首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The deep sea has a high biodiversity and a characteristic bathyal fauna. Earlier evidence suggested that at least some shallow‐water species invaded the ecosystem followed by radiation leading to endemic deep‐sea lineages with a genetic and/or morphological similarity to their shallow‐water counterparts. The nematode Halomonhystera disjuncta has been reported from shallow‐water habitats and the deep sea [Håkon Mosby mud volcano (HMMV)], but the morphological features and the phylogenetic relationships between deep‐sea and shallow‐water representatives remain largely unknown. Furthermore, nothing is known about the genetic structure of the H. disjuncta population within the HMMV. This study is the first integrative approach in which the morphological and phylogenetic relationships between a deep‐sea and shallow‐water free‐living nematode species are investigated. To elucidate the phylogenetic relationships, we analysed the mitochondrial gene Cytochrome oxidase c subunit I (COI) and three nuclear ribosomal genes (Internal Transcribed Spacer region, 18S and the D2D3 region of 28S). Our results show that deep‐sea nematodes comprise an endemic lineage compared to the shallow‐water representatives with different morphometric features. COI genetic divergence between the deep‐sea and shallow‐water specimens ranges between 19.1% and 25.2%. Taking these findings into account, we conclude that the deep‐sea form is a new species. amova revealed no genetic structure across the HMMV, suggesting that nematodes are able to disperse efficiently in the mud volcano.  相似文献   

2.
The globally distributed avian family Motacillidae consists of five to seven genera (Anthus, Dendronanthus, Tmetothylacus, Macronyx and Motacilla, and depending on the taxonomy followed, Amaurocichla and Madanga) and 66–68 recognized species, of which 32 species in four genera occur in sub‐Saharan Africa. The taxonomy of the Motacillidae has been contentious, with variable numbers of genera, species and subspecies proposed and some studies suggesting greater taxonomic diversity than currently recognized (five genera and 67 species). Using one nuclear (Mb) and two mitochondrial (cyt b and CO1) gene regions amplified from DNA extracted from contemporary and museum specimens, we investigated the taxonomic status of 56 of the currently recognized motacillid species and present the most taxonomically complete and expanded phylogeny of this family to date. Our results suggest that the family comprises six clades broadly reflecting continental distributions: sub‐Saharan Africa (two clades), the New World (one clade), Palaearctic (one clade), a widespread large‐bodied Anthus clade, and a sixth widespread genus, Motacilla. Within the Afrotropical region, our phylogeny further supports recognition of Wood Pipit Anthus nyassae as a valid species, and the treatment of Long‐tailed Pipit Anthus longicaudatus and Kimberley Pipit Anthus pseudosimilis as junior subjective synonyms of Buffy Pipit Anthus vaalensis and African Pipit Anthus cinnamomeus, respectively. As the disjunct populations of Long‐billed Pipit Anthus similis in southern and East Africa are genetically distinct and geographically separated, we propose a specific status for the southern African population under the earliest available name, Nicholson's Pipit Anthus nicholsoni. Further, as our analyses indicate that Yellow‐breasted Pipit Anthus chloris and Golden Pipit Tmetothylacus tenellus are both nested within the Macronyx longclaws, we propose transferring these species to the latter genus.  相似文献   

3.
In this study, the complete mitochondrial (mt) genome sequence of the South China deep‐sea giant isopod Bathynomus sp. was determined, and this study is the first to explore in detail the mt genome of a deep‐sea member of the order Isopoda. This species belongs to the genus Bathynomus, the members of which are saprophagous residents of the deep‐sea benthic environment; based on their large size, Bathynomus is included in the “supergiant group” of isopods. The mt genome of Bathynomus sp. is 14,965 bp in length and consists of 13 protein‐coding genes, two ribosomal RNA genes, only 18 transfer RNA genes, and a noncoding control region 362 bp in length, which is the smallest control region discovered in Isopoda to date. Although the overall genome organization is typical for metazoans, the mt genome of Bathynomus sp. shows a number of derived characters, such as an inversion of 10 genes when compared to the pancrustacean ground pattern. Rearrangements in some genes (e.g., cob, trnT, nad5, and trnF) are shared by nearly all isopod mt genomes analyzed thus far, and when compared to the putative isopod ground pattern, five rearrangements were found in Bathynomus sp. Two tRNAs exhibit modified secondary structures: The TΨC arm is absent from trnQ, and trnC lacks the DHU. Within the class Malacostraca, trnC arm loss is only found in other isopods. Phylogenetic analysis revealed that Bathynomus sp. (Cymothoida) and Sphaeroma serratum (Sphaeromatidea) form a single clade, although it is unclear whether Cymothoida is monophyletic or paraphyletic. Moreover, the evolutionary rate of Bathynomus sp. (dN/dS [nonsynonymous mutational rate/synonymous mutational rate] = 0.0705) is the slowest measured to date among Cymothoida, which may be associated with its relatively constant deep‐sea environment. Overall, our results may provide useful information for understanding the evolution of deep‐sea Isopoda species.  相似文献   

4.
Biological invasions are regarded as threats to global biodiversity. Among invasive aliens, a number of plant species belonging to the genera Myriophyllum, Ludwigia and Cabomba, and to the Hydrocharitaceae family pose a particular ecological threat to water bodies. Therefore, one would try to prevent them from entering a country. However, many related species are commercially traded, and distinguishing invasive from non‐invasive species based on morphology alone is often difficult for plants in a vegetative stage. In this regard, DNA barcoding could become a good alternative. In this study, 242 samples belonging to 26 species from 10 genera of aquatic plants were assessed using the chloroplast loci trnHpsbA, matK and rbcL. Despite testing a large number of primer sets and several PCR protocols, the matK locus could not be amplified or sequenced reliably and therefore was left out of the analysis. Using the other two loci, eight invasive species could be distinguished from their respective related species, a ninth one failed to produce sequences of sufficient quality. Based on the criteria of universal application, high sequence divergence and level of species discrimination, the trnH‐psbA noncoding spacer was the best performing barcode in the aquatic plant species studied. Thus, DNA barcoding may be helpful with enforcing a ban on trade of such invasive species, such as is already in place in the Netherlands. This will become even more so once DNA barcoding would be turned into machinery routinely operable by a nonspecialist in botany and molecular genetics.  相似文献   

5.
Terrestrial hermit crabs in the family Coenobitidae (genera Coenobita and Birgus) must migrate onto land after completing a pelagic larval stage in the ocean. Better knowledge of emigration behavior would assist in the conservation and management of coenobitid populations by helping identify and protect the habitats they need to complete their life cycles. We cultured laboratory‐born individuals of five coenobitid species (Coenobita cavipes, C. purpureus, C. rugosus, C. violascens, and Birgus latro) from megalopae to early juveniles (first, second, and/or third crabs) in vessels containing seawater and a hard substrate, and analyzed their behavior and molting in conjunction with our published data for C. brevimanus. Our results confirm that the coenobitids migrated from sea to land at the megalopal stage. Megalopae and early juveniles tended to select shells based on their body size. Inland‐dwelling coenobitids, such as C. brevimanus, C. cavipes, and B. latro, had a longer duration from landing to first molt and had a prolonged first crab intermolt period compared with those of the beach‐dwelling coenobitids C. purpureus, C. rugosus, and C. violascens, probably because of the adaptive traits for migrating to inland habitats. Little burrowing behavior was observed by megalopae of B. latro, but they had a strong tendency to be cryptic under shelters. Additionally, megalopae and early juveniles of Coenobita spp. created and utilized burrows somewhat differently. Our results suggest that coenobitids require specific microhabitats for completing their early life stages in the wild. In particular, megalopae of B. latro may need structurally complex refuges to migrate from the sea.  相似文献   

6.
The dinoflagellate subfamily Diplopsalidoideae encompasses 11 genera whose plate patterns show a large diversity. In a recently published molecular phylogeny (Liu et al. 2015) some of these genera (e.g. Diplopsalis, Diplopelta) are polyphyletic, suggesting that further subdivision of these genera is needed. Here we established the cyst‐theca relationship of Diplopsalis caspica by incubating cysts collected from the East China Sea. Cells of D. caspica display a plate formula of Po, X, 3′, 1a, 6″, 3c+t, ?4s, 5″′, 1″″, characterized by a small, parallelogrammic anterior intercalary plate (1a) located in the middle of the dorsal part of the epitheca. The cysts are spherical and smooth‐walled with a theropylic archeopyle. In addition, we obtained four large subunit ribosomal DNA (LSU rDNA) sequences from the germinated motile cells by single‐cell polymerase chain reaction. Strains of D. caspica from the marine environment of the East China Sea differ at 0–2 positions of LSU rDNA sequences from that of lacustrine strains from NE China. In the molecular phylogeny, D. caspica was close to Lebouraia pusilla but distant from D. lenticula, the type species of Diplopsalis. Our results support the systematic importance of plate 1a, and therefore D. caspica was transferred to a new genus, Huia. The conservative LSU rDNA sequences in H. caspica suggest that the marine‐freshwater transition occurred recently.  相似文献   

7.
The genera Elliptochloris and Pseudochlorella were erected for Chlorella‐like green algae producing two types of autospores and cell packages, respectively. Both genera are widely distributed in different soil habitats, either as free living or as photobionts of lichens. The species of these genera are often difficult to identify because of the high phenotypic plasticity and occasional lack of characteristic features. The taxonomic and nomenclatural status of these species, therefore, remains unclear. In this study, 34 strains were investigated using an integrative approach. Phylogenetic analyses demonstrated that the isolates belong to two independent lineages of the Trebouxiophyceae (Elliptochloris and Prasiola clades) and confirmed that the genera are not closely related. The comparison of morphology, molecular phylogeny, and analyses of secondary structures of SSU and ITS rDNA sequences revealed that all of the strains belong to three genera: Elliptochloris, Pseudochlorella, and Edaphochlorella. As a consequence of the taxonomic revisions, we propose two new combinations (Elliptochloris antarctica and Pseudochlorella signiensis) and validate Elliptochloris reniformis, which is invalidly described according to the International Code for Nomenclature (ICN), by designating a holotype. To reflect the high phenotypic plasticity of P. signiensis, two new varieties were described: P. signiensis var. magna and P. signiensis var. communis. Chlorella mirabilis was not closely related to any of these genera and was, therefore, transferred to the new genus Edaphochlorella. All of the taxonomic changes were highly supported by all phylogenetic analyses and were confirmed by the ITS‐2 Barcodes using the ITS‐2/CBC approach.  相似文献   

8.
The Oocystaceae family is generally considered to contain common freshwater eukaryotic microalgae, and few are reported living in semi‐saline habitats. Our latest ecological survey in Qinghai Lake and Angzicuo Lake, both large, closed, high‐altitude, semi‐saline lakes located on the Qinghai‐Tibet plateau in China, revealed Oocystaceae species as a dominant group among plankton. Since limited knowledge exists about semi‐saline species in the Oocystaceae family, a taxonomical study was carried out using morphological and phylogenetic methods. Using this approach, four new strains of Oocystaceae were identified and successfully cultured in the lab. Molecular results correlated with morphological characters and resolved these species into at least three genera. A new genus, Euchlorocystis, with type species Euchlorocystis subsalina, is described here as having the distinctive morphology of multiple pyrenoids per chloroplast among Oocystaceae, and an independent phylogenetic position at the base of the Oocystaceae. Similarly, the genus Densicystis, with type species Densicystis glomerata, is newly proposed here as having a unique colony morphology of dozens or hundreds of little cells tightly embedded in ellipsoid to round mucilage masses. Oocystis marina, originally described from the Baltic Sea, was also identified in Qinghai Lake and Angzicuo Lake and phylogenetically positioned in the semi‐saline clade of the Oocystaceae. The result that a marine species was detected in the closed inland lakes implies a further need to reevaluate the origins of these species.  相似文献   

9.
We have undertaken a comprehensive, molecular‐assisted alpha‐taxonomic examination of the rhodophyte family Liagoraceae sensu lato, a group that has not previously been targeted for molecular studies in the western Atlantic. Sequence data from three molecular markers indicate that in Bermuda alone there are 10 species in nine different genera. These include the addition of three genera to the flora — Hommersandiophycus, Trichogloeopsis, and Yamadaella. Liagora pectinata, a species with a type locality in Bermuda, is phylogenetically allied with Indo‐Pacific species of Hommersandiophycus, and the species historically reported as L. ceranoides for the islands is morphologically and genetically distinct from that taxon, and is herein described as L. nesophila sp. nov. Molecular sequence data have also uncovered the Indo‐Pacific L. mannarensis in Bermuda, a long‐distance new western Atlantic record. DNA sequences of Trichogloeopsis pedicellata from the type locality (Bahamas) match with local specimens demonstrating its presence in Bermuda. We described Yamadaella grassyi sp. nov. from Bermuda, a species phylogenetically and morphologically distinct from the generitype, Y. caenomyce of the Indo‐Pacific. Our data also indicated a single species each of Ganonema, Gloiocallis, Helminthocladia, Titanophycus, and Trichogloea in the flora.  相似文献   

10.
Graphocephala atropunctata or the blue‐green sharpshooter (BGSS) has been long recognized as the principal native vector of Xylella fastidiosa in coastal, wine‐grape‐growing areas of California. X. fastidiosa is the causative agent of Pierce's disease of grapevine and of numerous other leaf‐scorching diseases of agronomically important plants. X. fastidiosa has been shown to colonize the cibarium and precibarium (anterior foregut) of sharpshooters, where it may encounter other naturally occurring bacterial species. Here, deep 16S rRNA sequencing was used to survey the microbiota associated with the BGSS anterior foregut. DNA was extracted from dissected cibaria and precibaria; a portion of the 16S rRNA gene was amplified and sequenced using Illumina MiSeq technology. An average of approximately 32 000 sequence reads per insect was obtained. Agrobacterium was the most common genus detected; additional sequencing of the full‐length 16S rRNA gene further identified this as Agrobacterium tumefaciens or A. fabrum. A number of additional plant‐associated bacterial genera were also detected (Pseudomonas and Ensifer), along with genera known to be associated with insects (Baumannia), and soil (Stenotrophomonas, Caulobacter, Delftia, Achromobacter, Acinetobacter and Novosphingobium). Approximately half of the genera reported here have been previously reported to be prevalent in the cibarium and precibarium of glassy‐winged sharpshooter (GWSS; Homalodisca vitripennis). Many of these cibarium‐ and precibarium‐associated genera likely interact with X. fastidiosa.  相似文献   

11.
12.
Phylogenetic relationships in the family Delphinidae have been widely debated. We examined 347 skulls of Tursiops, Stenella, Delphinus, Steno, Lagenodelphis, and Sousa in order to resolve the phylogenetic position of Australian species of Tursiops. Five Tursiops type specimens were included. Cranial morphology was described using 2‐dimensional (2‐D) and 3‐dimensional geometric morphometrics (3‐GM), counts and categorical data. Analyses showed a clear morphological separation of Tursiops, including type specimens, from other genera. The three Stenella species did not cluster together. Stenella attenuata clustered with Delphinus delphis, and Stenella coeruleoalba with Lagenodelphis hosei. Length and width of the skull and rostrum were important discriminators in both methods. For 3‐D data, round vs. angular posterior skull shape distinguished some genera. Taxa that overlapped in the multivariate analyses had different mean tooth counts. Our study challenges genetic studies that identified Tursiops as polyphyletic, with T. aduncus closer to S. attenuata.  相似文献   

13.
14.
Aims: To isolate and identify alkane‐degrading bacteria from deep‐sea superficial sediments sampled at a north‐western Mediterranean station. Methods and Results: Sediments from the water/sediment interface at a 2400 m depth were sampled with a multicorer at the ANTARES site off the French Mediterranean coast and were promptly enriched with Maya crude oil as the sole source of carbon and energy. Alkane‐degrading bacteria belonging to the genera Alcanivorax, Pseudomonas, Marinobacter, Rhodococcus and Clavibacter‐like were isolated, indicating that the same groups were potentially involved in hydrocarbon biodegradation in deep sea as in coastal waters. Conclusions: These results confirm that members of Alcanivorax are important obligate alkane degraders in deep‐sea environments and coexist with other degrading bacteria inhabiting the deep‐subsurface sediment of the Mediterranean. Significance and Impact of the Study: The results suggest that the isolates obtained have potential applications in bioremediation strategies in deep‐sea environments and highlight the need to identify specific piezophilic hydrocarbon‐degrading bacteria (HCB) from these environments.  相似文献   

15.
Molecular phylogenetic analyses conducted over the past 15 yr have consistently had difficulties resolving relationships among the cetacean species in the subfamily Delphininae. In addition, paraphyly of the genera Tursiops and Stenella in these molecular phylogenies has been a recurrent problem since the first appearance of such a phylogeny in 1999, suggesting that these genera do not accurately reflect the evolutionary relationships of the species they contain. Morphological analyses have not resolved the issues. The genera in Delphininae originated in the 19th Century on questionable morphological grounds. The species were nearly all originally described in the genus Delphinus of Linnaeus. Recent molecular phylogenies based on various mitochondrial and nuclear DNA markers have suggested a wide range of possible relationships among these taxa, and several authors have suggested synonymizing all the taxa (Lagenodelphis, Stenella, Sousa, and Tursiops) under Delphinus. Until molecular and/or morphological analyses adequately sort out relationships in this very recently radiated group, one possible solution indeed would be to merge all the delphinine genera with Delphinus. Implications of such a move and alternatives are discussed.
Editor's Note: Papers from past Norris Award winners have primarily been a revised or reduced version of the actual presentation given as a plenary talk at the biennial conference. Dr. Perrin requested being allowed to take a topic from his presentation and expand on it to present a set of ideas in the form of an essay that could pass the rigors of the peer‐review process. As a result, this Norris Award paper has undergone peer‐review and has taken longer than usual for a Norris Award paper to appear in the journal following its presentation at the biennial conference. It also has co‐authors, with varying opinions on the issues discussed in the essay, to cover appropriately and more thoroughly those components of the paper that required additional expertise. I believe this approach has produced an excellent, thought‐provoking essay and is an approach that should be available to future Norris Award winners if they so choose to take it. Since this essay is meant to elicit dialogue, comments are welcome and will be considered for publication in Letters to the Editor.
  相似文献   

16.
Coral cover on Caribbean reefs has declined rapidly since the early 1980's. Diseases have been a major driver, decimating communities of framework building Acropora and Orbicella coral species, and reportedly leading to the emergence of novel coral assemblages often dominated by domed and plating species of the genera Agaricia, Porites and Siderastrea. These corals were not historically important Caribbean framework builders, and typically have much smaller stature and lower calcification rates, fuelling concerns over reef carbonate production and growth potential. Using data from 75 reefs from across the Caribbean we quantify: (i) the magnitude of non‐framework building coral dominance throughout the region and (ii) the contribution of these corals to contemporary carbonate production. Our data show that live coral cover averages 18.2% across our sites and coral carbonate production 4.1 kg CaCO3 m?2 yr?1. However, non‐framework building coral species dominate and are major carbonate producers at a high proportion of sites; they are more abundant than Acropora and Orbicella at 73% of sites; contribute an average 68% of the carbonate produced; and produce more than half the carbonate at 79% of sites. Coral cover and carbonate production rate are strongly correlated but, as relative abundance of non‐framework building corals increases, average carbonate production rates decline. Consequently, the use of coral cover as a predictor of carbonate budget status, without species level production rate data, needs to be treated with caution. Our findings provide compelling evidence for the Caribbean‐wide dominance of non‐framework building coral taxa, and that these species are now major regional carbonate producers. However, because these species typically have lower calcification rates, continued transitions to states dominated by non‐framework building coral species will further reduce carbonate production rates below ‘predecline’ levels, resulting in shifts towards negative carbonate budget states and reducing reef growth potential.  相似文献   

17.
18.
We investigate the cyst‐theca relationship of Impagidinium caspienense. Through an incubation experiment, we succeeded in examining the motile stage. Additional molecular analysis of single‐cyst PCR (LSU and SSU rDNA) reveal that the cyst is related to the species Gonyaulax baltica Ellegaard et al. ( 2002 ). The ability of this species to belong to two types of cyst‐based genera (spiniferate and impagidinioid) suggests that environmental (particularly salinity) and not genetic factors explain the formation of both morphotypes by G. baltica, which provides evidence for heterospory in this species. The affiliation to G. baltica demonstrates that I. caspienense is not endemic to the Caspian Sea. The phylogenetic position of several other gonyaulacoid species is also documented: Impagidinium pallidum, Ataxiodinium choane, Pyxidinopsis psilata, Spiniferites belerius, and Spiniferites ramosus. The LSU and SSU rDNA based phylogenies suggest that the genera Impagidinium and Spiniferites are not monophyletic, and that P. psilata and A. choane are close to Gonyaulax verior and Gonyaulax polygramma, respectively. In addition, this study accentuates the importance of cyst morphology in the classification of the Gonyaulacales.  相似文献   

19.
Many conflicting hypotheses regarding the relationships among crops and wild species closely related to wheat (the genera Aegilops, Amblyopyrum, and Triticum) have been postulated. The contribution of hybridization to the evolution of these taxa is intensely discussed. To determine possible causes for this, and provide a phylogeny of the diploid taxa based on genome‐wide sequence information, independent data were obtained from genotyping‐by‐sequencing and a target‐enrichment experiment that returned 244 low‐copy nuclear loci. The data were analyzed using Bayesian, likelihood and coalescent‐based methods. D statistics were used to test if incomplete lineage sorting alone or together with hybridization is the source for incongruent gene trees. Here we present the phylogeny of all diploid species of the wheat wild relatives. We hypothesize that most of the wheat‐group species were shaped by a primordial homoploid hybrid speciation event involving the ancestral Triticum and Am. muticum lineages to form all other species except Ae. speltoides. This hybridization event was followed by multiple introgressions affecting all taxa except Triticum. Mostly progenitors of the extant species were involved in these processes, while recent interspecific gene flow seems insignificant. The composite nature of many genomes of wheat‐group taxa results in complicated patterns of diploid contributions when these lineages are involved in polyploid formation, which is, for example, the case for tetraploid and hexaploid wheats. Our analysis provides phylogenetic relationships and a testable hypothesis for the genome compositions in the basic evolutionary units within the wheat group of Triticeae.  相似文献   

20.
Understanding the ecology and evolution of parasites is contingent on identifying the selection pressures they face across their infection landscape. Such a task is made challenging by the fact that these pressures will likely vary across time and space, as a result of seasonal and geographical differences in host susceptibility or transmission opportunities. Avian haemosporidian blood parasites are capable of infecting multiple co‐occurring hosts within their ranges, yet whether their distribution across time and space varies similarly in their different host species remains unclear. Here, we applied a new PCR method to detect avian haemosporidia (genera Haemoproteus, Leucocytozoon, and Plasmodium) and to determine parasite prevalence in two closely related and co‐occurring host species, blue tits (Cyanistes caeruleus, N = 529) and great tits (Parus major, N = 443). Our samples were collected between autumn and spring, along an elevational gradient in the French Pyrenees and over a three‐year period. Most parasites were found to infect both host species, and while these generalist parasites displayed similar elevational patterns of prevalence in the two host species, this was not always the case for seasonal prevalence patterns. For example, Leucocytozoon group A parasites showed inverse seasonal prevalence when comparing between the two host species, being highest in winter and spring in blue tits but higher in autumn in great tits. While Plasmodium relictum prevalence was overall lower in spring relative to winter or autumn in both species, spring prevalence was also lower in blue tits than in great tits. Together, these results reveal how generalist parasites can exhibit host‐specific epidemiology, which is likely to complicate predictions of host–parasite co‐evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号