skin fibroblastic cells had been induced by the intestinal epithelial cells to differentiate into smooth muscle cells. Such a result was also obtained with allantoic endoderm. It was not obvious in cocultures of intestinal epithelium with skin fibroblastic cells. However, when intestinal epithelial cells were cocultured with intestinal mesenchymal cells, actin expression was stimulated in the latter cell population.  相似文献   

20.
Gut mesodermal tissues originate from the splanchnopleural mesenchyme. However, the embryonic gastrointestinal coelomic epithelium gives rise to mesenchymal cells, whose significance and fate are little known. Our aim was to investigate the contribution of coelomic epithelium-derived cells to the intestinal development. We have used the transgenic mouse model mWt1/IRES/GFP-Cre (Wt1cre) crossed with the Rosa26R-EYFP reporter mouse. In the gastrointestinal duct Wt1, the Wilms’ tumor suppressor gene, is specific and dynamically expressed in the coelomic epithelium. In the embryos obtained from the crossbreeding, the Wt1-expressing cell lineage produces the yellow fluorescent protein (YFP) allowing for colocalization with differentiation markers through confocal microscopy and flow cytometry. Wt1cre-YFP cells were very abundant throughout the intestine during midgestation, declining in neonates. Wt1cre-YFP cells were also transiently observed within the mucosa, being apparently released into the intestinal lumen. YFP was detected in cells contributing to intestinal vascularization (endothelium, pericytes and smooth muscle), visceral musculature (circular, longitudinal and submucosal) as well as in Cajal and Cajal-like interstitial cells. Wt1cre-YFP mesenchymal cells expressed FGF9, a critical growth factor for intestinal development, as well as PDGFRα, mainly within developing villi. Thus, a cell population derived from the coelomic epithelium incorporates to the gut mesenchyme and contribute to a variety of intestinal tissues, probably playing also a signaling role. Our results support the origin of interstitial cells of Cajal and visceral circular muscle from a common progenitor expressing anoctamin-1 and SMCα-actin. Coelomic-derived cells contribute to the differentiation of at least a part of the interstitial cells of Cajal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号