首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Outlier detection methods were used to scan the genome of the boreal conifer black spruce (Picea mariana [Mill.] B.S.P.) for gene single-nucleotide polymorphisms (SNPs) potentially involved in adaptations to temperature and precipitation variations. The scan involved 583 SNPs from 313 genes potentially playing adaptive roles. Differentiation estimates among population groups defined following variation in temperature and precipitation were moderately high for adaptive quantitative characters such as the timing of budset or tree height (Q(ST) = 0.189-0.314). Average differentiation estimates for gene SNPs were null, with F(ST) values of 0.005 and 0.006, respectively, among temperature and precipitation population groups. Using two detection approaches, a total of 26 SNPs from 25 genes distributed among 11 of the 12 linkage groups of black spruce were detected as outliers with F(ST) as high as 0.078. Nearly half of the outlier SNPs were located in exons and half of those were nonsynonymous. The functional annotations of genes carrying outlier SNPs and regression analyses between the frequencies of these SNPs and climatic variables supported their implication in adaptive processes. Several genes carrying outlier SNPs belonged to gene families previously found to harbour outlier SNPs in a reproductively isolated but largely sympatric congeneric species, suggesting differential subfunctionalization of gene duplicates. Selection coefficient estimates (S) were moderate but well above the magnitude of drift (>1/N(e)), indicating that the signature of natural selection could be detected at the nucleotide level despite the recent establishment of these populations during the Holocene.  相似文献   

2.
Collin H  Fumagalli L 《Molecular ecology》2011,20(21):4490-4502
Natural selection drives local adaptation, potentially even at small temporal and spatial scales. As a result, adaptive genetic and phenotypic divergence can occur among populations living in different habitats. We investigated patterns of differentiation between contrasting lake and stream habitats in the cyprinid fish European minnow (Phoxinus phoxinus) at both the morphological and genomic levels using geometric morphometrics and AFLP markers, respectively. We also used a spatial correlative approach to identify AFLP loci associated with environmental variables representing potential selective forces responsible for adaptation to divergent habitats. Our results identified different morphologies between lakes and streams, with lake fish presenting a deeper body and caudal peduncle compared to stream fish. Body shape variation conformed to a priori predictions concerning biomechanics and swimming performance in lakes vs. streams. Moreover, morphological differentiation was found to be associated with several environmental variables, which could impose selection on body and caudal peduncle shape. We found adaptive genetic divergence between these contrasting habitats in the form of 'outlier' loci (2.9%) whose genetic divergence exceeded neutral expectations. We also detected additional loci (6.6%) not associated with habitat type (lake vs. stream), but contributing to genetic divergence between populations. Specific environmental variables related to trophic dynamics, landscape topography and geography were associated with several neutral and outlier loci. These results provide new insights into the morphological divergence and genetic basis of adaptation to differentiated habitats.  相似文献   

3.
Local adaptation to contrasting biotic or abiotic environments is an important evolutionary step that presumably precedes floral diversification at the species level, yet few studies have demonstrated the adaptive nature of intraspecific floral divergence in wild plant populations. We combine a population‐genomic approach with phenotypic information on floral traits to examine whether the differentiation in metric floral traits exhibited by 14 populations of the southern Spanish hawk moth‐pollinated violet Viola cazorlensis reflects adaptive divergence. Screening of many amplified fragment length polymorphism (AFLP) loci using a multiple‐marker‐based neutrality test identified nine outlier loci (2.6% of the total) that departed from neutral expectations and were potentially under selection. Generalized analysis of molecular variance revealed significant relationships between genetic distance and population divergence in three floral traits when genetic distance was based on outlier loci, but not when it was based on neutral ones. Population means of floral traits were closely correlated with population scores on the first principal coordinate axis of the genetic distance matrix using outlier loci, and with the allelic frequencies of four of the outlier loci. Results strongly support the adaptive nature of intraspecific floral divergence exhibited by V. cazorlensis and illustrate the potential of genome scans to identify instances of adaptive divergence when used in combination with phenotypic information.  相似文献   

4.
Identification of loci with adaptive importance is a key step to understand the speciation process in natural populations, because those loci are responsible for phenotypic variation that affects fitness in different environments. We conducted an AFLP genome scan in populations of ocellated lizards (Lacerta lepida) to search for candidate loci influenced by selection along an environmental gradient in the Iberian Peninsula. This gradient is strongly influenced by climatic variables, and two subspecies can be recognized at the opposite extremes: L. lepida iberica in the northwest and L. lepida nevadensis in the southeast. Both subspecies show substantial morphological differences that may be involved in their local adaptation to the climatic extremes. To investigate how the use of a particular outlier detection method can influence the results, a frequentist method, DFDIST, and a Bayesian method, BayeScan, were used to search for outliers influenced by selection. Additionally, the spatial analysis method was used to test for associations of AFLP marker band frequencies with 54 climatic variables by logistic regression. Results obtained with each method highlight differences in their sensitivity. DFDIST and BayeScan detected a similar proportion of outliers (3–4%), but only a few loci were simultaneously detected by both methods. Several loci detected as outliers were also associated with temperature, insolation or precipitation according to spatial analysis method. These results are in accordance with reported data in the literature about morphological and life‐history variation of L. lepida subspecies along the environmental gradient.  相似文献   

5.
Local adaptation is often obvious when gene flow is impeded, such as observed at large spatial scales and across strong ecological contrasts. However, it becomes less certain at small scales such as between adjacent populations or across weak ecological contrasts, when gene flow is strong. While studies on genomic adaptation tend to focus on the former, less is known about the genomic targets of natural selection in the latter situation. In this study, we investigate genomic adaptation in populations of the three‐spined stickleback Gasterosteus aculeatus L. across a small‐scale ecological transition with salinities ranging from brackish to fresh. Adaptation to salinity has been repeatedly demonstrated in this species. A genome scan based on 87 microsatellite markers revealed only few signatures of selection, likely owing to the constraints that homogenizing gene flow puts on adaptive divergence. However, the detected loci appear repeatedly as targets of selection in similar studies of genomic adaptation in the three‐spined stickleback. We conclude that the signature of genomic selection in the face of strong gene flow is weak, yet detectable. We argue that the range of studies of genomic divergence should be extended to include more systems characterized by limited geographical and ecological isolation, which is often a realistic setting in nature.  相似文献   

6.
7.
Natural selection can play an important role in the maintenance of genetic polymorphisms, despite ongoing gene flow. In the present study, we use previously analysed allozymic loci and perform an F ST outlier-based analysis to detect the signatures of divergent selection between sympatric ecotypes of the marine snail Littorina saxatilis at different localities. The results obtained show that different allozyme polymorphisms are affected (directly or indirectly) by selection at distinct geographical regions. The Phosmogluco mutase-2 locus was the best candidate for adaptation and further biochemical analyses were performed. The kinetic properties of the three more common genotypes of Pgm-2 were studied. The results obtained are concordant with two alternative hypotheses: (1) natural selection is acting directly on this locus or, more probably, (2) selection is affecting a genomic region tightly linked to the enzyme locus. In both cases, the known existence of a parallel and partially independent origin of these ecotypes would explain why different candidate loci were detected in different localities.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 225–233.  相似文献   

8.
Sex‐biased dispersal is expected to homogenize nuclear genetic variation relative to variation in genetic material inherited through the philopatric sex. When site fidelity occurs across a heterogeneous environment, local selective regimes may alter this pattern. We assessed spatial patterns of variation in nuclear‐encoded, single nucleotide polymorphisms (SNPs) and sequences of the mitochondrial control region in bonnethead sharks (Sphyrna tiburo), a species thought to exhibit female philopatry, collected from summer habitats used for gestation. Geographic patterns of mtDNA haplotypes and putatively neutral SNPs confirmed female philopatry and male‐mediated gene flow along the northeastern coast of the Gulf of Mexico. A total of 30 outlier SNP loci were identified; alleles at over half of these loci exhibited signatures of latitude‐associated selection. Our results indicate that in species with sex‐biased dispersal, philopatry can facilitate sorting of locally adaptive variation, with the dispersing sex facilitating movement of potentially adaptive variation among locations and environments.  相似文献   

9.
The adaptive landscape provides the foundational bridge between micro‐ and macroevolution. One well‐known caveat to this perspective is that fitness surfaces depend on ecological context, including competitor frequency, traits measured, and resource abundance. However, this view is based largely on intraspecific studies. It is still unknown how context‐dependence affects the larger features of peaks and valleys on the landscape which ultimately drive speciation and adaptive radiation. Here, I explore this question using one of the most complex fitness landscapes measured in the wild in a sympatric pupfish radiation endemic to San Salvador Island, Bahamas by tracking survival and growth of laboratory‐reared F2 hybrids. I present new analyses of the effects of competitor frequency, dietary isotopes, and trait subsets on this fitness landscape. Contrary to expectations, decreasing competitor frequency increased survival only among very common phenotypes, whereas less common phenotypes rarely survived despite few competitors, suggesting that performance, not competitor frequency, shapes large‐scale features of the fitness landscape. Dietary isotopes were weakly correlated with phenotype and growth, but did not explain additional survival variation. Nonlinear fitness surfaces varied substantially among trait subsets, revealing one‐, two‐, and three‐peak landscapes, demonstrating the complexity of selection in the wild, even among similar functional traits.  相似文献   

10.
11.
Local adaptation is considered a paradigm in studies of salmonid fish populations. Yet, little is known about the geographical scale of local adaptation. Is adaptive divergence primarily evident at the scale of regions or individual populations? Also, many salmonid populations are subject to spawning intrusion by farmed conspecifics that experience selection regimes fundamentally different from wild populations. This prompts the question if adaptive differences between wild populations and hatchery strains are more pronounced than between different wild populations? We addressed these issues by analyzing variation at 74 microsatellite loci (including anonymous and expressed sequence tag- and quantitative trait locus-linked markers) in 15 anadromous wild brown trout (Salmo trutta L.) populations, representing five geographical regions, along with two lake populations and two hatchery strains used for stocking some of the populations. FST-based outlier tests revealed more outlier loci between different geographical regions separated by 522±228 km (mean±s.d.) than between populations within regions separated by 117±79 km (mean±s.d.). A significant association between geographical distance and number of outliers between regions was evident. There was no evidence for more outliers in comparisons involving hatchery trout, but the loci under putative selection generally were not the same as those found to be outliers between wild populations. Our study supports the notion of local adaption being increasingly important at the scale of regions as compared with individual populations, and suggests that loci involved in adaptation to captive environments are not necessarily the same as those involved in adaptive divergence among wild populations.  相似文献   

12.
13.
The possibility of intrinsic barriers to gene flow is often neglected in empirical research on local adaptation and speciation with gene flow, for example when interpreting patterns observed in genome scans. However, we draw attention to the fact that, even with gene flow, divergent ecological selection may generate intrinsic barriers involving both ecologically selected and other interacting loci. Mechanistically, the link between the two types of barriers may be generated by genes that have multiple functions (i.e., pleiotropy), and/or by gene interaction networks. Because most genes function in complex networks, and their evolution is not independent of other genes, changes evolving in response to ecological selection can generate intrinsic barriers as a by‐product. A crucial question is to what extent such by‐product barriers contribute to divergence and speciation—that is whether they stably reduce gene flow. We discuss under which conditions by‐product barriers may increase isolation. However, we also highlight that, depending on the conditions (e.g., the amount of gene flow and the strength of selection acting on the intrinsic vs. the ecological barrier component), the intrinsic incompatibility may actually destabilize barriers to gene flow. In practice, intrinsic barriers generated as a by‐product of divergent ecological selection may generate peaks in genome scans that cannot easily be interpreted. We argue that empirical studies on divergence with gene flow should consider the possibility of both ecological and intrinsic barriers. Future progress will likely come from work combining population genomic studies, experiments quantifying fitness and molecular studies on protein function and interactions.  相似文献   

14.
Changes in gene expression patterns can reflect the adaptation of organisms to divergent environments. Quantitative real‐time PCR (qRT‐PCR) is an important tool for ecological adaptation studies at the gene expression level. The quality of the results of qRT‐PCR analysis largely depends on the availability of reliable reference genes (RGs). To date, reliable RGs have not been determined for adaptive evolution studies in insects using a standard approach. Here, we evaluated the reliability of 17 candidate RGs for five Gynaephora populations inhabiting various altitudes of the Tibetan Plateau (TP) using four independent (geNorm, NormFinder, BestKeeper, and the deltaCt method) and one comprehensive (RefFinder) algorithms. Our results showed that EF1‐α, RPS15, and RPS13 were the top three most suitable RGs, and a combination of these three RGs was the most optimal for normalization. Conversely, RPS2, ACT, and RPL27 were the most unstable RGs. The expression profiles of two target genes (HSP70 and HSP90) were used to confirm the reliability of the chosen RGs. Additionally, the expression patterns of four other genes (GPI, HIF1A, HSP20, and USP) associated with adaptation to extreme environments were assessed to explore the adaptive mechanisms of TP Gynaephora species to divergent environments. Each of these six target genes showed discrepant expression patterns among the five populations, suggesting that the observed expression differences may be associated with the local adaptation of Gynaephora to divergent altitudinal environments. This study is a useful resource for studying the adaptive evolution of TP Gynaephora to divergent environments using qRT‐PCR, and it also acts as a guide for selecting suitable RGs for ecological and evolutionary studies in insects.  相似文献   

15.
16.
Adaptation to changing environmental conditions represents a challenge to parthenogenetic organisms, and until now, how phenotypic variants are generated in clones in response to the selection pressure of their environment remains poorly known. The obligatory parthenogenetic root‐knot nematode species Meloidogyne incognita has a worldwide distribution and is the most devastating plant‐parasitic nematode. Despite its asexual reproduction, this species exhibits an unexpected capacity of adaptation to environmental constraints, for example, resistant hosts. Here, we used a genomewide comparative hybridization strategy to evaluate variations in gene copy numbers between genotypes of M. incognita resulting from two parallel experimental evolution assays on a susceptible vs. resistant host plant. We detected gene copy number variations (CNVs) associated with the ability of the nematodes to overcome resistance of the host plant, and this genetic variation may reflect an adaptive response to host resistance in this parthenogenetic species. The CNV distribution throughout the nematode genome is not random and suggests the occurrence of genomic regions more prone to undergo duplications and losses in response to the selection pressure of the host resistance. Furthermore, our analysis revealed an outstanding level of gene loss events in nematode genotypes that have overcome the resistance. Overall, our results support the view that gene loss could be a common class of adaptive genetic mechanism in response to a challenging new biotic environment in clonal animals.  相似文献   

17.
Hendry  Andrew P. 《Genetica》2001,(1):515-534
Populations exposed to different ecological environments should diverge for phenotypic traits that influence survival and reproduction. This adaptive divergence should reduce gene flow between populations because immigrants become less fit than residents and because hybrids perform poorly in either environment (i.e., ecologically-dependent reproductive isolation). Here I demonstrate adaptive divergence and the evolution of reproductive isolation in populations of sockeye salmon (Oncorhynchus nerka) introduced from a common ancestral source into a new lake system (Lake Washington, Washington). The introduced fish founded several new populations, two of which experience very different environments during breeding and early development (Cedar River v.s. Pleasure Point beach). Over 13 generations, the two populations diverged for adult traits (female body size, male body depth; measured in the wild) and embryo traits (survival to hatching, development rate, size at emergence; measured in a common environment). The rates of divergence for these characters were similar to those observed in other examples of rapid evolution, and can best be attributed to natural selection. Partial reproductive isolation has evolved in concert with adaptive divergence: the rate of exchange of adults between the populations (determined using natural tags) is higher than the rate of gene flow (determined using DNA microsatellites). The demonstration that adaptive divergence can initiate reproductive isolation in less than 13 generations suggests that the first signs of ecological speciation may appear soon after new environments are first colonized.  相似文献   

18.
Historical population bottlenecks and natural selection have important effects on the current genetic diversity and structure of long‐lived trees. Dracaena cambodiana is an endangered, long‐lived tree endemic to Hainan Island, China. Our field investigations showed that only 10 populations remain on Hainan Island and that almost all have been seriously isolated and grow in distinct habitats. A considerable amount of genetic variation at the species level, but little variation at the population level, and a high level of genetic differentiation among the populations with limited gene flow in D. cambodiana were detected using inter‐simple sequence repeat (ISSR) and random amplified polymorphic DNA (RAPD) analyses. No significant correlation was found between genetic diversity and actual population size, as the genetic diversities were similar regardless of population size. The Mantel test revealed that there was no correlation between genetic and geographic distances among the 10 populations. The UPGMA, PCoA and Bayesian analyses showed that local adaptive divergence has occurred among the D. cambodiana populations, which was further supported by habitat‐private fragments. We suggest that the current genetic diversity and population differentiation of D. cambodiana resulted from historical population bottlenecks and natural selection followed by historical isolation. However, the lack of natural regeneration of D. cambodiana indicates that former local adaptations with low genetic diversity may have been genetically weak and are unable to adapt to the current ecological environments.  相似文献   

19.
Although differential selective pressures on males and females of the same species may result in sex‐specific evolutionary trajectories, comparative studies of adaptive radiations have largely neglected within‐species variation. In this study, we explore the potential effects of natural selection, sexual selection, or a combination of both, on bite performance in males and females of 19 species of Liolaemus lizards. More specifically, we study the evolution of bite performance, and compare evolutionary relationships between the variation in head morphology, bite performance, ecological variation and sexual dimorphism between males and females. Our results suggest that in male Liolaemus, the variation in bite force is at least partly explained by the variation in the degree of sexual dimorphism in head width (i.e. our estimate of the intensity of sexual selection), and neither bite force nor the morphological variables were correlated with diet (i.e. our proxy for natural selection). On the contrary, in females, the variation in bite force and head size can, to a certain extent, be explained by variation in diet. These results suggest that whereas in males, sexual selection seems to be operating on bite performance, in the case of females, natural selection seems to be the most likely and most important selective pressure driving the variation in head size. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 461–475.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号